| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > plyaddlem | GIF version | ||
| Description: Lemma for plyadd 15433. (Contributed by Mario Carneiro, 21-Jul-2014.) |
| Ref | Expression |
|---|---|
| plyadd.1 | ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) |
| plyadd.2 | ⊢ (𝜑 → 𝐺 ∈ (Poly‘𝑆)) |
| plyadd.3 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) |
| plyadd.m | ⊢ (𝜑 → 𝑀 ∈ ℕ0) |
| plyadd.n | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
| plyadd.a | ⊢ (𝜑 → 𝐴 ∈ ((𝑆 ∪ {0}) ↑𝑚 ℕ0)) |
| plyadd.b | ⊢ (𝜑 → 𝐵 ∈ ((𝑆 ∪ {0}) ↑𝑚 ℕ0)) |
| plyadd.a2 | ⊢ (𝜑 → (𝐴 “ (ℤ≥‘(𝑀 + 1))) = {0}) |
| plyadd.b2 | ⊢ (𝜑 → (𝐵 “ (ℤ≥‘(𝑁 + 1))) = {0}) |
| plyadd.f | ⊢ (𝜑 → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑀)((𝐴‘𝑘) · (𝑧↑𝑘)))) |
| plyadd.g | ⊢ (𝜑 → 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐵‘𝑘) · (𝑧↑𝑘)))) |
| Ref | Expression |
|---|---|
| plyaddlem | ⊢ (𝜑 → (𝐹 ∘𝑓 + 𝐺) ∈ (Poly‘𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | plyadd.1 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) | |
| 2 | plyadd.2 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ (Poly‘𝑆)) | |
| 3 | plyadd.m | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ℕ0) | |
| 4 | plyadd.n | . . . 4 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
| 5 | plyadd.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ ((𝑆 ∪ {0}) ↑𝑚 ℕ0)) | |
| 6 | plybss 15415 | . . . . . . . . . 10 ⊢ (𝐹 ∈ (Poly‘𝑆) → 𝑆 ⊆ ℂ) | |
| 7 | 1, 6 | syl 14 | . . . . . . . . 9 ⊢ (𝜑 → 𝑆 ⊆ ℂ) |
| 8 | 0cnd 8147 | . . . . . . . . . 10 ⊢ (𝜑 → 0 ∈ ℂ) | |
| 9 | 8 | snssd 3813 | . . . . . . . . 9 ⊢ (𝜑 → {0} ⊆ ℂ) |
| 10 | 7, 9 | unssd 3380 | . . . . . . . 8 ⊢ (𝜑 → (𝑆 ∪ {0}) ⊆ ℂ) |
| 11 | cnex 8131 | . . . . . . . 8 ⊢ ℂ ∈ V | |
| 12 | ssexg 4223 | . . . . . . . 8 ⊢ (((𝑆 ∪ {0}) ⊆ ℂ ∧ ℂ ∈ V) → (𝑆 ∪ {0}) ∈ V) | |
| 13 | 10, 11, 12 | sylancl 413 | . . . . . . 7 ⊢ (𝜑 → (𝑆 ∪ {0}) ∈ V) |
| 14 | nn0ex 9383 | . . . . . . 7 ⊢ ℕ0 ∈ V | |
| 15 | elmapg 6816 | . . . . . . 7 ⊢ (((𝑆 ∪ {0}) ∈ V ∧ ℕ0 ∈ V) → (𝐴 ∈ ((𝑆 ∪ {0}) ↑𝑚 ℕ0) ↔ 𝐴:ℕ0⟶(𝑆 ∪ {0}))) | |
| 16 | 13, 14, 15 | sylancl 413 | . . . . . 6 ⊢ (𝜑 → (𝐴 ∈ ((𝑆 ∪ {0}) ↑𝑚 ℕ0) ↔ 𝐴:ℕ0⟶(𝑆 ∪ {0}))) |
| 17 | 5, 16 | mpbid 147 | . . . . 5 ⊢ (𝜑 → 𝐴:ℕ0⟶(𝑆 ∪ {0})) |
