ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  plyval GIF version

Theorem plyval 15414
Description: Value of the polynomial set function. (Contributed by Mario Carneiro, 17-Jul-2014.)
Assertion
Ref Expression
plyval (𝑆 ⊆ ℂ → (Poly‘𝑆) = {𝑓 ∣ ∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))})
Distinct variable groups:   𝑆,𝑎,𝑓,𝑛   𝑘,𝑎,𝑧,𝑓,𝑛
Allowed substitution hints:   𝑆(𝑧,𝑘)

Proof of Theorem plyval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-ply 15412 . 2 Poly = (𝑥 ∈ 𝒫 ℂ ↦ {𝑓 ∣ ∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑥 ∪ {0}) ↑𝑚0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))})
2 uneq1 3351 . . . . . 6 (𝑥 = 𝑆 → (𝑥 ∪ {0}) = (𝑆 ∪ {0}))
32oveq1d 6022 . . . . 5 (𝑥 = 𝑆 → ((𝑥 ∪ {0}) ↑𝑚0) = ((𝑆 ∪ {0}) ↑𝑚0))
43rexeqdv 2735 . . . 4 (𝑥 = 𝑆 → (∃𝑎 ∈ ((𝑥 ∪ {0}) ↑𝑚0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))) ↔ ∃𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))))
54rexbidv 2531 . . 3 (𝑥 = 𝑆 → (∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑥 ∪ {0}) ↑𝑚0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))) ↔ ∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))))
65abbidv 2347 . 2 (𝑥 = 𝑆 → {𝑓 ∣ ∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑥 ∪ {0}) ↑𝑚0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))} = {𝑓 ∣ ∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))})
7 cnex 8131 . . . 4 ℂ ∈ V
87elpw2 4241 . . 3 (𝑆 ∈ 𝒫 ℂ ↔ 𝑆 ⊆ ℂ)
98biimpri 133 . 2 (𝑆 ⊆ ℂ → 𝑆 ∈ 𝒫 ℂ)
10 nn0ex 9383 . . 3 0 ∈ V
11 fnmap 6810 . . . . . 6 𝑚 Fn (V × V)
127ssex 4221 . . . . . . 7 (𝑆 ⊆ ℂ → 𝑆 ∈ V)
13 c0ex 8148 . . . . . . . 8 0 ∈ V
1413snex 4269 . . . . . . 7 {0} ∈ V
15 unexg 4534 . . . . . . 7 ((𝑆 ∈ V ∧ {0} ∈ V) → (𝑆 ∪ {0}) ∈ V)
1612, 14, 15sylancl 413 . . . . . 6 (𝑆 ⊆ ℂ → (𝑆 ∪ {0}) ∈ V)
1710a1i 9 . . . . . 6 (𝑆 ⊆ ℂ → ℕ0 ∈ V)
18 fnovex 6040 . . . . . 6 (( ↑𝑚 Fn (V × V) ∧ (𝑆 ∪ {0}) ∈ V ∧ ℕ0 ∈ V) → ((𝑆 ∪ {0}) ↑𝑚0) ∈ V)
1911, 16, 17, 18mp3an2i 1376 . . . . 5 (𝑆 ⊆ ℂ → ((𝑆 ∪ {0}) ↑𝑚0) ∈ V)
20 abrexexg 6269 . . . . 5 (((𝑆 ∪ {0}) ↑𝑚0) ∈ V → {𝑓 ∣ ∃𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))} ∈ V)
2119, 20syl 14 . . . 4 (𝑆 ⊆ ℂ → {𝑓 ∣ ∃𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))} ∈ V)
2221ralrimivw 2604 . . 3 (𝑆 ⊆ ℂ → ∀𝑛 ∈ ℕ0 {𝑓 ∣ ∃𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))} ∈ V)
23 abrexex2g 6271 . . 3 ((ℕ0 ∈ V ∧ ∀𝑛 ∈ ℕ0 {𝑓 ∣ ∃𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))} ∈ V) → {𝑓 ∣ ∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))} ∈ V)
2410, 22, 23sylancr 414 . 2 (𝑆 ⊆ ℂ → {𝑓 ∣ ∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))} ∈ V)
251, 6, 9, 24fvmptd3 5730 1 (𝑆 ⊆ ℂ → (Poly‘𝑆) = {𝑓 ∣ ∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))})
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1395  wcel 2200  {cab 2215  wral 2508  wrex 2509  Vcvv 2799  cun 3195  wss 3197  𝒫 cpw 3649  {csn 3666  cmpt 4145   × cxp 4717   Fn wfn 5313  cfv 5318  (class class class)co 6007  𝑚 cmap 6803  cc 8005  0cc0 8007   · cmul 8012  0cn0 9377  ...cfz 10212  cexp 10768  Σcsu 11872  Polycply 15410
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-i2m1 8112
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-ov 6010  df-oprab 6011  df-mpo 6012  df-1st 6292  df-2nd 6293  df-map 6805  df-inn 9119  df-n0 9378  df-ply 15412
This theorem is referenced by:  elply  15416  plyss  15420
  Copyright terms: Public domain W3C validator