ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  plymullem GIF version

Theorem plymullem 15266
Description: Lemma for plymul 15268. (Contributed by Mario Carneiro, 21-Jul-2014.)
Hypotheses
Ref Expression
plyadd.1 (𝜑𝐹 ∈ (Poly‘𝑆))
plyadd.2 (𝜑𝐺 ∈ (Poly‘𝑆))
plyadd.3 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
plyadd.m (𝜑𝑀 ∈ ℕ0)
plyadd.n (𝜑𝑁 ∈ ℕ0)
plyadd.a (𝜑𝐴 ∈ ((𝑆 ∪ {0}) ↑𝑚0))
plyadd.b (𝜑𝐵 ∈ ((𝑆 ∪ {0}) ↑𝑚0))
plyadd.a2 (𝜑 → (𝐴 “ (ℤ‘(𝑀 + 1))) = {0})
plyadd.b2 (𝜑 → (𝐵 “ (ℤ‘(𝑁 + 1))) = {0})
plyadd.f (𝜑𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑀)((𝐴𝑘) · (𝑧𝑘))))
plyadd.g (𝜑𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐵𝑘) · (𝑧𝑘))))
plymul.x ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 · 𝑦) ∈ 𝑆)
Assertion
Ref Expression
plymullem (𝜑 → (𝐹𝑓 · 𝐺) ∈ (Poly‘𝑆))
Distinct variable groups:   𝑥,𝑘,𝑦,𝑧,𝐵   𝑥,𝐹,𝑦,𝑧   𝑆,𝑘,𝑥,𝑦,𝑧   𝑥,𝐴,𝑦,𝑧   𝑥,𝐺,𝑦,𝑧   𝜑,𝑘,𝑥,𝑦,𝑧   𝑘,𝑀,𝑧   𝑘,𝑁,𝑧,𝑥,𝑦   𝑥,𝑀,𝑦
Allowed substitution hints:   𝐴(𝑘)   𝐹(𝑘)   𝐺(𝑘)

Proof of Theorem plymullem
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 plyadd.1 . . . 4 (𝜑𝐹 ∈ (Poly‘𝑆))
2 plyadd.2 . . . 4 (𝜑𝐺 ∈ (Poly‘𝑆))
3 plyadd.m . . . 4 (𝜑𝑀 ∈ ℕ0)
4 plyadd.n . . . 4 (𝜑𝑁 ∈ ℕ0)
5 plyadd.a . . . . . 6 (𝜑𝐴 ∈ ((𝑆 ∪ {0}) ↑𝑚0))
6 plybss 15249 . . . . . . . . . 10 (𝐹 ∈ (Poly‘𝑆) → 𝑆 ⊆ ℂ)
71, 6syl 14 . . . . . . . . 9 (𝜑𝑆 ⊆ ℂ)
8 0cnd 8072 . . . . . . . . . 10 (𝜑 → 0 ∈ ℂ)
98snssd 3780 . . . . . . . . 9 (𝜑 → {0} ⊆ ℂ)
107, 9unssd 3350 . . . . . . . 8 (𝜑 → (𝑆 ∪ {0}) ⊆ ℂ)
11 cnex 8056 . . . . . . . 8 ℂ ∈ V
12 ssexg 4187 . . . . . . . 8 (((𝑆 ∪ {0}) ⊆ ℂ ∧ ℂ ∈ V) → (𝑆 ∪ {0}) ∈ V)
1310, 11, 12sylancl 413 . . . . . . 7 (𝜑 → (𝑆 ∪ {0}) ∈ V)
14 nn0ex 9308 . . . . . . 7 0 ∈ V
15 elmapg 6755 . . . . . . 7 (((𝑆 ∪ {0}) ∈ V ∧ ℕ0 ∈ V) → (𝐴 ∈ ((𝑆 ∪ {0}) ↑𝑚0) ↔ 𝐴:ℕ0⟶(𝑆 ∪ {0})))
1613, 14, 15sylancl 413 . . . . . 6 (𝜑 → (𝐴 ∈ ((𝑆 ∪ {0}) ↑𝑚0) ↔ 𝐴:ℕ0⟶(𝑆 ∪ {0})))
175, 16mpbid 147 . . . . 5 (𝜑𝐴:ℕ0⟶(𝑆 ∪ {0}))
1817, 10fssd 5444 . . . 4 (𝜑𝐴:ℕ0⟶ℂ)
19 plyadd.b . . . . . 6 (𝜑𝐵 ∈ ((𝑆 ∪ {0}) ↑𝑚0))
20 elmapg 6755 . . . . . . 7 (((𝑆 ∪ {0}) ∈ V ∧ ℕ0 ∈ V) → (𝐵 ∈ ((𝑆 ∪ {0}) ↑𝑚0) ↔ 𝐵:ℕ0⟶(𝑆 ∪ {0})))
2113, 14, 20sylancl 413 . . . . . 6 (𝜑 → (𝐵 ∈ ((𝑆 ∪ {0}) ↑𝑚0) ↔ 𝐵:ℕ0⟶(𝑆 ∪ {0})))
2219, 21mpbid 147 . . . . 5 (𝜑𝐵:ℕ0⟶(𝑆 ∪ {0}))
2322, 10fssd 5444 . . . 4 (𝜑𝐵:ℕ0⟶ℂ)
24 plyadd.a2 . . . 4 (𝜑 → (𝐴 “ (ℤ‘(𝑀 + 1))) = {0})
25 plyadd.b2 . . . 4 (𝜑 → (𝐵 “ (ℤ‘(𝑁 + 1))) = {0})
26 plyadd.f . . . 4 (𝜑𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑀)((𝐴𝑘) · (𝑧𝑘))))