| 18 | 17, 10 | fssd 5486 | . . . 4 ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) |
| 19 | plyadd.b | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ ((𝑆 ∪ {0}) ↑𝑚 ℕ0)) | |
| 20 | elmapg 6816 | . . . . . . 7 ⊢ (((𝑆 ∪ {0}) ∈ V ∧ ℕ0 ∈ V) → (𝐵 ∈ ((𝑆 ∪ {0}) ↑𝑚 ℕ0) ↔ 𝐵:ℕ0⟶(𝑆 ∪ {0}))) | |
| 21 | 13, 14, 20 | sylancl 413 | . . . . . 6 ⊢ (𝜑 → (𝐵 ∈ ((𝑆 ∪ {0}) ↑𝑚 ℕ0) ↔ 𝐵:ℕ0⟶(𝑆 ∪ {0}))) |
| 22 | 19, 21 | mpbid 147 | . . . . 5 ⊢ (𝜑 → 𝐵:ℕ0⟶(𝑆 ∪ {0})) |
| 23 | 22, 10 | fssd 5486 | . . . 4 ⊢ (𝜑 → 𝐵:ℕ0⟶ℂ) |
| 24 | plyadd.a2 | . . . 4 ⊢ (𝜑 → (𝐴 “ (ℤ≥‘(𝑀 + 1))) = {0}) | |
| 25 | plyadd.b2 | . . . 4 ⊢ (𝜑 → (𝐵 “ (ℤ≥‘(𝑁 + 1))) = {0}) | |
| 26 | plyadd.f | . . . 4 ⊢ (𝜑 → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑀)((𝐴‘𝑘) · (𝑧↑𝑘)))) | |
| 27 | plyadd.g | . . . 4 ⊢ (𝜑 → 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐵‘𝑘) · (𝑧↑𝑘)))) | |
| 28 | 1, 2, 3, 4, 18, 23, 24, 25, 26, 27 | plyaddlem1 15429 | . . 3 ⊢ (𝜑 → (𝐹 ∘𝑓 + 𝐺) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...if(𝑀 ≤ 𝑁, 𝑁, 𝑀))(((𝐴 ∘𝑓 + 𝐵)‘𝑘) · (𝑧↑𝑘)))) |
| 29 | 3 | nn0zd 9575 | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| 30 | 4 | nn0zd 9575 | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ ℤ) |
| 31 | zdcle 9531 | . . . . . 6 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID 𝑀 ≤ 𝑁) | |
| 32 | 29, 30, 31 | syl2anc 411 | . . . . 5 ⊢ (𝜑 → DECID 𝑀 ≤ 𝑁) |
| 33 | 4, 3, 32 | ifcldcd 3640 | . . . 4 ⊢ (𝜑 → if(𝑀 ≤ 𝑁, 𝑁, 𝑀) ∈ ℕ0) |
| 34 | eqid 2229 | . . . . . . 7 ⊢ (𝑆 ∪ {0}) = (𝑆 ∪ {0}) | |
| 35 | plyadd.3 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) | |
| 36 | 7, 34, 35 | un0addcl 9410 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ (𝑆 ∪ {0}) ∧ 𝑦 ∈ (𝑆 ∪ {0}))) → (𝑥 + 𝑦) ∈ (𝑆 ∪ {0})) |
| 37 | 14 | a1i 9 | . . . . . 6 ⊢ (𝜑 → ℕ0 ∈ V) |
| 38 | inidm 3413 | . . . . . 6 ⊢ (ℕ0 ∩ ℕ0) = ℕ0 | |
| 39 | 36, 17, 22, 37, 37, 38 | off 6237 | . . . . 5 ⊢ (𝜑 → (𝐴 ∘𝑓 + 𝐵):ℕ0⟶(𝑆 ∪ {0})) |
| 40 | elfznn0 10318 | . . . . 5 ⊢ (𝑘 ∈ (0...if(𝑀 ≤ 𝑁, 𝑁, 𝑀)) → 𝑘 ∈ ℕ0) | |
| 41 | ffvelcdm 5770 | . . . . 5 ⊢ (((𝐴 ∘𝑓 + 𝐵):ℕ0⟶(𝑆 ∪ {0}) ∧ 𝑘 ∈ ℕ0) → ((𝐴 ∘𝑓 + 𝐵)‘𝑘) ∈ (𝑆 ∪ {0})) | |
| 42 | 39, 40, 41 | syl2an 289 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...if(𝑀 ≤ 𝑁, 𝑁, 𝑀))) → ((𝐴 ∘𝑓 + 𝐵)‘𝑘) ∈ (𝑆 ∪ {0})) |
