ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  plyval GIF version

Theorem plyval 15248
Description: Value of the polynomial set function. (Contributed by Mario Carneiro, 17-Jul-2014.)
Assertion
Ref Expression
plyval (𝑆 ⊆ ℂ → (Poly‘𝑆) = {𝑓 ∣ ∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))})
Distinct variable groups:   𝑆,𝑎,𝑓,𝑛   𝑘,𝑎,𝑧,𝑓,𝑛
Allowed substitution hints:   𝑆(𝑧,𝑘)

Proof of Theorem plyval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-ply 15246 . 2 Poly = (𝑥 ∈ 𝒫 ℂ ↦ {𝑓 ∣ ∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑥 ∪ {0}) ↑𝑚0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))})
2 uneq1 3321 . . . . . 6 (𝑥 = 𝑆 → (𝑥 ∪ {0}) = (𝑆 ∪ {0}))
32oveq1d 5966 . . . . 5 (𝑥 = 𝑆 → ((𝑥 ∪ {0}) ↑𝑚0) = ((𝑆 ∪ {0}) ↑𝑚0))
43rexeqdv 2710 . . . 4 (𝑥 = 𝑆 → (∃𝑎 ∈ ((𝑥 ∪ {0}) ↑𝑚0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))) ↔ ∃𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))))
54rexbidv 2508 . . 3 (𝑥 = 𝑆 → (∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑥 ∪ {0}) ↑𝑚0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))) ↔ ∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))))
65abbidv 2324 . 2 (𝑥 = 𝑆 → {𝑓 ∣ ∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑥 ∪ {0}) ↑𝑚0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))} = {𝑓 ∣ ∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))})
7 cnex 8056 . . . 4 ℂ ∈ V
87elpw2 4205 . . 3 (𝑆 ∈ 𝒫 ℂ ↔ 𝑆 ⊆ ℂ)
98biimpri 133 . 2 (𝑆 ⊆ ℂ → 𝑆 ∈ 𝒫 ℂ)
10 nn0ex 9308 . . 3 0 ∈ V
11 fnmap 6749 . . . . . 6 𝑚 Fn (V × V)
127ssex 4185 . . . . . . 7 (𝑆 ⊆ ℂ → 𝑆 ∈ V)
13 c0ex 8073 . . . . . . . 8 0 ∈ V
1413snex 4233 . . . . . . 7 {0} ∈ V
15 unexg 4494 . . . . . . 7 ((𝑆 ∈ V ∧ {0} ∈ V) → (𝑆 ∪ {0}) ∈ V)
1612, 14, 15sylancl 413 . . . . . 6 (𝑆 ⊆ ℂ → (𝑆 ∪ {0}) ∈ V)
1710a1i 9 . . . . . 6 (𝑆 ⊆ ℂ → ℕ0 ∈ V)
18 fnovex 5984 . . . . . 6 (( ↑𝑚 Fn (V × V) ∧ (𝑆 ∪ {0}) ∈ V ∧ ℕ0 ∈ V) → ((𝑆 ∪ {0}) ↑𝑚0) ∈ V)
1911, 16, 17, 18mp3an2i 1355 . . . . 5 (𝑆 ⊆ ℂ → ((𝑆 ∪ {0}) ↑𝑚0) ∈ V)
20 abrexexg 6210 . . . . 5 (((𝑆 ∪ {0}) ↑𝑚0) ∈ V → {𝑓 ∣ ∃𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))} ∈ V)
2119, 20syl 14 . . . 4 (𝑆 ⊆ ℂ → {𝑓 ∣ ∃𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))} ∈ V)
2221ralrimivw 2581 . . 3 (𝑆 ⊆ ℂ → ∀𝑛 ∈ ℕ0 {𝑓 ∣ ∃𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))} ∈ V)
23 abrexex2g 6212 . . 3 ((ℕ0 ∈ V ∧ ∀𝑛 ∈ ℕ0 {𝑓 ∣ ∃𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))} ∈ V) → {𝑓 ∣ ∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))} ∈ V)
2410, 22, 23sylancr 414 . 2 (𝑆 ⊆ ℂ → {𝑓 ∣ ∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))} ∈ V)
251, 6, 9, 24fvmptd3 5680 1 (𝑆 ⊆ ℂ → (Poly‘𝑆) = {𝑓 ∣ ∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))})
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1373  wcel 2177  {cab 2192  wral 2485  wrex 2486  Vcvv 2773  cun 3165  wss 3167  𝒫 cpw 3617  {csn 3634  cmpt 4109   × cxp 4677   Fn wfn 5271  cfv 5276  (class class class)co 5951  𝑚 cmap 6742  cc 7930  0cc0 7932   · cmul 7937  0cn0 9302  ...cfz 10137  cexp 10690  Σcsu 11708  Polycply 15244
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4163  ax-sep 4166  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-cnex 8023  ax-resscn 8024  ax-1cn 8025  ax-1re 8026  ax-icn 8027  ax-addcl 8028  ax-addrcl 8029  ax-mulcl 8030  ax-i2m1 8037
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-un 3171  df-in 3173  df-ss 3180  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-iun 3931  df-br 4048  df-opab 4110  df-mpt 4111  df-id 4344  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-f1 5281  df-fo 5282  df-f1o 5283  df-fv 5284  df-ov 5954  df-oprab 5955  df-mpo 5956  df-1st 6233  df-2nd 6234  df-map 6744  df-inn 9044  df-n0 9303  df-ply 15246
This theorem is referenced by:  elply  15250  plyss  15254
  Copyright terms: Public domain W3C validator