| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > plyaddlem | GIF version | ||
| Description: Lemma for plyadd 14987. (Contributed by Mario Carneiro, 21-Jul-2014.) |
| Ref | Expression |
|---|---|
| plyadd.1 | ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) |
| plyadd.2 | ⊢ (𝜑 → 𝐺 ∈ (Poly‘𝑆)) |
| plyadd.3 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) |
| plyadd.m | ⊢ (𝜑 → 𝑀 ∈ ℕ0) |
| plyadd.n | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
| plyadd.a | ⊢ (𝜑 → 𝐴 ∈ ((𝑆 ∪ {0}) ↑𝑚 ℕ0)) |
| plyadd.b | ⊢ (𝜑 → 𝐵 ∈ ((𝑆 ∪ {0}) ↑𝑚 ℕ0)) |
| plyadd.a2 | ⊢ (𝜑 → (𝐴 “ (ℤ≥‘(𝑀 + 1))) = {0}) |
| plyadd.b2 | ⊢ (𝜑 → (𝐵 “ (ℤ≥‘(𝑁 + 1))) = {0}) |
| plyadd.f | ⊢ (𝜑 → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑀)((𝐴‘𝑘) · (𝑧↑𝑘)))) |
| plyadd.g | ⊢ (𝜑 → 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐵‘𝑘) · (𝑧↑𝑘)))) |
| Ref | Expression |
|---|---|
| plyaddlem | ⊢ (𝜑 → (𝐹 ∘𝑓 + 𝐺) ∈ (Poly‘𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | plyadd.1 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) | |
| 2 | plyadd.2 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ (Poly‘𝑆)) | |
| 3 | plyadd.m | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ℕ0) | |
| 4 | plyadd.n | . . . 4 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
| 5 | plyadd.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ ((𝑆 ∪ {0}) ↑𝑚 ℕ0)) | |
| 6 | plybss 14969 | . . . . . . . . . 10 ⊢ (𝐹 ∈ (Poly‘𝑆) → 𝑆 ⊆ ℂ) | |
| 7 | 1, 6 | syl 14 | . . . . . . . . 9 ⊢ (𝜑 → 𝑆 ⊆ ℂ) |
| 8 | 0cnd 8019 | . . . . . . . . . 10 ⊢ (𝜑 → 0 ∈ ℂ) | |
| 9 | 8 | snssd 3767 | . . . . . . . . 9 ⊢ (𝜑 → {0} ⊆ ℂ) |
| 10 | 7, 9 | unssd 3339 | . . . . . . . 8 ⊢ (𝜑 → (𝑆 ∪ {0}) ⊆ ℂ) |
| 11 | cnex 8003 | . . . . . . . 8 ⊢ ℂ ∈ V | |
| 12 | ssexg 4172 | . . . . . . . 8 ⊢ (((𝑆 ∪ {0}) ⊆ ℂ ∧ ℂ ∈ V) → (𝑆 ∪ {0}) ∈ V) | |
| 13 | 10, 11, 12 | sylancl 413 | . . . . . . 7 ⊢ (𝜑 → (𝑆 ∪ {0}) ∈ V) |
| 14 | nn0ex 9255 | . . . . . . 7 ⊢ ℕ0 ∈ V | |
| 15 | elmapg 6720 | . . . . . . 7 ⊢ (((𝑆 ∪ {0}) ∈ V ∧ ℕ0 ∈ V) → (𝐴 ∈ ((𝑆 ∪ {0}) ↑𝑚 ℕ0) ↔ 𝐴:ℕ0⟶(𝑆 ∪ {0}))) | |
| 16 | 13, 14, 15 | sylancl 413 | . . . . . 6 ⊢ (𝜑 → (𝐴 ∈ ((𝑆 ∪ {0}) ↑𝑚 ℕ0) ↔ 𝐴:ℕ0⟶(𝑆 ∪ {0}))) |
