ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  plyval GIF version

Theorem plyval 15371
Description: Value of the polynomial set function. (Contributed by Mario Carneiro, 17-Jul-2014.)
Assertion
Ref Expression
plyval (𝑆 ⊆ ℂ → (Poly‘𝑆) = {𝑓 ∣ ∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))})
Distinct variable groups:   𝑆,𝑎,𝑓,𝑛   𝑘,𝑎,𝑧,𝑓,𝑛
Allowed substitution hints:   𝑆(𝑧,𝑘)

Proof of Theorem plyval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-ply 15369 . 2 Poly = (𝑥 ∈ 𝒫 ℂ ↦ {𝑓 ∣ ∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑥 ∪ {0}) ↑𝑚0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))})
2 uneq1 3331 . . . . . 6 (𝑥 = 𝑆 → (𝑥 ∪ {0}) = (𝑆 ∪ {0}))
32oveq1d 5989 . . . . 5 (𝑥 = 𝑆 → ((𝑥 ∪ {0}) ↑𝑚0) = ((𝑆 ∪ {0}) ↑𝑚0))
43rexeqdv 2715 . . . 4 (𝑥 = 𝑆 → (∃𝑎 ∈ ((𝑥 ∪ {0}) ↑𝑚0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))) ↔ ∃𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))))
54rexbidv 2511 . . 3 (𝑥 = 𝑆 → (∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑥 ∪ {0}) ↑𝑚0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))) ↔ ∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))))
65abbidv 2327 . 2 (𝑥 = 𝑆 → {𝑓 ∣ ∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑥 ∪ {0}) ↑𝑚0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))} = {𝑓 ∣ ∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))})
7 cnex 8091 . . . 4 ℂ ∈ V
87elpw2 4220 . . 3 (𝑆 ∈ 𝒫 ℂ ↔ 𝑆 ⊆ ℂ)
98biimpri 133 . 2 (𝑆 ⊆ ℂ → 𝑆 ∈ 𝒫 ℂ)
10 nn0ex 9343 . . 3 0 ∈ V
11 fnmap 6772 . . . . . 6 𝑚 Fn (V × V)
127ssex 4200 . . . . . . 7 (𝑆 ⊆ ℂ → 𝑆 ∈ V)
13 c0ex 8108 . . . . . . . 8 0 ∈ V
1413snex 4248 . . . . . . 7 {0} ∈ V
15 unexg 4511 . . . . . . 7 ((𝑆 ∈ V ∧ {0} ∈ V) → (𝑆 ∪ {0}) ∈ V)
1612, 14, 15sylancl 413 . . . . . 6 (𝑆 ⊆ ℂ → (𝑆 ∪ {0}) ∈ V)
1710a1i 9 . . . . . 6 (𝑆 ⊆ ℂ → ℕ0 ∈ V)
18 fnovex 6007 . . . . . 6 (( ↑𝑚 Fn (V × V) ∧ (𝑆 ∪ {0}) ∈ V ∧ ℕ0 ∈ V) → ((𝑆 ∪ {0}) ↑𝑚0) ∈ V)
1911, 16, 17, 18mp3an2i 1357 . . . . 5 (𝑆 ⊆ ℂ → ((𝑆 ∪ {0}) ↑𝑚0) ∈ V)
20 abrexexg 6233 . . . . 5 (((𝑆 ∪ {0}) ↑𝑚0) ∈ V → {𝑓 ∣ ∃𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))} ∈ V)
2119, 20syl 14 . . . 4 (𝑆 ⊆ ℂ → {𝑓 ∣ ∃𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))} ∈ V)
2221ralrimivw 2584 . . 3 (𝑆 ⊆ ℂ → ∀𝑛 ∈ ℕ0 {𝑓 ∣ ∃𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))} ∈ V)
23 abrexex2g 6235 . . 3 ((ℕ0 ∈ V ∧ ∀𝑛 ∈ ℕ0 {𝑓 ∣ ∃𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))} ∈ V) → {𝑓 ∣ ∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))} ∈ V)
2410, 22, 23sylancr 414 . 2 (𝑆 ⊆ ℂ → {𝑓 ∣ ∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))} ∈ V)
251, 6, 9, 24fvmptd3 5701 1 (𝑆 ⊆ ℂ → (Poly‘𝑆) = {𝑓 ∣ ∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))})
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1375  wcel 2180  {cab 2195  wral 2488  wrex 2489  Vcvv 2779  cun 3175  wss 3177  𝒫 cpw 3629  {csn 3646  cmpt 4124   × cxp 4694   Fn wfn 5289  cfv 5294  (class class class)co 5974  𝑚 cmap 6765  cc 7965  0cc0 7967   · cmul 7972  0cn0 9337  ...cfz 10172  cexp 10727  Σcsu 11830  Polycply 15367
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-coll 4178  ax-sep 4181  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-cnex 8058  ax-resscn 8059  ax-1cn 8060  ax-1re 8061  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-i2m1 8072
This theorem depends on definitions:  df-bi 117  df-3an 985  df-tru 1378  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ral 2493  df-rex 2494  df-reu 2495  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-un 3181  df-in 3183  df-ss 3190  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-id 4361  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-ov 5977  df-oprab 5978  df-mpo 5979  df-1st 6256  df-2nd 6257  df-map 6767  df-inn 9079  df-n0 9338  df-ply 15369
This theorem is referenced by:  elply  15373  plyss  15377
  Copyright terms: Public domain W3C validator