ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  plycolemc GIF version

Theorem plycolemc 15078
Description: Lemma for plyco 15079. The result expressed as a sum, with a degree and coefficients for 𝐹 specified as hypotheses. (Contributed by Jim Kingdon, 20-Sep-2025.)
Hypotheses
Ref Expression
plyco.1 (𝜑𝐹 ∈ (Poly‘𝑆))
plyco.2 (𝜑𝐺 ∈ (Poly‘𝑆))
plyco.3 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
plyco.4 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 · 𝑦) ∈ 𝑆)
plycolemc.n (𝜑𝑁 ∈ ℕ0)
plycolemc.a (𝜑𝐴:ℕ0⟶(𝑆 ∪ {0}))
plycolemc.z (𝜑 → (𝐴 “ (ℤ‘(𝑁 + 1))) = {0})
plycolemc.f (𝜑𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑥𝑘))))
Assertion
Ref Expression
plycolemc (𝜑 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · ((𝐺𝑧)↑𝑘))) ∈ (Poly‘𝑆))
Distinct variable groups:   𝑘,𝐺,𝑧   𝐴,𝑘   𝑘,𝑁   𝑥,𝐴,𝑦,𝑧,𝑘   𝑥,𝐺,𝑦   𝑧,𝑁   𝑥,𝑆,𝑦   𝜑,𝑘,𝑥,𝑦,𝑧
Allowed substitution hints:   𝑆(𝑧,𝑘)   𝐹(𝑥,𝑦,𝑧,𝑘)   𝑁(𝑥,𝑦)

Proof of Theorem plycolemc
Dummy variables 𝑑 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 plycolemc.n . 2 (𝜑𝑁 ∈ ℕ0)
2 oveq2 5933 . . . . . . 7 (𝑤 = 0 → (0...𝑤) = (0...0))
32sumeq1d 11548 . . . . . 6 (𝑤 = 0 → Σ𝑘 ∈ (0...𝑤)((𝐴𝑘) · ((𝐺𝑧)↑𝑘)) = Σ𝑘 ∈ (0...0)((𝐴𝑘) · ((𝐺𝑧)↑𝑘)))
43mpteq2dv 4125 . . . . 5 (𝑤 = 0 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑤)((𝐴𝑘) · ((𝐺𝑧)↑𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...0)((𝐴𝑘) · ((𝐺𝑧)↑𝑘))))
54eleq1d 2265 . . . 4 (𝑤 = 0 → ((𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑤)((𝐴𝑘) · ((𝐺𝑧)↑𝑘))) ∈ (Poly‘𝑆) ↔ (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...0)((𝐴𝑘) · ((𝐺𝑧)↑𝑘))) ∈ (Poly‘𝑆)))
65imbi2d 230 . . 3 (𝑤 = 0 → ((𝜑 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑤)((𝐴𝑘) · ((𝐺𝑧)↑𝑘))) ∈ (Poly‘𝑆)) ↔ (𝜑 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...0)((𝐴𝑘) · ((𝐺𝑧)↑𝑘))) ∈ (Poly‘𝑆))))
7 oveq2 5933 . . . . . . 7 (𝑤 = 𝑑 → (0...𝑤) = (0...𝑑))
87sumeq1d 11548 . . . . . 6 (𝑤 = 𝑑 → Σ𝑘 ∈ (0...𝑤)((𝐴𝑘) · ((𝐺𝑧)↑𝑘)) = Σ𝑘 ∈ (0...𝑑)((𝐴𝑘) · ((𝐺𝑧)↑𝑘)))
98mpteq2dv 4125 . . . . 5 (𝑤 = 𝑑 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑤)((𝐴𝑘) · ((𝐺𝑧)↑𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝐴𝑘) · ((𝐺𝑧)↑𝑘))))
109eleq1d 2265 . . . 4 (𝑤 = 𝑑 → ((𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑤)((𝐴𝑘) · ((𝐺𝑧)↑𝑘))) ∈ (Poly‘𝑆) ↔ (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝐴𝑘) · ((𝐺𝑧)↑𝑘))) ∈ (Poly‘𝑆)))
1110imbi2d 230 . . 3 (𝑤 = 𝑑 → ((𝜑 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑤)((𝐴𝑘) · ((𝐺𝑧)↑𝑘))) ∈ (Poly‘𝑆)) ↔ (𝜑 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝐴𝑘) · ((𝐺𝑧)↑𝑘))) ∈ (Poly‘𝑆))))
12 oveq2 5933 . . . . . . 7 (𝑤 = (𝑑 + 1) → (0...𝑤) = (0...(𝑑 + 1)))
