| Step | Hyp | Ref
| Expression |
| 1 | | df-ply 14966 |
. 2
⊢ Poly =
(𝑥 ∈ 𝒫 ℂ
↦ {𝑓 ∣
∃𝑛 ∈
ℕ0 ∃𝑎 ∈ ((𝑥 ∪ {0}) ↑𝑚
ℕ0)𝑓 =
(𝑧 ∈ ℂ ↦
Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)))}) |
| 2 | | uneq1 3310 |
. . . . . 6
⊢ (𝑥 = 𝑆 → (𝑥 ∪ {0}) = (𝑆 ∪ {0})) |
| 3 | 2 | oveq1d 5937 |
. . . . 5
⊢ (𝑥 = 𝑆 → ((𝑥 ∪ {0}) ↑𝑚
ℕ0) = ((𝑆
∪ {0}) ↑𝑚 ℕ0)) |
| 4 | 3 | rexeqdv 2700 |
. . . 4
⊢ (𝑥 = 𝑆 → (∃𝑎 ∈ ((𝑥 ∪ {0}) ↑𝑚
ℕ0)𝑓 =
(𝑧 ∈ ℂ ↦
Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘))) ↔ ∃𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0)𝑓 =
(𝑧 ∈ ℂ ↦
Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘))))) |
| 5 | 4 | rexbidv 2498 |
. . 3
⊢ (𝑥 = 𝑆 → (∃𝑛 ∈ ℕ0 ∃𝑎 ∈ ((𝑥 ∪ {0}) ↑𝑚
ℕ0)𝑓 =
(𝑧 ∈ ℂ ↦
Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘))) ↔ ∃𝑛 ∈ ℕ0 ∃𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0)𝑓 =
(𝑧 ∈ ℂ ↦
Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘))))) |
| 6 | 5 | abbidv 2314 |
. 2
⊢ (𝑥 = 𝑆 → {𝑓 ∣ ∃𝑛 ∈ ℕ0 ∃𝑎 ∈ ((𝑥 ∪ {0}) ↑𝑚
ℕ0)𝑓 =
(𝑧 ∈ ℂ ↦
Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)))} = {𝑓 ∣ ∃𝑛 ∈ ℕ0 ∃𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0)𝑓 =
(𝑧 ∈ ℂ ↦
Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)))}) |
| 7 | | cnex 8003 |
. . . 4
⊢ ℂ
∈ V |
| 8 | 7 | elpw2 4190 |
. . 3
⊢ (𝑆 ∈ 𝒫 ℂ ↔
𝑆 ⊆
ℂ) |
| 9 | 8 | biimpri 133 |
. 2
⊢ (𝑆 ⊆ ℂ → 𝑆 ∈ 𝒫
ℂ) |
| 10 | | nn0ex 9255 |
. . 3
⊢
ℕ0 ∈ V |
| 11 | | fnmap 6714 |
. . . . . 6
⊢
↑𝑚 Fn (V × V) |
| 12 | 7 | ssex 4170 |
. . . . . . 7
⊢ (𝑆 ⊆ ℂ → 𝑆 ∈ V) |
| 13 | | c0ex 8020 |
. . . . . . . 8
⊢ 0 ∈
V |
| 14 | 13 | snex 4218 |
. . . . . . 7
⊢ {0}
∈ V |
| 15 | | unexg 4478 |
. . . . . . 7
⊢ ((𝑆 ∈ V ∧ {0} ∈ V)
→ (𝑆 ∪ {0}) ∈
V) |
| 16 | 12, 14, 15 | sylancl 413 |
. . . . . 6
⊢ (𝑆 ⊆ ℂ → (𝑆 ∪ {0}) ∈
V) |
| 17 | 10 | a1i 9 |
. . . . . 6
⊢ (𝑆 ⊆ ℂ →
ℕ0 ∈ V) |
| 18 | | fnovex 5955 |
. . . . . 6
⊢ ((
↑𝑚 Fn (V × V) ∧ (𝑆 ∪ {0}) ∈ V ∧
ℕ0 ∈ V) → ((𝑆 ∪ {0}) ↑𝑚
ℕ0) ∈ V) |
| 19 | 11, 16, 17, 18 | mp3an2i 1353 |
. . . . 5
⊢ (𝑆 ⊆ ℂ → ((𝑆 ∪ {0})
↑𝑚 ℕ0) ∈ V) |
| 20 | | abrexexg 6175 |
. . . . 5
⊢ (((𝑆 ∪ {0})
↑𝑚 ℕ0) ∈ V → {𝑓 ∣ ∃𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0)𝑓 =
(𝑧 ∈ ℂ ↦
Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)))} ∈ V) |
| 21 | 19, 20 | syl 14 |
. . . 4
⊢ (𝑆 ⊆ ℂ → {𝑓 ∣ ∃𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0)𝑓 =
(𝑧 ∈ ℂ ↦
Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)))} ∈ V) |
| 22 | 21 | ralrimivw 2571 |
. . 3
⊢ (𝑆 ⊆ ℂ →
∀𝑛 ∈
ℕ0 {𝑓
∣ ∃𝑎 ∈
((𝑆 ∪ {0})
↑𝑚 ℕ0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)))} ∈ V) |
| 23 | | abrexex2g 6177 |
. . 3
⊢
((ℕ0 ∈ V ∧ ∀𝑛 ∈ ℕ0 {𝑓 ∣ ∃𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0)𝑓 =
(𝑧 ∈ ℂ ↦
Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)))} ∈ V) → {𝑓 ∣ ∃𝑛 ∈ ℕ0 ∃𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0)𝑓 =
(𝑧 ∈ ℂ ↦
Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)))} ∈ V) |
| 24 | 10, 22, 23 | sylancr 414 |
. 2
⊢ (𝑆 ⊆ ℂ → {𝑓 ∣ ∃𝑛 ∈ ℕ0
∃𝑎 ∈ ((𝑆 ∪ {0})
↑𝑚 ℕ0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)))} ∈ V) |
| 25 | 1, 6, 9, 24 | fvmptd3 5655 |
1
⊢ (𝑆 ⊆ ℂ →
(Poly‘𝑆) = {𝑓 ∣ ∃𝑛 ∈ ℕ0
∃𝑎 ∈ ((𝑆 ∪ {0})
↑𝑚 ℕ0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)))}) |