27 plyadd.g . . . 4 (𝜑𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐵𝑘) · (𝑧𝑘))))
281, 2, 3, 4, 18, 23, 24, 25, 26, 27plymullem1 15264 . . 3 (𝜑 → (𝐹𝑓 · 𝐺) = (𝑧 ∈ ℂ ↦ Σ𝑛 ∈ (0...(𝑀 + 𝑁))(Σ𝑘 ∈ (0...𝑛)((𝐴𝑘) · (𝐵‘(𝑛𝑘))) · (𝑧𝑛))))
293, 4nn0addcld 9359 . . . 4 (𝜑 → (𝑀 + 𝑁) ∈ ℕ0)
3010adantr 276 . . . . 5 ((𝜑𝑛 ∈ (0...(𝑀 + 𝑁))) → (𝑆 ∪ {0}) ⊆ ℂ)
31 eqid 2206 . . . . . . 7 (𝑆 ∪ {0}) = (𝑆 ∪ {0})
32 plyadd.3 . . . . . . 7 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
337, 31, 32un0addcl 9335 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (𝑆 ∪ {0}) ∧ 𝑦 ∈ (𝑆 ∪ {0}))) → (𝑥 + 𝑦) ∈ (𝑆 ∪ {0}))
3433adantlr 477 . . . . 5 (((𝜑𝑛 ∈ (0...(𝑀 + 𝑁))) ∧ (𝑥 ∈ (𝑆 ∪ {0}) ∧ 𝑦 ∈ (𝑆 ∪ {0}))) → (𝑥 + 𝑦) ∈ (𝑆 ∪ {0}))
35 0zd 9391 . . . . . 6 ((𝜑𝑛 ∈ (0...(𝑀 + 𝑁))) → 0 ∈ ℤ)
36 elfzelz 10154 . . . . . . 7 (𝑛 ∈ (0...(𝑀 + 𝑁)) → 𝑛 ∈ ℤ)
3736adantl 277 . . . . . 6 ((𝜑𝑛 ∈ (0...(𝑀 + 𝑁))) → 𝑛 ∈ ℤ)
3835, 37fzfigd 10583 . . . . 5 ((𝜑𝑛 ∈ (0...(𝑀 + 𝑁))) → (0...𝑛) ∈ Fin)
39 elfznn0 10243 . . . . . . . . 9 (𝑘 ∈ (0...𝑛) → 𝑘 ∈ ℕ0)
40 ffvelcdm 5720 . . . . . . . . 9 ((𝐴:ℕ0⟶(𝑆 ∪ {0}) ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ (𝑆 ∪ {0}))
4117, 39, 40syl2an 289 . . . . . . . 8 ((𝜑𝑘 ∈ (0...𝑛)) → (𝐴𝑘) ∈ (𝑆 ∪ {0}))
42 fznn0sub 10186 . . . . . . . . 9 (𝑘 ∈ (0...𝑛) → (𝑛𝑘) ∈ ℕ0)
43 ffvelcdm 5720 . . . . . . . . 9 ((𝐵:ℕ0⟶(𝑆 ∪ {0}) ∧ (𝑛𝑘) ∈ ℕ0) → (𝐵‘(𝑛𝑘)) ∈ (𝑆 ∪ {0}))
4422, 42, 43syl2an 289 . . . . . . . 8 ((𝜑𝑘 ∈ (0...𝑛)) → (𝐵‘(𝑛𝑘)) ∈ (𝑆 ∪ {0}))
4541, 44jca 306 . . . . . . 7 ((𝜑𝑘 ∈ (0...𝑛)) → ((𝐴𝑘) ∈ (𝑆 ∪ {0}) ∧ (𝐵‘(𝑛𝑘)) ∈ (𝑆 ∪ {0})))
46 plymul.x . . . . . . . . 9 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 · 𝑦) ∈ 𝑆)
477, 31, 46un0mulcl 9336 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (𝑆 ∪ {0}) ∧ 𝑦 ∈ (𝑆 ∪ {0}))) → (𝑥 · 𝑦) ∈ (𝑆 ∪ {0}))
4847caovclg 6106 . . . . . . 7 ((𝜑 ∧ ((𝐴𝑘) ∈ (𝑆 ∪ {0}) ∧ (𝐵‘(𝑛𝑘)) ∈ (𝑆 ∪ {0}))) → ((𝐴𝑘) · (𝐵‘(𝑛𝑘))) ∈ (𝑆 ∪ {0}))
4945, 48syldan 282 . . . . . 6 ((𝜑𝑘 ∈ (0...𝑛)) → ((𝐴𝑘) · (𝐵‘(𝑛𝑘))) ∈ (𝑆 ∪ {0}))
5049adantlr 477 . . . . 5 (((𝜑𝑛 ∈ (0...(𝑀 + 𝑁))) ∧ 𝑘 ∈ (0...𝑛)) → ((𝐴𝑘) · (𝐵‘(𝑛𝑘))) ∈ (𝑆 ∪ {0}))
51 ssun2 3338 . . . . . . 7 {0} ⊆ (𝑆 ∪ {0})
52 c0ex 8073 . . . . . . . 8 0 ∈ V
5352snss 3770 . . . . . . 7 (0 ∈ (𝑆 ∪ {0}) ↔ {0} ⊆ (𝑆 ∪ {0}))
5451, 53mpbir 146 . . . . . 6 0 ∈ (𝑆 ∪ {0})
5554a1i 9 . . . . 5 ((𝜑𝑛 ∈ (0...(𝑀 + 𝑁))) → 0 ∈ (𝑆 ∪ {0}))
5630, 34, 38, 50, 55fsumcllem 11754 . . . 4 ((𝜑𝑛 ∈ (0...(𝑀 + 𝑁))) → Σ𝑘 ∈ (0...𝑛)((𝐴𝑘) · (𝐵‘(𝑛𝑘))) ∈ (𝑆 ∪ {0}))
