ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  plyaddlem GIF version

Theorem plyaddlem 15069
Description: Lemma for plyadd 15071. (Contributed by Mario Carneiro, 21-Jul-2014.)
Hypotheses
Ref Expression
plyadd.1 (𝜑𝐹 ∈ (Poly‘𝑆))
plyadd.2 (𝜑𝐺 ∈ (Poly‘𝑆))
plyadd.3 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
plyadd.m (𝜑𝑀 ∈ ℕ0)
plyadd.n (𝜑𝑁 ∈ ℕ0)
plyadd.a (𝜑𝐴 ∈ ((𝑆 ∪ {0}) ↑𝑚0))
plyadd.b (𝜑𝐵 ∈ ((𝑆 ∪ {0}) ↑𝑚0))
plyadd.a2 (𝜑 → (𝐴 “ (ℤ‘(𝑀 + 1))) = {0})
plyadd.b2 (𝜑 → (𝐵 “ (ℤ‘(𝑁 + 1))) = {0})
plyadd.f (𝜑𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑀)((𝐴𝑘) · (𝑧𝑘))))
plyadd.g (𝜑𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐵𝑘) · (𝑧𝑘))))
Assertion
Ref Expression
plyaddlem (𝜑 → (𝐹𝑓 + 𝐺) ∈ (Poly‘𝑆))
Distinct variable groups:   𝑥,𝑘,𝑦,𝑧,𝐵   𝑥,𝐹,𝑦,𝑧   𝑆,𝑘,𝑥,𝑦,𝑧   𝑥,𝐴,𝑦,𝑧   𝑥,𝐺,𝑦,𝑧   𝜑,𝑘,𝑥,𝑦,𝑧   𝑘,𝑀,𝑧   𝑘,𝑁,𝑧
Allowed substitution hints:   𝐴(𝑘)   𝐹(𝑘)   𝐺(𝑘)   𝑀(𝑥,𝑦)   𝑁(𝑥,𝑦)

Proof of Theorem plyaddlem
StepHypRef Expression
1 plyadd.1 . . . 4 (𝜑𝐹 ∈ (Poly‘𝑆))
2 plyadd.2 . . . 4 (𝜑𝐺 ∈ (Poly‘𝑆))
3 plyadd.m . . . 4 (𝜑𝑀 ∈ ℕ0)
4 plyadd.n . . . 4 (𝜑𝑁 ∈ ℕ0)
5 plyadd.a . . . . . 6 (𝜑𝐴 ∈ ((𝑆 ∪ {0}) ↑𝑚0))
6 plybss 15053 . . . . . . . . . 10 (𝐹 ∈ (Poly‘𝑆) → 𝑆 ⊆ ℂ)
71, 6syl 14 . . . . . . . . 9 (𝜑𝑆 ⊆ ℂ)
8 0cnd 8036 . . . . . . . . . 10 (𝜑 → 0 ∈ ℂ)
98snssd 3768 . . . . . . . . 9 (𝜑 → {0} ⊆ ℂ)
107, 9unssd 3340 . . . . . . . 8 (𝜑 → (𝑆 ∪ {0}) ⊆ ℂ)
11 cnex 8020 . . . . . . . 8 ℂ ∈ V
12 ssexg 4173 . . . . . . . 8 (((𝑆 ∪ {0}) ⊆ ℂ ∧ ℂ ∈ V) → (𝑆 ∪ {0}) ∈ V)
1310, 11, 12sylancl 413 . . . . . . 7 (𝜑 → (𝑆 ∪ {0}) ∈ V)
14 nn0ex 9272 . . . . . . 7 0 ∈ V
15 elmapg 6729 . . . . . . 7 (((𝑆 ∪ {0}) ∈ V ∧ ℕ0 ∈ V) → (𝐴 ∈ ((𝑆 ∪ {0}) ↑𝑚0) ↔ 𝐴:ℕ0⟶(𝑆 ∪ {0})))
1613, 14, 15sylancl 413 . . . . . 6 (𝜑 → (𝐴 ∈ ((𝑆 ∪ {0}) ↑𝑚0) ↔ 𝐴:ℕ0⟶(𝑆 ∪ {0})))
175, 16mpbid 147 . . . . 5 (𝜑𝐴:ℕ0⟶(𝑆 ∪ {0}))
1817, 10fssd 5423 . . . 4 (𝜑𝐴:ℕ0⟶ℂ)
19 plyadd.b . . . . . 6 (𝜑𝐵 ∈ ((𝑆 ∪ {0}) ↑𝑚0))
20 elmapg 6729 . . . . . . 7 (((𝑆 ∪ {0}) ∈ V ∧ ℕ0 ∈ V) → (𝐵 ∈ ((𝑆 ∪ {0}) ↑𝑚0) ↔ 𝐵:ℕ0⟶(𝑆 ∪ {0})))
2113, 14, 20sylancl 413 . . . . . 6 (𝜑 → (𝐵 ∈ ((𝑆 ∪ {0}) ↑𝑚0) ↔ 𝐵:ℕ0⟶(𝑆 ∪ {0})))
2219, 21mpbid 147 . . . . 5 (𝜑𝐵:ℕ0⟶(𝑆 ∪ {0}))
2322, 10fssd 5423 . . . 4 (𝜑𝐵:ℕ0⟶ℂ)
24 plyadd.a2 . . . 4 (𝜑 → (𝐴 “ (ℤ‘(𝑀 + 1))) = {0})
25 plyadd.b2 . . . 4 (𝜑 → (𝐵 “ (ℤ‘(𝑁 + 1))) = {0})
26 plyadd.f . . . 4 (𝜑𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑀)((𝐴𝑘) · (𝑧𝑘))))
27 plyadd.g . . . 4 (𝜑𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐵𝑘) · (𝑧𝑘))))
281, 2, 3, 4, 18, 23, 24, 25, 26, 27plyaddlem1 15067 . . 3 (𝜑 → (𝐹𝑓 + 𝐺) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...if(𝑀𝑁, 𝑁, 𝑀))(((𝐴𝑓 + 𝐵)‘𝑘) · (𝑧𝑘))))