1312sumeq1d 11548 . . . . . 6 (𝑤 = (𝑑 + 1) → Σ𝑘 ∈ (0...𝑤)((𝐴𝑘) · ((𝐺𝑧)↑𝑘)) = Σ𝑘 ∈ (0...(𝑑 + 1))((𝐴𝑘) · ((𝐺𝑧)↑𝑘)))
1413mpteq2dv 4125 . . . . 5 (𝑤 = (𝑑 + 1) → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑤)((𝐴𝑘) · ((𝐺𝑧)↑𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(𝑑 + 1))((𝐴𝑘) · ((𝐺𝑧)↑𝑘))))
1514eleq1d 2265 . . . 4 (𝑤 = (𝑑 + 1) → ((𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑤)((𝐴𝑘) · ((𝐺𝑧)↑𝑘))) ∈ (Poly‘𝑆) ↔ (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(𝑑 + 1))((𝐴𝑘) · ((𝐺𝑧)↑𝑘))) ∈ (Poly‘𝑆)))
1615imbi2d 230 . . 3 (𝑤 = (𝑑 + 1) → ((𝜑 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑤)((𝐴𝑘) · ((𝐺𝑧)↑𝑘))) ∈ (Poly‘𝑆)) ↔ (𝜑 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(𝑑 + 1))((𝐴𝑘) · ((𝐺𝑧)↑𝑘))) ∈ (Poly‘𝑆))))
17 oveq2 5933 . . . . . . 7 (𝑤 = 𝑁 → (0...𝑤) = (0...𝑁))
1817sumeq1d 11548 . . . . . 6 (𝑤 = 𝑁 → Σ𝑘 ∈ (0...𝑤)((𝐴𝑘) · ((𝐺𝑧)↑𝑘)) = Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · ((𝐺𝑧)↑𝑘)))
1918mpteq2dv 4125 . . . . 5 (𝑤 = 𝑁 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑤)((𝐴𝑘) · ((𝐺𝑧)↑𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · ((𝐺𝑧)↑𝑘))))
2019eleq1d 2265 . . . 4 (𝑤 = 𝑁 → ((𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑤)((𝐴𝑘) · ((𝐺𝑧)↑𝑘))) ∈ (Poly‘𝑆) ↔ (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · ((𝐺𝑧)↑𝑘))) ∈ (Poly‘𝑆)))
2120imbi2d 230 . . 3 (𝑤 = 𝑁 → ((𝜑 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑤)((𝐴𝑘) · ((𝐺𝑧)↑𝑘))) ∈ (Poly‘𝑆)) ↔ (𝜑 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · ((𝐺𝑧)↑𝑘))) ∈ (Poly‘𝑆))))
22 0z 9354 . . . . . . . 8 0 ∈ ℤ
23 plyco.2 . . . . . . . . . . . . . 14 (𝜑𝐺 ∈ (Poly‘𝑆))
24 plyf 15057 . . . . . . . . . . . . . 14 (𝐺 ∈ (Poly‘𝑆) → 𝐺:ℂ⟶ℂ)
2523, 24syl 14 . . . . . . . . . . . . 13 (𝜑𝐺:ℂ⟶ℂ)
2625ffvelcdmda 5700 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ ℂ) → (𝐺𝑧) ∈ ℂ)
2726exp0d 10776 . . . . . . . . . . 11 ((𝜑𝑧 ∈ ℂ) → ((𝐺𝑧)↑0) = 1)
2827oveq2d 5941 . . . . . . . . . 10 ((𝜑𝑧 ∈ ℂ) → ((𝐴‘0) · ((𝐺𝑧)↑0)) = ((𝐴‘0) · 1))
29 plyco.1 . . . . . . . . . . . . . . 15 (𝜑𝐹 ∈ (Poly‘𝑆))
30 plybss 15053 . . . . . . . . . . . . . . 15 (𝐹 ∈ (Poly‘𝑆) → 𝑆 ⊆ ℂ)
3129, 30syl 14 . . . . . . . . . . . . . 14 (𝜑𝑆 ⊆ ℂ)
32 0cnd 8036 . . . . . . . . . . . . . . 15 (𝜑 → 0 ∈ ℂ)
3332snssd 3768 . . . . . . . . . . . . . 14 (𝜑 → {0} ⊆ ℂ)
3431, 33unssd 3340 . . . . . . . . . . . . 13 (𝜑 → (𝑆 ∪ {0}) ⊆ ℂ)
35 plycolemc.a . . . . . . . . . . . . . 14 (𝜑𝐴:ℕ0⟶(𝑆 ∪ {0}))
36 0nn0 9281 . . . . . . . . . . . . . . 15 0 ∈ ℕ0
3736a1i 9 . . . . . . . . . . . . . 14 (𝜑 → 0 ∈ ℕ0)
3835, 37ffvelcdmd 5701 . . . . . . . . . . . . 13 (𝜑 → (𝐴‘0) ∈ (𝑆 ∪ {0}))
3934, 38sseldd 3185 . . . . . . . . . . . 12 (𝜑 → (𝐴‘0) ∈ ℂ)