| 43 | 10, 33, 42 | elplyd 15423 | . . 3 ⊢ (𝜑 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...if(𝑀 ≤ 𝑁, 𝑁, 𝑀))(((𝐴 ∘𝑓 + 𝐵)‘𝑘) · (𝑧↑𝑘))) ∈ (Poly‘(𝑆 ∪ {0}))) |
| 44 | 28, 43 | eqeltrd 2306 | . 2 ⊢ (𝜑 → (𝐹 ∘𝑓 + 𝐺) ∈ (Poly‘(𝑆 ∪ {0}))) |
| 45 | plyun0 15418 | . 2 ⊢ (Poly‘(𝑆 ∪ {0})) = (Poly‘𝑆) | |
| 46 | 44, 45 | eleqtrdi 2322 | 1 ⊢ (𝜑 → (𝐹 ∘𝑓 + 𝐺) ∈ (Poly‘𝑆)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 DECID wdc 839 = wceq 1395 ∈ wcel 2200 Vcvv 2799 ∪ cun 3195 ⊆ wss 3197 ifcif 3602 {csn 3666 class class class wbr 4083 ↦ cmpt 4145 “ cima 4722 ⟶wf 5314 ‘cfv 5318 (class class class)co 6007 ∘𝑓 cof 6222 ↑𝑚 cmap 6803 ℂcc 8005 0cc0 8007 1c1 8008 + caddc 8010 · cmul 8012 ≤ cle 8190 ℕ0cn0 9377 ℤcz 9454 ℤ≥cuz 9730 ...cfz 10212 ↑cexp 10768 Σcsu 11872 Polycply 15410 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-iinf 4680 ax-cnex 8098 ax-resscn 8099 ax-1cn 8100 ax-1re 8101 ax-icn 8102 ax-addcl 8103 ax-addrcl 8104 ax-mulcl 8105 ax-mulrcl 8106 ax-addcom 8107 ax-mulcom 8108 ax-addass 8109 ax-mulass 8110 ax-distr 8111 ax-i2m1 8112 ax-0lt1 8113 ax-1rid 8114 ax-0id 8115 ax-rnegex 8116 ax-precex 8117 ax-cnre 8118 ax-pre-ltirr 8119 ax-pre-ltwlin 8120 ax-pre-lttrn 8121 ax-pre-apti 8122 ax-pre-ltadd 8123 ax-pre-mulgt0 8124 ax-pre-mulext 8125 ax-arch 8126 ax-caucvg 8127 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-id 4384 df-po 4387 df-iso 4388 df-iord 4457 df-on 4459 df-ilim 4460 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-isom 5327 df-riota 5960 df-ov 6010 df-oprab 6011 df-mpo 6012 df-of 6224 df-1st 6292 df-2nd 6293 df-recs 6457 df-irdg 6522 df-frec 6543 df-1o 6568 df-oadd 6572 df-er 6688 df-map 6805 df-en 6896 df-dom 6897 df-fin 6898 df-sup 7159 df-pnf 8191 df-mnf 8192 df-xr 8193 df-ltxr 8194 df-le 8195 df-sub 8327 df-neg 8328 df-reap 8730 df-ap 8737 df-div 8828 df-inn 9119 df-2 9177 df-3 9178 df-4 9179 df-n0 9378 df-z 9455 df-uz 9731 df-q 9823 df-rp 9858 df-fz 10213 df-fzo 10347 df-seqfrec 10678 df-exp 10769 df-ihash 11006 df-cj 11361 df-re 11362 df-im 11363 df-rsqrt 11517 df-abs 11518 df-clim 11798 df-sumdc 11873 df-ply 15412 |
| This theorem is referenced by: plyadd 15433 |
| Copyright terms: Public domain | W3C validator |