| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > plyssc | GIF version | ||
| Description: Every polynomial ring is contained in the ring of polynomials over ℂ. (Contributed by Mario Carneiro, 22-Jul-2014.) |
| Ref | Expression |
|---|---|
| plyssc | ⊢ (Poly‘𝑆) ⊆ (Poly‘ℂ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | plybss 15372 | . . . . 5 ⊢ (𝑓 ∈ (Poly‘𝑆) → 𝑆 ⊆ ℂ) | |
| 2 | ssid 3224 | . . . . 5 ⊢ ℂ ⊆ ℂ | |
| 3 | plyss 15377 | . . . . 5 ⊢ ((𝑆 ⊆ ℂ ∧ ℂ ⊆ ℂ) → (Poly‘𝑆) ⊆ (Poly‘ℂ)) | |
| 4 | 1, 2, 3 | sylancl 413 | . . . 4 ⊢ (𝑓 ∈ (Poly‘𝑆) → (Poly‘𝑆) ⊆ (Poly‘ℂ)) |
| 5 | 4 | sseld 3203 | . . 3 ⊢ (𝑓 ∈ (Poly‘𝑆) → (𝑓 ∈ (Poly‘𝑆) → 𝑓 ∈ (Poly‘ℂ))) |
| 6 | 5 | pm2.43i 49 | . 2 ⊢ (𝑓 ∈ (Poly‘𝑆) → 𝑓 ∈ (Poly‘ℂ)) |
| 7 | 6 | ssriv 3208 | 1 ⊢ (Poly‘𝑆) ⊆ (Poly‘ℂ) |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2180 ⊆ wss 3177 ‘cfv 5294 ℂcc 7965 Polycply 15367 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-coll 4178 ax-sep 4181 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-setind 4606 ax-cnex 8058 ax-resscn 8059 ax-1cn 8060 ax-1re 8061 ax-icn 8062 ax-addcl 8063 ax-addrcl 8064 ax-mulcl 8065 ax-i2m1 8072 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-ral 2493 df-rex 2494 df-reu 2495 df-rab 2497 df-v 2781 df-sbc 3009 df-csb 3105 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-int 3903 df-iun 3946 df-br 4063 df-opab 4125 df-mpt 4126 df-id 4361 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-ima 4709 df-iota 5254 df-fun 5296 df-fn 5297 df-f 5298 df-f1 5299 df-fo 5300 df-f1o 5301 df-fv 5302 df-ov 5977 df-oprab 5978 df-mpo 5979 df-1st 6256 df-2nd 6257 df-map 6767 df-inn 9079 df-n0 9338 df-ply 15369 |
| This theorem is referenced by: plyaddcl 15393 plymulcl 15394 plysubcl 15395 dvply2 15406 |
| Copyright terms: Public domain | W3C validator |