293nn0zd 9463 . . . . . 6 (𝜑𝑀 ∈ ℤ)
304nn0zd 9463 . . . . . 6 (𝜑𝑁 ∈ ℤ)
31 zdcle 9419 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID 𝑀𝑁)
3229, 30, 31syl2anc 411 . . . . 5 (𝜑DECID 𝑀𝑁)
334, 3, 32ifcldcd 3598 . . . 4 (𝜑 → if(𝑀𝑁, 𝑁, 𝑀) ∈ ℕ0)
34 eqid 2196 . . . . . . 7 (𝑆 ∪ {0}) = (𝑆 ∪ {0})
35 plyadd.3 . . . . . . 7 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
367, 34, 35un0addcl 9299 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (𝑆 ∪ {0}) ∧ 𝑦 ∈ (𝑆 ∪ {0}))) → (𝑥 + 𝑦) ∈ (𝑆 ∪ {0}))
3714a1i 9 . . . . . 6 (𝜑 → ℕ0 ∈ V)
38 inidm 3373 . . . . . 6 (ℕ0 ∩ ℕ0) = ℕ0
3936, 17, 22, 37, 37, 38off 6152 . . . . 5 (𝜑 → (𝐴𝑓 + 𝐵):ℕ0⟶(𝑆 ∪ {0}))
40 elfznn0 10206 . . . . 5 (𝑘 ∈ (0...if(𝑀𝑁, 𝑁, 𝑀)) → 𝑘 ∈ ℕ0)
41 ffvelcdm 5698 . . . . 5 (((𝐴𝑓 + 𝐵):ℕ0⟶(𝑆 ∪ {0}) ∧ 𝑘 ∈ ℕ0) → ((𝐴𝑓 + 𝐵)‘𝑘) ∈ (𝑆 ∪ {0}))
4239, 40, 41syl2an 289 . . . 4 ((𝜑𝑘 ∈ (0...if(𝑀𝑁, 𝑁, 𝑀))) → ((𝐴𝑓 + 𝐵)‘𝑘) ∈ (𝑆 ∪ {0}))
4310, 33, 42elplyd 15061 . . 3 (𝜑 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...if(𝑀𝑁, 𝑁, 𝑀))(((𝐴𝑓 + 𝐵)‘𝑘) · (𝑧𝑘))) ∈ (Poly‘(𝑆 ∪ {0})))
4428, 43eqeltrd 2273 . 2 (𝜑 → (𝐹𝑓 + 𝐺) ∈ (Poly‘(𝑆 ∪ {0})))
45 plyun0 15056 . 2 (Poly‘(𝑆 ∪ {0})) = (Poly‘𝑆)
4644, 45eleqtrdi 2289 1 (𝜑 → (𝐹𝑓 + 𝐺) ∈ (Poly‘𝑆))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  DECID wdc 835   = wceq 1364  wcel 2167  Vcvv 2763  cun 3155  wss 3157  ifcif 3562  {csn 3623   class class class wbr 4034  cmpt 4095  cima 4667  wf 5255  cfv 5259  (class class class)co 5925  𝑓 cof 6137  𝑚 cmap 6716  cc 7894  0cc0 7896  1c1 7897   + caddc 7899   · cmul 7901  cle 8079  0cn0 9266  cz 9343  cuz 9618  ...cfz 10100  cexp 10647  Σcsu 11535  Polycply 15048
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013  ax-pre-mulext 8014  ax-arch 8015  ax-caucvg 8016
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-isom 5268  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-of 6139  df-1st 6207  df-2nd 6208  df-recs 6372  df-irdg 6437  df-frec 6458  df-1o 6483  df-oadd 6487  df-er 6601  df-map 6718  df-en 6809  df-dom 6810  df-fin 6811  df-sup 7059  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-reap 8619  df-ap 8626  df-div 8717  df-inn 9008  df-2 9066  df-3 9067  df-4 9068  df-n0 9267  df-z 9344  df-uz 9619  df-q 9711  df-rp 9746  df-fz 10101  df-fzo 10235  df-seqfrec 10557  df-exp 10648  df-ihash 10885  df-cj 11024  df-re 11025  df-im 11026  df-rsqrt 11180  df-abs 11181  df-clim 11461  df-sumdc 11536  df-ply 15050
This theorem is referenced by:  plyadd  15071
  Copyright terms: Public domain W3C validator