4039adantr 276 . . . . . . . . . . 11 ((𝜑𝑧 ∈ ℂ) → (𝐴‘0) ∈ ℂ)
4140mulridd 8060 . . . . . . . . . 10 ((𝜑𝑧 ∈ ℂ) → ((𝐴‘0) · 1) = (𝐴‘0))
4228, 41eqtrd 2229 . . . . . . . . 9 ((𝜑𝑧 ∈ ℂ) → ((𝐴‘0) · ((𝐺𝑧)↑0)) = (𝐴‘0))
4342, 40eqeltrd 2273 . . . . . . . 8 ((𝜑𝑧 ∈ ℂ) → ((𝐴‘0) · ((𝐺𝑧)↑0)) ∈ ℂ)
44 fveq2 5561 . . . . . . . . . 10 (𝑘 = 0 → (𝐴𝑘) = (𝐴‘0))
45 oveq2 5933 . . . . . . . . . 10 (𝑘 = 0 → ((𝐺𝑧)↑𝑘) = ((𝐺𝑧)↑0))
4644, 45oveq12d 5943 . . . . . . . . 9 (𝑘 = 0 → ((𝐴𝑘) · ((𝐺𝑧)↑𝑘)) = ((𝐴‘0) · ((𝐺𝑧)↑0)))
4746fsum1 11594 . . . . . . . 8 ((0 ∈ ℤ ∧ ((𝐴‘0) · ((𝐺𝑧)↑0)) ∈ ℂ) → Σ𝑘 ∈ (0...0)((𝐴𝑘) · ((𝐺𝑧)↑𝑘)) = ((𝐴‘0) · ((𝐺𝑧)↑0)))
4822, 43, 47sylancr 414 . . . . . . 7 ((𝜑𝑧 ∈ ℂ) → Σ𝑘 ∈ (0...0)((𝐴𝑘) · ((𝐺𝑧)↑𝑘)) = ((𝐴‘0) · ((𝐺𝑧)↑0)))
4948, 42eqtrd 2229 . . . . . 6 ((𝜑𝑧 ∈ ℂ) → Σ𝑘 ∈ (0...0)((𝐴𝑘) · ((𝐺𝑧)↑𝑘)) = (𝐴‘0))
5049mpteq2dva 4124 . . . . 5 (𝜑 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...0)((𝐴𝑘) · ((𝐺𝑧)↑𝑘))) = (𝑧 ∈ ℂ ↦ (𝐴‘0)))
51 fconstmpt 4711 . . . . 5 (ℂ × {(𝐴‘0)}) = (𝑧 ∈ ℂ ↦ (𝐴‘0))
5250, 51eqtr4di 2247 . . . 4 (𝜑 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...0)((𝐴𝑘) · ((𝐺𝑧)↑𝑘))) = (ℂ × {(𝐴‘0)}))
53 plyconst 15065 . . . . . 6 (((𝑆 ∪ {0}) ⊆ ℂ ∧ (𝐴‘0) ∈ (𝑆 ∪ {0})) → (ℂ × {(𝐴‘0)}) ∈ (Poly‘(𝑆 ∪ {0})))
5434, 38, 53syl2anc 411 . . . . 5 (𝜑 → (ℂ × {(𝐴‘0)}) ∈ (Poly‘(𝑆 ∪ {0})))
55 plyun0 15056 . . . . 5 (Poly‘(𝑆 ∪ {0})) = (Poly‘𝑆)
5654, 55eleqtrdi 2289 . . . 4 (𝜑 → (ℂ × {(𝐴‘0)}) ∈ (Poly‘𝑆))
5752, 56eqeltrd 2273 . . 3 (𝜑 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...0)((𝐴𝑘) · ((𝐺𝑧)↑𝑘))) ∈ (Poly‘𝑆))
58 simprr 531 . . . . . . . 8 ((𝜑 ∧ (𝑑 ∈ ℕ0 ∧ (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝐴𝑘) · ((𝐺𝑧)↑𝑘))) ∈ (Poly‘𝑆))) → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝐴𝑘) · ((𝐺𝑧)↑𝑘))) ∈ (Poly‘𝑆))
5934adantr 276 . . . . . . . . . . . 12 ((𝜑𝑑 ∈ ℕ0) → (𝑆 ∪ {0}) ⊆ ℂ)
60 peano2nn0 9306 . . . . . . . . . . . . 13 (𝑑 ∈ ℕ0 → (𝑑 + 1) ∈ ℕ0)
61 ffvelcdm 5698 . . . . . . . . . . . . 13 ((𝐴:ℕ0⟶(𝑆 ∪ {0}) ∧ (𝑑 + 1) ∈ ℕ0) → (𝐴‘(𝑑 + 1)) ∈ (𝑆 ∪ {0}))
6235, 60, 61syl2an 289 . . . . . . . . . . . 12 ((𝜑𝑑 ∈ ℕ0) → (𝐴‘(𝑑 + 1)) ∈ (𝑆 ∪ {0}))
63 plyconst 15065 . . . . . . . . . . . 12 (((𝑆 ∪ {0}) ⊆ ℂ ∧ (𝐴‘(𝑑 + 1)) ∈ (𝑆 ∪ {0})) → (ℂ × {(𝐴‘(𝑑 + 1))}) ∈ (Poly‘(𝑆 ∪ {0})))
6459, 62, 63syl2anc 411 . . . . . . . . . . 11 ((𝜑𝑑 ∈ ℕ0) → (ℂ × {(𝐴‘(𝑑 + 1))}) ∈ (Poly‘(𝑆 ∪ {0})))
6564, 55eleqtrdi 2289 . . . . . . . . . 10 ((𝜑𝑑 ∈ ℕ0) → (ℂ × {(𝐴‘(𝑑 + 1))}) ∈ (Poly‘𝑆))
66 nn0p1nn 9305 . . . . . . . . . . . 12 (𝑑 ∈ ℕ0 → (𝑑 + 1) ∈ ℕ)
67 oveq2 5933 . . . . . . . . . . . . . . . 16 (𝑤 = 1 → ((𝐺𝑧)↑𝑤) = ((𝐺𝑧)↑1))
