![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > plyssc | GIF version |
Description: Every polynomial ring is contained in the ring of polynomials over ℂ. (Contributed by Mario Carneiro, 22-Jul-2014.) |
Ref | Expression |
---|---|
plyssc | ⊢ (Poly‘𝑆) ⊆ (Poly‘ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | plybss 14912 | . . . . 5 ⊢ (𝑓 ∈ (Poly‘𝑆) → 𝑆 ⊆ ℂ) | |
2 | ssid 3200 | . . . . 5 ⊢ ℂ ⊆ ℂ | |
3 | plyss 14917 | . . . . 5 ⊢ ((𝑆 ⊆ ℂ ∧ ℂ ⊆ ℂ) → (Poly‘𝑆) ⊆ (Poly‘ℂ)) | |
4 | 1, 2, 3 | sylancl 413 | . . . 4 ⊢ (𝑓 ∈ (Poly‘𝑆) → (Poly‘𝑆) ⊆ (Poly‘ℂ)) |
5 | 4 | sseld 3179 | . . 3 ⊢ (𝑓 ∈ (Poly‘𝑆) → (𝑓 ∈ (Poly‘𝑆) → 𝑓 ∈ (Poly‘ℂ))) |
6 | 5 | pm2.43i 49 | . 2 ⊢ (𝑓 ∈ (Poly‘𝑆) → 𝑓 ∈ (Poly‘ℂ)) |
7 | 6 | ssriv 3184 | 1 ⊢ (Poly‘𝑆) ⊆ (Poly‘ℂ) |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2164 ⊆ wss 3154 ‘cfv 5255 ℂcc 7872 Polycply 14907 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4145 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-cnex 7965 ax-resscn 7966 ax-1cn 7967 ax-1re 7968 ax-icn 7969 ax-addcl 7970 ax-addrcl 7971 ax-mulcl 7972 ax-i2m1 7979 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-iun 3915 df-br 4031 df-opab 4092 df-mpt 4093 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-f1 5260 df-fo 5261 df-f1o 5262 df-fv 5263 df-ov 5922 df-oprab 5923 df-mpo 5924 df-1st 6195 df-2nd 6196 df-map 6706 df-inn 8985 df-n0 9244 df-ply 14909 |
This theorem is referenced by: plyaddcl 14933 plymulcl 14934 plysubcl 14935 |
Copyright terms: Public domain | W3C validator |