| Step | Hyp | Ref
| Expression |
| 1 | | plyadd.1 |
. . . 4
⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) |
| 2 | | plyadd.2 |
. . . 4
⊢ (𝜑 → 𝐺 ∈ (Poly‘𝑆)) |
| 3 | | plyadd.m |
. . . 4
⊢ (𝜑 → 𝑀 ∈
ℕ0) |
| 4 | | plyadd.n |
. . . 4
⊢ (𝜑 → 𝑁 ∈
ℕ0) |
| 5 | | plyadd.a |
. . . . . 6
⊢ (𝜑 → 𝐴 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0)) |
| 6 | | plybss 14969 |
. . . . . . . . . 10
⊢ (𝐹 ∈ (Poly‘𝑆) → 𝑆 ⊆ ℂ) |
| 7 | 1, 6 | syl 14 |
. . . . . . . . 9
⊢ (𝜑 → 𝑆 ⊆ ℂ) |
| 8 | | 0cnd 8019 |
. . . . . . . . . 10
⊢ (𝜑 → 0 ∈
ℂ) |
| 9 | 8 | snssd 3767 |
. . . . . . . . 9
⊢ (𝜑 → {0} ⊆
ℂ) |
| 10 | 7, 9 | unssd 3339 |
. . . . . . . 8
⊢ (𝜑 → (𝑆 ∪ {0}) ⊆
ℂ) |
| 11 | | cnex 8003 |
. . . . . . . 8
⊢ ℂ
∈ V |
| 12 | | ssexg 4172 |
. . . . . . . 8
⊢ (((𝑆 ∪ {0}) ⊆ ℂ
∧ ℂ ∈ V) → (𝑆 ∪ {0}) ∈ V) |
| 13 | 10, 11, 12 | sylancl 413 |
. . . . . . 7
⊢ (𝜑 → (𝑆 ∪ {0}) ∈ V) |
| 14 | | nn0ex 9255 |
. . . . . . 7
⊢
ℕ0 ∈ V |
| 15 | | elmapg 6720 |
. . . . . . 7
⊢ (((𝑆 ∪ {0}) ∈ V ∧
ℕ0 ∈ V) → (𝐴 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0) ↔ 𝐴:ℕ0⟶(𝑆 ∪ {0}))) |
| 16 | 13, 14, 15 | sylancl 413 |
. . . . . 6
⊢ (𝜑 → (𝐴 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0) ↔ 𝐴:ℕ0⟶(𝑆 ∪ {0}))) |
| 17 | 5, 16 | mpbid 147 |
. . . . 5
⊢ (𝜑 → 𝐴:ℕ0⟶(𝑆 ∪ {0})) |
| 18 | 17, 10 | fssd 5420 |
. . . 4
⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) |
| 19 | | plyadd.b |
. . . . . 6
⊢ (𝜑 → 𝐵 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0)) |
| 20 | | elmapg 6720 |
. . . . . . 7
⊢ (((𝑆 ∪ {0}) ∈ V ∧
ℕ0 ∈ V) → (𝐵 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0) ↔ 𝐵:ℕ0⟶(𝑆 ∪ {0}))) |
| 21 | 13, 14, 20 | sylancl 413 |
. . . . . 6
⊢ (𝜑 → (𝐵 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0) ↔ 𝐵:ℕ0⟶(𝑆 ∪ {0}))) |
| 22 | 19, 21 | mpbid 147 |
. . . . 5
⊢ (𝜑 → 𝐵:ℕ0⟶(𝑆 ∪ {0})) |
| 23 | 22, 10 | fssd 5420 |
. . . 4
⊢ (𝜑 → 𝐵:ℕ0⟶ℂ) |
| 24 | | plyadd.a2 |
. . . 4
⊢ (𝜑 → (𝐴 “
(ℤ≥‘(𝑀 + 1))) = {0}) |
| 25 | | plyadd.b2 |
. . . 4
⊢ (𝜑 → (𝐵 “
(ℤ≥‘(𝑁 + 1))) = {0}) |
| 26 | | plyadd.f |
. . . 4
⊢ (𝜑 → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑀)((𝐴‘𝑘) · (𝑧↑𝑘)))) |
| 27 | | plyadd.g |
. . . 4
⊢ (𝜑 → 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐵‘𝑘) · (𝑧↑𝑘)))) |
| 28 | 1, 2, 3, 4, 18, 23, 24, 25, 26, 27 | plymullem1 14984 |
. . 3
⊢ (𝜑 → (𝐹 ∘𝑓 · 𝐺) = (𝑧 ∈ ℂ ↦ Σ𝑛 ∈ (0...(𝑀 + 𝑁))(Σ𝑘 ∈ (0...𝑛)((𝐴‘𝑘) · (𝐵‘(𝑛 − 𝑘))) · (𝑧↑𝑛)))) |
| 29 | 3, 4 | nn0addcld 9306 |
. . . 4
⊢ (𝜑 → (𝑀 + 𝑁) ∈
ℕ0) |
| 30 | 10 | adantr 276 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ (0...(𝑀 + 𝑁))) → (𝑆 ∪ {0}) ⊆
ℂ) |
| 31 | | eqid 2196 |
. . . . . . 7
⊢ (𝑆 ∪ {0}) = (𝑆 ∪ {0}) |
| 32 | | plyadd.3 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) |
| 33 | 7, 31, 32 | un0addcl 9282 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ (𝑆 ∪ {0}) ∧ 𝑦 ∈ (𝑆 ∪ {0}))) → (𝑥 + 𝑦) ∈ (𝑆 ∪ {0})) |
