ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  plyssc GIF version

Theorem plyssc 14985
Description: Every polynomial ring is contained in the ring of polynomials over . (Contributed by Mario Carneiro, 22-Jul-2014.)
Assertion
Ref Expression
plyssc (Poly‘𝑆) ⊆ (Poly‘ℂ)

Proof of Theorem plyssc
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 plybss 14979 . . . . 5 (𝑓 ∈ (Poly‘𝑆) → 𝑆 ⊆ ℂ)
2 ssid 3204 . . . . 5 ℂ ⊆ ℂ
3 plyss 14984 . . . . 5 ((𝑆 ⊆ ℂ ∧ ℂ ⊆ ℂ) → (Poly‘𝑆) ⊆ (Poly‘ℂ))
41, 2, 3sylancl 413 . . . 4 (𝑓 ∈ (Poly‘𝑆) → (Poly‘𝑆) ⊆ (Poly‘ℂ))
54sseld 3183 . . 3 (𝑓 ∈ (Poly‘𝑆) → (𝑓 ∈ (Poly‘𝑆) → 𝑓 ∈ (Poly‘ℂ)))
65pm2.43i 49 . 2 (𝑓 ∈ (Poly‘𝑆) → 𝑓 ∈ (Poly‘ℂ))
76ssriv 3188 1 (Poly‘𝑆) ⊆ (Poly‘ℂ)
Colors of variables: wff set class
Syntax hints:  wcel 2167  wss 3157  cfv 5259  cc 7879  Polycply 14974
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7972  ax-resscn 7973  ax-1cn 7974  ax-1re 7975  ax-icn 7976  ax-addcl 7977  ax-addrcl 7978  ax-mulcl 7979  ax-i2m1 7986
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-ov 5926  df-oprab 5927  df-mpo 5928  df-1st 6199  df-2nd 6200  df-map 6710  df-inn 8993  df-n0 9252  df-ply 14976
This theorem is referenced by:  plyaddcl  15000  plymulcl  15001  plysubcl  15002  dvply2  15013
  Copyright terms: Public domain W3C validator