| 17 | 5, 16 | mpbid 147 | . . . . 5 ⊢ (𝜑 → 𝐴:ℕ0⟶(𝑆 ∪ {0})) |
| 18 | 17, 10 | fssd 5420 | . . . 4 ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) |
| 19 | plyadd.b | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ ((𝑆 ∪ {0}) ↑𝑚 ℕ0)) | |
| 20 | elmapg 6720 | . . . . . . 7 ⊢ (((𝑆 ∪ {0}) ∈ V ∧ ℕ0 ∈ V) → (𝐵 ∈ ((𝑆 ∪ {0}) ↑𝑚 ℕ0) ↔ 𝐵:ℕ0⟶(𝑆 ∪ {0}))) | |
| 21 | 13, 14, 20 | sylancl 413 | . . . . . 6 ⊢ (𝜑 → (𝐵 ∈ ((𝑆 ∪ {0}) ↑𝑚 ℕ0) ↔ 𝐵:ℕ0⟶(𝑆 ∪ {0}))) |
| 22 | 19, 21 | mpbid 147 | . . . . 5 ⊢ (𝜑 → 𝐵:ℕ0⟶(𝑆 ∪ {0})) |
| 23 | 22, 10 | fssd 5420 | . . . 4 ⊢ (𝜑 → 𝐵:ℕ0⟶ℂ) |
| 24 | plyadd.a2 | . . . 4 ⊢ (𝜑 → (𝐴 “ (ℤ≥‘(𝑀 + 1))) = {0}) | |
| 25 | plyadd.b2 | . . . 4 ⊢ (𝜑 → (𝐵 “ (ℤ≥‘(𝑁 + 1))) = {0}) | |
| 26 | plyadd.f | . . . 4 ⊢ (𝜑 → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑀)((𝐴‘𝑘) · (𝑧↑𝑘)))) | |
| 27 | plyadd.g | . . . 4 ⊢ (𝜑 → 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐵‘𝑘) · (𝑧↑𝑘)))) | |
| 28 | 1, 2, 3, 4, 18, 23, 24, 25, 26, 27 | plyaddlem1 14983 | . . 3 ⊢ (𝜑 → (𝐹 ∘𝑓 + 𝐺) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...if(𝑀 ≤ 𝑁, 𝑁, 𝑀))(((𝐴 ∘𝑓 + 𝐵)‘𝑘) · (𝑧↑𝑘)))) |
| 29 | 3 | nn0zd 9446 | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| 30 | 4 | nn0zd 9446 | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ ℤ) |
| 31 | zdcle 9402 | . . . . . 6 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID 𝑀 ≤ 𝑁) | |
| 32 | 29, 30, 31 | syl2anc 411 | . . . . 5 ⊢ (𝜑 → DECID 𝑀 ≤ 𝑁) |
| 33 | 4, 3, 32 | ifcldcd 3597 | . . . 4 ⊢ (𝜑 → if(𝑀 ≤ 𝑁, 𝑁, 𝑀) ∈ ℕ0) |
| 34 | eqid 2196 | . . . . . . 7 ⊢ (𝑆 ∪ {0}) = (𝑆 ∪ {0}) | |
| 35 | plyadd.3 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) | |
| 36 | 7, 34, 35 | un0addcl 9282 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ (𝑆 ∪ {0}) ∧ 𝑦 ∈ (𝑆 ∪ {0}))) → (𝑥 + 𝑦) ∈ (𝑆 ∪ {0})) |
| 37 | 14 | a1i 9 | . . . . . 6 ⊢ (𝜑 → ℕ0 ∈ V) |
| 38 | inidm 3372 | . . . . . 6 ⊢ (ℕ0 ∩ ℕ0) = ℕ0 | |
| 39 | 36, 17, 22, 37, 37, 38 | off 6148 | . . . . 5 ⊢ (𝜑 → (𝐴 ∘𝑓 + 𝐵):ℕ0⟶(𝑆 ∪ {0})) |
| 40 | elfznn0 10189 | . . . . 5 ⊢ (𝑘 ∈ (0...if(𝑀 ≤ 𝑁, 𝑁, 𝑀)) → 𝑘 ∈ ℕ0) | |
| 41 | ffvelcdm 5695 | . . . . 5 ⊢ (((𝐴 ∘𝑓 + 𝐵):ℕ0⟶(𝑆 ∪ {0}) ∧ 𝑘 ∈ ℕ0) → ((𝐴 ∘𝑓 + 𝐵)‘𝑘) ∈ (𝑆 ∪ {0})) | |