| 34 | 33 | adantlr 477 |
. . . . 5
⊢ (((𝜑 ∧ 𝑛 ∈ (0...(𝑀 + 𝑁))) ∧ (𝑥 ∈ (𝑆 ∪ {0}) ∧ 𝑦 ∈ (𝑆 ∪ {0}))) → (𝑥 + 𝑦) ∈ (𝑆 ∪ {0})) |
| 35 | | 0zd 9338 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ (0...(𝑀 + 𝑁))) → 0 ∈
ℤ) |
| 36 | | elfzelz 10100 |
. . . . . . 7
⊢ (𝑛 ∈ (0...(𝑀 + 𝑁)) → 𝑛 ∈ ℤ) |
| 37 | 36 | adantl 277 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ (0...(𝑀 + 𝑁))) → 𝑛 ∈ ℤ) |
| 38 | 35, 37 | fzfigd 10523 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ (0...(𝑀 + 𝑁))) → (0...𝑛) ∈ Fin) |
| 39 | | elfznn0 10189 |
. . . . . . . . 9
⊢ (𝑘 ∈ (0...𝑛) → 𝑘 ∈ ℕ0) |
| 40 | | ffvelcdm 5695 |
. . . . . . . . 9
⊢ ((𝐴:ℕ0⟶(𝑆 ∪ {0}) ∧ 𝑘 ∈ ℕ0)
→ (𝐴‘𝑘) ∈ (𝑆 ∪ {0})) |
| 41 | 17, 39, 40 | syl2an 289 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑛)) → (𝐴‘𝑘) ∈ (𝑆 ∪ {0})) |
| 42 | | fznn0sub 10132 |
. . . . . . . . 9
⊢ (𝑘 ∈ (0...𝑛) → (𝑛 − 𝑘) ∈
ℕ0) |
| 43 | | ffvelcdm 5695 |
. . . . . . . . 9
⊢ ((𝐵:ℕ0⟶(𝑆 ∪ {0}) ∧ (𝑛 − 𝑘) ∈ ℕ0) → (𝐵‘(𝑛 − 𝑘)) ∈ (𝑆 ∪ {0})) |
| 44 | 22, 42, 43 | syl2an 289 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑛)) → (𝐵‘(𝑛 − 𝑘)) ∈ (𝑆 ∪ {0})) |
| 45 | 41, 44 | jca 306 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑛)) → ((𝐴‘𝑘) ∈ (𝑆 ∪ {0}) ∧ (𝐵‘(𝑛 − 𝑘)) ∈ (𝑆 ∪ {0}))) |
| 46 | | plymul.x |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 · 𝑦) ∈ 𝑆) |
| 47 | 7, 31, 46 | un0mulcl 9283 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ (𝑆 ∪ {0}) ∧ 𝑦 ∈ (𝑆 ∪ {0}))) → (𝑥 · 𝑦) ∈ (𝑆 ∪ {0})) |
| 48 | 47 | caovclg 6076 |
. . . . . . 7
⊢ ((𝜑 ∧ ((𝐴‘𝑘) ∈ (𝑆 ∪ {0}) ∧ (𝐵‘(𝑛 − 𝑘)) ∈ (𝑆 ∪ {0}))) → ((𝐴‘𝑘) · (𝐵‘(𝑛 − 𝑘))) ∈ (𝑆 ∪ {0})) |
| 49 | 45, 48 | syldan 282 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑛)) → ((𝐴‘𝑘) · (𝐵‘(𝑛 − 𝑘))) ∈ (𝑆 ∪ {0})) |
| 50 | 49 | adantlr 477 |
. . . . 5
⊢ (((𝜑 ∧ 𝑛 ∈ (0...(𝑀 + 𝑁))) ∧ 𝑘 ∈ (0...𝑛)) → ((𝐴‘𝑘) · (𝐵‘(𝑛 − 𝑘))) ∈ (𝑆 ∪ {0})) |
| 51 | | ssun2 3327 |
. . . . . . 7
⊢ {0}
⊆ (𝑆 ∪
{0}) |
| 52 | | c0ex 8020 |
. . . . . . . 8
⊢ 0 ∈
V |
| 53 | 52 | snss 3757 |
. . . . . . 7
⊢ (0 ∈
(𝑆 ∪ {0}) ↔ {0}
⊆ (𝑆 ∪
{0})) |
| 54 | 51, 53 | mpbir 146 |
. . . . . 6
⊢ 0 ∈
(𝑆 ∪
{0}) |
| 55 | 54 | a1i 9 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ (0...(𝑀 + 𝑁))) → 0 ∈ (𝑆 ∪ {0})) |
| 56 | 30, 34, 38, 50, 55 | fsumcllem 11564 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ (0...(𝑀 + 𝑁))) → Σ𝑘 ∈ (0...𝑛)((𝐴‘𝑘) · (𝐵‘(𝑛 − 𝑘))) ∈ (𝑆 ∪ {0})) |
| 57 | 10, 29, 56 | elplyd 14977 |
. . 3
⊢ (𝜑 → (𝑧 ∈ ℂ ↦ Σ𝑛 ∈ (0...(𝑀 + 𝑁))(Σ𝑘 ∈ (0...𝑛)((𝐴‘𝑘) · (𝐵‘(𝑛 − 𝑘))) · (𝑧↑𝑛))) ∈ (Poly‘(𝑆 ∪ {0}))) |
| 58 | 28, 57 | eqeltrd 2273 |
. 2
⊢ (𝜑 → (𝐹 ∘𝑓 · 𝐺) ∈ (Poly‘(𝑆 ∪ {0}))) |
| 59 | | plyun0 14972 |
. 2
⊢
(Poly‘(𝑆 ∪
{0})) = (Poly‘𝑆) |
| 60 | 58, 59 | eleqtrdi 2289 |
1
⊢ (𝜑 → (𝐹 ∘𝑓 · 𝐺) ∈ (Poly‘𝑆)) |