| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > plyaddlem | GIF version | ||
| Description: Lemma for plyadd 15267. (Contributed by Mario Carneiro, 21-Jul-2014.) |
| Ref | Expression |
|---|---|
| plyadd.1 | ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) |
| plyadd.2 | ⊢ (𝜑 → 𝐺 ∈ (Poly‘𝑆)) |
| plyadd.3 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) |
| plyadd.m | ⊢ (𝜑 → 𝑀 ∈ ℕ0) |
| plyadd.n | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
| plyadd.a | ⊢ (𝜑 → 𝐴 ∈ ((𝑆 ∪ {0}) ↑𝑚 ℕ0)) |
| plyadd.b | ⊢ (𝜑 → 𝐵 ∈ ((𝑆 ∪ {0}) ↑𝑚 ℕ0)) |
| plyadd.a2 | ⊢ (𝜑 → (𝐴 “ (ℤ≥‘(𝑀 + 1))) = {0}) |
| plyadd.b2 | ⊢ (𝜑 → (𝐵 “ (ℤ≥‘(𝑁 + 1))) = {0}) |
| plyadd.f | ⊢ (𝜑 → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑀)((𝐴‘𝑘) · (𝑧↑𝑘)))) |
| plyadd.g | ⊢ (𝜑 → 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐵‘𝑘) · (𝑧↑𝑘)))) |
| Ref | Expression |
|---|---|
| plyaddlem | ⊢ (𝜑 → (𝐹 ∘𝑓 + 𝐺) ∈ (Poly‘𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | plyadd.1 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) | |
| 2 | plyadd.2 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ (Poly‘𝑆)) | |
| 3 | plyadd.m | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ℕ0) | |
| 4 | plyadd.n | . . . 4 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
| 5 | plyadd.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ ((𝑆 ∪ {0}) ↑𝑚 ℕ0)) | |
| 6 | plybss 15249 | . . . . . . . . . 10 ⊢ (𝐹 ∈ (Poly‘𝑆) → 𝑆 ⊆ ℂ) | |
| 7 | 1, 6 | syl 14 | . . . . . . . . 9 ⊢ (𝜑 → 𝑆 ⊆ ℂ) |
| 8 | 0cnd 8072 | . . . . . . . . . 10 ⊢ (𝜑 → 0 ∈ ℂ) | |
| 9 | 8 | snssd 3780 | . . . . . . . . 9 ⊢ (𝜑 → {0} ⊆ ℂ) |
| 10 | 7, 9 | unssd 3350 | . . . . . . . 8 ⊢ (𝜑 → (𝑆 ∪ {0}) ⊆ ℂ) |
| 11 | cnex 8056 | . . . . . . . 8 ⊢ ℂ ∈ V | |
| 12 | ssexg 4187 | . . . . . . . 8 ⊢ (((𝑆 ∪ {0}) ⊆ ℂ ∧ ℂ ∈ V) → (𝑆 ∪ {0}) ∈ V) | |
| 13 | 10, 11, 12 | sylancl 413 | . . . . . . 7 ⊢ (𝜑 → (𝑆 ∪ {0}) ∈ V) |
| 14 | nn0ex 9308 | . . . . . . 7 ⊢ ℕ0 ∈ V | |
| 15 | elmapg 6755 | . . . . . . 7 ⊢ (((𝑆 ∪ {0}) ∈ V ∧ ℕ0 ∈ V) → (𝐴 ∈ ((𝑆 ∪ {0}) ↑𝑚 ℕ0) ↔ 𝐴:ℕ0⟶(𝑆 ∪ {0}))) | |
| 16 | 13, 14, 15 | sylancl 413 | . . . . . 6 ⊢ (𝜑 → (𝐴 ∈ ((𝑆 ∪ {0}) ↑𝑚 ℕ0) ↔ 𝐴:ℕ0⟶(𝑆 ∪ {0}))) |
| 17 | 5, 16 | mpbid 147 | . . . . 5 ⊢ (𝜑 → 𝐴:ℕ0⟶(𝑆 ∪ {0})) |
| 18 | 17, 10 | fssd 5444 | . . . 4 ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) |
| 19 | plyadd.b | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ ((𝑆 ∪ {0}) ↑𝑚 ℕ0)) | |
