ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elply GIF version

Theorem elply 14880
Description: Definition of a polynomial with coefficients in 𝑆. (Contributed by Mario Carneiro, 17-Jul-2014.)
Assertion
Ref Expression
elply (𝐹 ∈ (Poly‘𝑆) ↔ (𝑆 ⊆ ℂ ∧ ∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0)𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))))
Distinct variable groups:   𝑆,𝑎,𝑛   𝑘,𝑎,𝑧,𝑛   𝐹,𝑎,𝑛
Allowed substitution hints:   𝑆(𝑧,𝑘)   𝐹(𝑧,𝑘)

Proof of Theorem elply
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 plybss 14879 . 2 (𝐹 ∈ (Poly‘𝑆) → 𝑆 ⊆ ℂ)
2 plyval 14878 . . . 4 (𝑆 ⊆ ℂ → (Poly‘𝑆) = {𝑓 ∣ ∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))})
32eleq2d 2263 . . 3 (𝑆 ⊆ ℂ → (𝐹 ∈ (Poly‘𝑆) ↔ 𝐹 ∈ {𝑓 ∣ ∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))}))
4 id 19 . . . . . . 7 (𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))) → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))))
5 cnex 7996 . . . . . . . 8 ℂ ∈ V
65mptex 5784 . . . . . . 7 (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))) ∈ V
74, 6eqeltrdi 2284 . . . . . 6 (𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))) → 𝐹 ∈ V)
87a1i 9 . . . . 5 ((𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0)) → (𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))) → 𝐹 ∈ V))
98rexlimivv 2617 . . . 4 (∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0)𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))) → 𝐹 ∈ V)
10 eqeq1 2200 . . . . 5 (𝑓 = 𝐹 → (𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))) ↔ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))))
11102rexbidv 2519 . . . 4 (𝑓 = 𝐹 → (∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))) ↔ ∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0)𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))))
129, 11elab3 2912 . . 3 (𝐹 ∈ {𝑓 ∣ ∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))} ↔ ∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0)𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))))
133, 12bitrdi 196 . 2 (𝑆 ⊆ ℂ → (𝐹 ∈ (Poly‘𝑆) ↔ ∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0)𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))))
141, 13biadanii 613 1 (𝐹 ∈ (Poly‘𝑆) ↔ (𝑆 ⊆ ℂ ∧ ∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0)𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2164  {cab 2179  wrex 2473  Vcvv 2760  cun 3151  wss 3153  {csn 3618  cmpt 4090  cfv 5254  (class class class)co 5918  𝑚 cmap 6702  cc 7870  0cc0 7872   · cmul 7877  0cn0 9240  ...cfz 10074  cexp 10609  Σcsu 11496  Polycply 14874
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-i2m1 7977
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-map 6704  df-inn 8983  df-n0 9241  df-ply 14876
This theorem is referenced by:  elply2  14881  plyun0  14882  plyf  14883  elplyr  14886
  Copyright terms: Public domain W3C validator