6867mpteq2dv 4125 . . . . . . . . . . . . . . 15 (𝑤 = 1 → (𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑𝑤)) = (𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑1)))
6968eleq1d 2265 . . . . . . . . . . . . . 14 (𝑤 = 1 → ((𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑𝑤)) ∈ (Poly‘𝑆) ↔ (𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑1)) ∈ (Poly‘𝑆)))
7069imbi2d 230 . . . . . . . . . . . . 13 (𝑤 = 1 → ((𝜑 → (𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑𝑤)) ∈ (Poly‘𝑆)) ↔ (𝜑 → (𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑1)) ∈ (Poly‘𝑆))))
71 oveq2 5933 . . . . . . . . . . . . . . . 16 (𝑤 = 𝑑 → ((𝐺𝑧)↑𝑤) = ((𝐺𝑧)↑𝑑))
7271mpteq2dv 4125 . . . . . . . . . . . . . . 15 (𝑤 = 𝑑 → (𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑𝑤)) = (𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑𝑑)))
7372eleq1d 2265 . . . . . . . . . . . . . 14 (𝑤 = 𝑑 → ((𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑𝑤)) ∈ (Poly‘𝑆) ↔ (𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑𝑑)) ∈ (Poly‘𝑆)))
7473imbi2d 230 . . . . . . . . . . . . 13 (𝑤 = 𝑑 → ((𝜑 → (𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑𝑤)) ∈ (Poly‘𝑆)) ↔ (𝜑 → (𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑𝑑)) ∈ (Poly‘𝑆))))
75 oveq2 5933 . . . . . . . . . . . . . . . 16 (𝑤 = (𝑑 + 1) → ((𝐺𝑧)↑𝑤) = ((𝐺𝑧)↑(𝑑 + 1)))
7675mpteq2dv 4125 . . . . . . . . . . . . . . 15 (𝑤 = (𝑑 + 1) → (𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑𝑤)) = (𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑(𝑑 + 1))))
7776eleq1d 2265 . . . . . . . . . . . . . 14 (𝑤 = (𝑑 + 1) → ((𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑𝑤)) ∈ (Poly‘𝑆) ↔ (𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑(𝑑 + 1))) ∈ (Poly‘𝑆)))
7877imbi2d 230 . . . . . . . . . . . . 13 (𝑤 = (𝑑 + 1) → ((𝜑 → (𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑𝑤)) ∈ (Poly‘𝑆)) ↔ (𝜑 → (𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑(𝑑 + 1))) ∈ (Poly‘𝑆))))
7926exp1d 10777 . . . . . . . . . . . . . . . 16 ((𝜑𝑧 ∈ ℂ) → ((𝐺𝑧)↑1) = (𝐺𝑧))
8079mpteq2dva 4124 . . . . . . . . . . . . . . 15 (𝜑 → (𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑1)) = (𝑧 ∈ ℂ ↦ (𝐺𝑧)))
8125feqmptd 5617 . . . . . . . . . . . . . . 15 (𝜑𝐺 = (𝑧 ∈ ℂ ↦ (𝐺𝑧)))
8280, 81eqtr4d 2232 . . . . . . . . . . . . . 14 (𝜑 → (𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑1)) = 𝐺)
8382, 23eqeltrd 2273 . . . . . . . . . . . . 13 (𝜑 → (𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑1)) ∈ (Poly‘𝑆))
84 simprr 531 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑑 ∈ ℕ ∧ (𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑𝑑)) ∈ (Poly‘𝑆))) → (𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑𝑑)) ∈ (Poly‘𝑆))