| 20 | elmapg 6755 | . . . . . . 7 ⊢ (((𝑆 ∪ {0}) ∈ V ∧ ℕ0 ∈ V) → (𝐵 ∈ ((𝑆 ∪ {0}) ↑𝑚 ℕ0) ↔ 𝐵:ℕ0⟶(𝑆 ∪ {0}))) | |
| 21 | 13, 14, 20 | sylancl 413 | . . . . . 6 ⊢ (𝜑 → (𝐵 ∈ ((𝑆 ∪ {0}) ↑𝑚 ℕ0) ↔ 𝐵:ℕ0⟶(𝑆 ∪ {0}))) |
| 22 | 19, 21 | mpbid 147 | . . . . 5 ⊢ (𝜑 → 𝐵:ℕ0⟶(𝑆 ∪ {0})) |
| 23 | 22, 10 | fssd 5444 | . . . 4 ⊢ (𝜑 → 𝐵:ℕ0⟶ℂ) |
| 24 | plyadd.a2 | . . . 4 ⊢ (𝜑 → (𝐴 “ (ℤ≥‘(𝑀 + 1))) = {0}) | |
| 25 | plyadd.b2 | . . . 4 ⊢ (𝜑 → (𝐵 “ (ℤ≥‘(𝑁 + 1))) = {0}) | |
| 26 | plyadd.f | . . . 4 ⊢ (𝜑 → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑀)((𝐴‘𝑘) · (𝑧↑𝑘)))) | |
| 27 | plyadd.g | . . . 4 ⊢ (𝜑 → 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐵‘𝑘) · (𝑧↑𝑘)))) | |
| 28 | 1, 2, 3, 4, 18, 23, 24, 25, 26, 27 | plyaddlem1 15263 | . . 3 ⊢ (𝜑 → (𝐹 ∘𝑓 + 𝐺) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...if(𝑀 ≤ 𝑁, 𝑁, 𝑀))(((𝐴 ∘𝑓 + 𝐵)‘𝑘) · (𝑧↑𝑘)))) |
| 29 | 3 | nn0zd 9500 | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| 30 | 4 | nn0zd 9500 | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ ℤ) |
| 31 | zdcle 9456 | . . . . . 6 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID 𝑀 ≤ 𝑁) | |
| 32 | 29, 30, 31 | syl2anc 411 | . . . . 5 ⊢ (𝜑 → DECID 𝑀 ≤ 𝑁) |
| 33 | 4, 3, 32 | ifcldcd 3609 | . . . 4 ⊢ (𝜑 → if(𝑀 ≤ 𝑁, 𝑁, 𝑀) ∈ ℕ0) |
| 34 | eqid 2206 | . . . . . . 7 ⊢ (𝑆 ∪ {0}) = (𝑆 ∪ {0}) | |
| 35 | plyadd.3 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) | |
| 36 | 7, 34, 35 | un0addcl 9335 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ (𝑆 ∪ {0}) ∧ 𝑦 ∈ (𝑆 ∪ {0}))) → (𝑥 + 𝑦) ∈ (𝑆 ∪ {0})) |
| 37 | 14 | a1i 9 | . . . . . 6 ⊢ (𝜑 → ℕ0 ∈ V) |
| 38 | inidm 3383 | . . . . . 6 ⊢ (ℕ0 ∩ ℕ0) = ℕ0 | |
| 39 | 36, 17, 22, 37, 37, 38 | off 6178 | . . . . 5 ⊢ (𝜑 → (𝐴 ∘𝑓 + 𝐵):ℕ0⟶(𝑆 ∪ {0})) |
| 40 | elfznn0 10243 | . . . . 5 ⊢ (𝑘 ∈ (0...if(𝑀 ≤ 𝑁, 𝑁, 𝑀)) → 𝑘 ∈ ℕ0) | |
| 41 | ffvelcdm 5720 | . . . . 5 ⊢ (((𝐴 ∘𝑓 + 𝐵):ℕ0⟶(𝑆 ∪ {0}) ∧ 𝑘 ∈ ℕ0) → ((𝐴 ∘𝑓 + 𝐵)‘𝑘) ∈ (𝑆 ∪ {0})) | |
| 42 | 39, 40, 41 | syl2an 289 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...if(𝑀 ≤ 𝑁, 𝑁, 𝑀))) → ((𝐴 ∘𝑓 + 𝐵)‘𝑘) ∈ (𝑆 ∪ {0})) |
| 43 | 10, 33, 42 | elplyd 15257 | . . 3 ⊢ (𝜑 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...if(𝑀 ≤ 𝑁, 𝑁, 𝑀))(((𝐴 ∘𝑓 + 𝐵)‘𝑘) · (𝑧↑𝑘))) ∈ (Poly‘(𝑆 ∪ {0}))) |
| 44 | 28, 43 | eqeltrd 2283 | . 2 ⊢ (𝜑 → (𝐹 ∘𝑓 + 𝐺) ∈ (Poly‘(𝑆 ∪ {0}))) |
