| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > plyssc | GIF version | ||
| Description: Every polynomial ring is contained in the ring of polynomials over ℂ. (Contributed by Mario Carneiro, 22-Jul-2014.) |
| Ref | Expression |
|---|---|
| plyssc | ⊢ (Poly‘𝑆) ⊆ (Poly‘ℂ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | plybss 15249 | . . . . 5 ⊢ (𝑓 ∈ (Poly‘𝑆) → 𝑆 ⊆ ℂ) | |
| 2 | ssid 3214 | . . . . 5 ⊢ ℂ ⊆ ℂ | |
| 3 | plyss 15254 | . . . . 5 ⊢ ((𝑆 ⊆ ℂ ∧ ℂ ⊆ ℂ) → (Poly‘𝑆) ⊆ (Poly‘ℂ)) | |
| 4 | 1, 2, 3 | sylancl 413 | . . . 4 ⊢ (𝑓 ∈ (Poly‘𝑆) → (Poly‘𝑆) ⊆ (Poly‘ℂ)) |
| 5 | 4 | sseld 3193 | . . 3 ⊢ (𝑓 ∈ (Poly‘𝑆) → (𝑓 ∈ (Poly‘𝑆) → 𝑓 ∈ (Poly‘ℂ))) |
| 6 | 5 | pm2.43i 49 | . 2 ⊢ (𝑓 ∈ (Poly‘𝑆) → 𝑓 ∈ (Poly‘ℂ)) |
| 7 | 6 | ssriv 3198 | 1 ⊢ (Poly‘𝑆) ⊆ (Poly‘ℂ) |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2177 ⊆ wss 3167 ‘cfv 5276 ℂcc 7930 Polycply 15244 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4163 ax-sep 4166 ax-pow 4222 ax-pr 4257 ax-un 4484 ax-setind 4589 ax-cnex 8023 ax-resscn 8024 ax-1cn 8025 ax-1re 8026 ax-icn 8027 ax-addcl 8028 ax-addrcl 8029 ax-mulcl 8030 ax-i2m1 8037 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3000 df-csb 3095 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-int 3888 df-iun 3931 df-br 4048 df-opab 4110 df-mpt 4111 df-id 4344 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-res 4691 df-ima 4692 df-iota 5237 df-fun 5278 df-fn 5279 df-f 5280 df-f1 5281 df-fo 5282 df-f1o 5283 df-fv 5284 df-ov 5954 df-oprab 5955 df-mpo 5956 df-1st 6233 df-2nd 6234 df-map 6744 df-inn 9044 df-n0 9303 df-ply 15246 |
| This theorem is referenced by: plyaddcl 15270 plymulcl 15271 plysubcl 15272 dvply2 15283 |
| Copyright terms: Public domain | W3C validator |