| 42 | 39, 40, 41 | syl2an 289 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...if(𝑀 ≤ 𝑁, 𝑁, 𝑀))) → ((𝐴 ∘𝑓 + 𝐵)‘𝑘) ∈ (𝑆 ∪ {0})) |
| 43 | 10, 33, 42 | elplyd 14977 | . . 3 ⊢ (𝜑 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...if(𝑀 ≤ 𝑁, 𝑁, 𝑀))(((𝐴 ∘𝑓 + 𝐵)‘𝑘) · (𝑧↑𝑘))) ∈ (Poly‘(𝑆 ∪ {0}))) |
| 44 | 28, 43 | eqeltrd 2273 | . 2 ⊢ (𝜑 → (𝐹 ∘𝑓 + 𝐺) ∈ (Poly‘(𝑆 ∪ {0}))) |
| 45 | plyun0 14972 | . 2 ⊢ (Poly‘(𝑆 ∪ {0})) = (Poly‘𝑆) | |
| 46 | 44, 45 | eleqtrdi 2289 | 1 ⊢ (𝜑 → (𝐹 ∘𝑓 + 𝐺) ∈ (Poly‘𝑆)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 DECID wdc 835 = wceq 1364 ∈ wcel 2167 Vcvv 2763 ∪ cun 3155 ⊆ wss 3157 ifcif 3561 {csn 3622 class class class wbr 4033 ↦ cmpt 4094 “ cima 4666 ⟶wf 5254 ‘cfv 5258 (class class class)co 5922 ∘𝑓 cof 6133 ↑𝑚 cmap 6707 ℂcc 7877 0cc0 7879 1c1 7880 + caddc 7882 · cmul 7884 ≤ cle 8062 ℕ0cn0 9249 ℤcz 9326 ℤ≥cuz 9601 ...cfz 10083 ↑cexp 10630 Σcsu 11518 Polycply 14964 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-mulrcl 7978 ax-addcom 7979 ax-mulcom 7980 ax-addass 7981 ax-mulass 7982 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-1rid 7986 ax-0id 7987 ax-rnegex 7988 ax-precex 7989 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-apti 7994 ax-pre-ltadd 7995 ax-pre-mulgt0 7996 ax-pre-mulext 7997 ax-arch 7998 ax-caucvg 7999 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-if 3562 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-id 4328 df-po 4331 df-iso 4332 df-iord 4401 df-on 4403 df-ilim 4404 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-isom 5267 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-of 6135 df-1st 6198 df-2nd 6199 df-recs 6363 df-irdg 6428 df-frec 6449 df-1o 6474 df-oadd 6478 df-er 6592 df-map 6709 df-en 6800 df-dom 6801 df-fin 6802 df-sup 7050 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-reap 8602 df-ap 8609 df-div 8700 df-inn 8991 df-2 9049 df-3 9050 df-4 9051 df-n0 9250 df-z 9327 df-uz 9602 df-q 9694 df-rp 9729 df-fz 10084 df-fzo 10218 df-seqfrec 10540 df-exp 10631 df-ihash 10868 df-cj 11007 df-re 11008 df-im 11009 df-rsqrt 11163 df-abs 11164 df-clim 11444 df-sumdc 11519 df-ply 14966 |
| This theorem is referenced by: plyadd 14987 |
| Copyright terms: Public domain | W3C validator |