8523adantr 276 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑑 ∈ ℕ ∧ (𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑𝑑)) ∈ (Poly‘𝑆))) → 𝐺 ∈ (Poly‘𝑆))
86 plyco.3 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
8786adantlr 477 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑑 ∈ ℕ ∧ (𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑𝑑)) ∈ (Poly‘𝑆))) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
88 plyco.4 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 · 𝑦) ∈ 𝑆)
8988adantlr 477 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑑 ∈ ℕ ∧ (𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑𝑑)) ∈ (Poly‘𝑆))) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 · 𝑦) ∈ 𝑆)
9084, 85, 87, 89plymul 15072 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑑 ∈ ℕ ∧ (𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑𝑑)) ∈ (Poly‘𝑆))) → ((𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑𝑑)) ∘𝑓 · 𝐺) ∈ (Poly‘𝑆))
9190expr 375 . . . . . . . . . . . . . . . 16 ((𝜑𝑑 ∈ ℕ) → ((𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑𝑑)) ∈ (Poly‘𝑆) → ((𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑𝑑)) ∘𝑓 · 𝐺) ∈ (Poly‘𝑆)))
92 cnex 8020 . . . . . . . . . . . . . . . . . . . 20 ℂ ∈ V
9392a1i 9 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑑 ∈ ℕ) → ℂ ∈ V)
9426adantlr 477 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑑 ∈ ℕ) ∧ 𝑧 ∈ ℂ) → (𝐺𝑧) ∈ ℂ)
95 nnnn0 9273 . . . . . . . . . . . . . . . . . . . . 21 (𝑑 ∈ ℕ → 𝑑 ∈ ℕ0)
9695ad2antlr 489 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑑 ∈ ℕ) ∧ 𝑧 ∈ ℂ) → 𝑑 ∈ ℕ0)
9794, 96expcld 10782 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ ℕ) ∧ 𝑧 ∈ ℂ) → ((𝐺𝑧)↑𝑑) ∈ ℂ)
9825adantr 276 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑑 ∈ ℕ) → 𝐺:ℂ⟶ℂ)
9998ffvelcdmda 5700 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ ℕ) ∧ 𝑧 ∈ ℂ) → (𝐺𝑧) ∈ ℂ)
100 eqidd 2197 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑑 ∈ ℕ) → (𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑𝑑)) = (𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑𝑑)))
10181adantr 276 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑑 ∈ ℕ) → 𝐺 = (𝑧 ∈ ℂ ↦ (𝐺𝑧)))
10293, 97, 99, 100, 101offval2 6155 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 ∈ ℕ) → ((𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑𝑑)) ∘𝑓 · 𝐺) = (𝑧 ∈ ℂ ↦ (((𝐺𝑧)↑𝑑) · (𝐺𝑧))))
10394, 96expp1d 10783 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ ℕ) ∧ 𝑧 ∈ ℂ) → ((𝐺𝑧)↑(𝑑 + 1)) = (((𝐺𝑧)↑𝑑) · (𝐺𝑧)))
104103mpteq2dva 4124 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 ∈ ℕ) → (𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑(𝑑 + 1))) = (𝑧 ∈ ℂ ↦ (((𝐺𝑧)↑𝑑) · (𝐺𝑧))))