5710, 29, 56elplyd 15257 . . 3 (𝜑 → (𝑧 ∈ ℂ ↦ Σ𝑛 ∈ (0...(𝑀 + 𝑁))(Σ𝑘 ∈ (0...𝑛)((𝐴𝑘) · (𝐵‘(𝑛𝑘))) · (𝑧𝑛))) ∈ (Poly‘(𝑆 ∪ {0})))
5828, 57eqeltrd 2283 . 2 (𝜑 → (𝐹𝑓 · 𝐺) ∈ (Poly‘(𝑆 ∪ {0})))
59 plyun0 15252 . 2 (Poly‘(𝑆 ∪ {0})) = (Poly‘𝑆)
6058, 59eleqtrdi 2299 1 (𝜑 → (𝐹𝑓 · 𝐺) ∈ (Poly‘𝑆))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1373  wcel 2177  Vcvv 2773  cun 3165  wss 3167  {csn 3634  cmpt 4109  cima 4682  wf 5272  cfv 5276  (class class class)co 5951  𝑓 cof 6163  𝑚 cmap 6742  cc 7930  0cc0 7932  1c1 7933   + caddc 7935   · cmul 7937  cmin 8250  0cn0 9302  cz 9379  cuz 9655  ...cfz 10137  cexp 10690  Σcsu 11708  Polycply 15244
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4163  ax-sep 4166  ax-nul 4174  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-iinf 4640  ax-cnex 8023  ax-resscn 8024  ax-1cn 8025  ax-1re 8026  ax-icn 8027  ax-addcl 8028  ax-addrcl 8029  ax-mulcl 8030  ax-mulrcl 8031  ax-addcom 8032  ax-mulcom 8033  ax-addass 8034  ax-mulass 8035  ax-distr 8036  ax-i2m1 8037  ax-0lt1 8038  ax-1rid 8039  ax-0id 8040  ax-rnegex 8041  ax-precex 8042  ax-cnre 8043  ax-pre-ltirr 8044  ax-pre-ltwlin 8045  ax-pre-lttrn 8046  ax-pre-apti 8047  ax-pre-ltadd 8048  ax-pre-mulgt0 8049  ax-pre-mulext 8050  ax-arch 8051  ax-caucvg 8052
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-nul 3462  df-if 3573  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-iun 3931  df-disj 4024  df-br 4048  df-opab 4110  df-mpt 4111  df-tr 4147  df-id 4344  df-po 4347  df-iso 4348  df-iord 4417  df-on 4419  df-ilim 4420  df-suc 4422  df-iom 4643  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-f1 5281  df-fo 5282  df-f1o 5283  df-fv 5284  df-isom 5285  df-riota 5906  df-ov 5954  df-oprab 5955  df-mpo 5956  df-of 6165  df-1st 6233  df-2nd 6234  df-recs 6398  df-irdg 6463  df-frec 6484  df-1o 6509  df-oadd 6513  df-er 6627  df-map 6744  df-en 6835  df-dom 6836  df-fin 6837  df-pnf 8116  df-mnf 8117  df-xr 8118  df-ltxr 8119  df-le 8120  df-sub 8252  df-neg 8253  df-reap 8655  df-ap 8662  df-div 8753  df-inn 9044  df-2 9102  df-3 9103  df-4 9104  df-n0 9303  df-z 9380  df-uz 9656  df-q 9748  df-rp 9783  df-fz 10138  df-fzo 10272  df-seqfrec 10600  df-exp 10691  df-ihash 10928  df-cj 11197  df-re 11198  df-im 11199  df-rsqrt 11353  df-abs 11354  df-clim 11634  df-sumdc 11709  df-ply 15246
This theorem is referenced by:  plymul  15268
  Copyright terms: Public domain W3C validator