| 45 | plyun0 15252 | . 2 ⊢ (Poly‘(𝑆 ∪ {0})) = (Poly‘𝑆) | |
| 46 | 44, 45 | eleqtrdi 2299 | 1 ⊢ (𝜑 → (𝐹 ∘𝑓 + 𝐺) ∈ (Poly‘𝑆)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 DECID wdc 836 = wceq 1373 ∈ wcel 2177 Vcvv 2773 ∪ cun 3165 ⊆ wss 3167 ifcif 3572 {csn 3634 class class class wbr 4047 ↦ cmpt 4109 “ cima 4682 ⟶wf 5272 ‘cfv 5276 (class class class)co 5951 ∘𝑓 cof 6163 ↑𝑚 cmap 6742 ℂcc 7930 0cc0 7932 1c1 7933 + caddc 7935 · cmul 7937 ≤ cle 8115 ℕ0cn0 9302 ℤcz 9379 ℤ≥cuz 9655 ...cfz 10137 ↑cexp 10690 Σcsu 11708 Polycply 15244 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4163 ax-sep 4166 ax-nul 4174 ax-pow 4222 ax-pr 4257 ax-un 4484 ax-setind 4589 ax-iinf 4640 ax-cnex 8023 ax-resscn 8024 ax-1cn 8025 ax-1re 8026 ax-icn 8027 ax-addcl 8028 ax-addrcl 8029 ax-mulcl 8030 ax-mulrcl 8031 ax-addcom 8032 ax-mulcom 8033 ax-addass 8034 ax-mulass 8035 ax-distr 8036 ax-i2m1 8037 ax-0lt1 8038 ax-1rid 8039 ax-0id 8040 ax-rnegex 8041 ax-precex 8042 ax-cnre 8043 ax-pre-ltirr 8044 ax-pre-ltwlin 8045 ax-pre-lttrn 8046 ax-pre-apti 8047 ax-pre-ltadd 8048 ax-pre-mulgt0 8049 ax-pre-mulext 8050 ax-arch 8051 ax-caucvg 8052 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3000 df-csb 3095 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-nul 3462 df-if 3573 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-int 3888 df-iun 3931 df-br 4048 df-opab 4110 df-mpt 4111 df-tr 4147 df-id 4344 df-po 4347 df-iso 4348 df-iord 4417 df-on 4419 df-ilim 4420 df-suc 4422 df-iom 4643 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-res 4691 df-ima 4692 df-iota 5237 df-fun 5278 df-fn 5279 df-f 5280 df-f1 5281 df-fo 5282 df-f1o 5283 df-fv 5284 df-isom 5285 df-riota 5906 df-ov 5954 df-oprab 5955 df-mpo 5956 df-of 6165 df-1st 6233 df-2nd 6234 df-recs 6398 df-irdg 6463 df-frec 6484 df-1o 6509 df-oadd 6513 df-er 6627 df-map 6744 df-en 6835 df-dom 6836 df-fin 6837 df-sup 7093 df-pnf 8116 df-mnf 8117 df-xr 8118 df-ltxr 8119 df-le 8120 df-sub 8252 df-neg 8253 df-reap 8655 df-ap 8662 df-div 8753 df-inn 9044 df-2 9102 df-3 9103 df-4 9104 df-n0 9303 df-z 9380 df-uz 9656 df-q 9748 df-rp 9783 df-fz 10138 df-fzo 10272 df-seqfrec 10600 df-exp 10691 df-ihash 10928 df-cj 11197 df-re 11198 df-im 11199 df-rsqrt 11353 df-abs 11354 df-clim 11634 df-sumdc 11709 df-ply 15246 |
| This theorem is referenced by: plyadd 15267 |
| Copyright terms: Public domain | W3C validator |