105102, 104eqtr4d 2232 . . . . . . . . . . . . . . . . 17 ((𝜑𝑑 ∈ ℕ) → ((𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑𝑑)) ∘𝑓 · 𝐺) = (𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑(𝑑 + 1))))
106105eleq1d 2265 . . . . . . . . . . . . . . . 16 ((𝜑𝑑 ∈ ℕ) → (((𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑𝑑)) ∘𝑓 · 𝐺) ∈ (Poly‘𝑆) ↔ (𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑(𝑑 + 1))) ∈ (Poly‘𝑆)))
10791, 106sylibd 149 . . . . . . . . . . . . . . 15 ((𝜑𝑑 ∈ ℕ) → ((𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑𝑑)) ∈ (Poly‘𝑆) → (𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑(𝑑 + 1))) ∈ (Poly‘𝑆)))
108107expcom 116 . . . . . . . . . . . . . 14 (𝑑 ∈ ℕ → (𝜑 → ((𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑𝑑)) ∈ (Poly‘𝑆) → (𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑(𝑑 + 1))) ∈ (Poly‘𝑆))))
109108a2d 26 . . . . . . . . . . . . 13 (𝑑 ∈ ℕ → ((𝜑 → (𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑𝑑)) ∈ (Poly‘𝑆)) → (𝜑 → (𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑(𝑑 + 1))) ∈ (Poly‘𝑆))))
11070, 74, 78, 78, 83, 109nnind 9023 . . . . . . . . . . . 12 ((𝑑 + 1) ∈ ℕ → (𝜑 → (𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑(𝑑 + 1))) ∈ (Poly‘𝑆)))
11166, 110syl 14 . . . . . . . . . . 11 (𝑑 ∈ ℕ0 → (𝜑 → (𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑(𝑑 + 1))) ∈ (Poly‘𝑆)))
112111impcom 125 . . . . . . . . . 10 ((𝜑𝑑 ∈ ℕ0) → (𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑(𝑑 + 1))) ∈ (Poly‘𝑆))
11386adantlr 477 . . . . . . . . . 10 (((𝜑𝑑 ∈ ℕ0) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
11488adantlr 477 . . . . . . . . . 10 (((𝜑𝑑 ∈ ℕ0) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 · 𝑦) ∈ 𝑆)
11565, 112, 113, 114plymul 15072 . . . . . . . . 9 ((𝜑𝑑 ∈ ℕ0) → ((ℂ × {(𝐴‘(𝑑 + 1))}) ∘𝑓 · (𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑(𝑑 + 1)))) ∈ (Poly‘𝑆))
116115adantrr 479 . . . . . . . 8 ((𝜑 ∧ (𝑑 ∈ ℕ0 ∧ (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝐴𝑘) · ((𝐺𝑧)↑𝑘))) ∈ (Poly‘𝑆))) → ((ℂ × {(𝐴‘(𝑑 + 1))}) ∘𝑓 · (𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑(𝑑 + 1)))) ∈ (Poly‘𝑆))
11786adantlr 477 . . . . . . . 8 (((𝜑 ∧ (𝑑 ∈ ℕ0 ∧ (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝐴𝑘) · ((𝐺𝑧)↑𝑘))) ∈ (Poly‘𝑆))) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
11858, 116, 117plyadd 15071 . . . . . . 7 ((𝜑 ∧ (𝑑 ∈ ℕ0 ∧ (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝐴𝑘) · ((𝐺𝑧)↑𝑘))) ∈ (Poly‘𝑆))) → ((𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝐴𝑘) · ((𝐺𝑧)↑𝑘))) ∘𝑓 + ((ℂ × {(𝐴‘(𝑑 + 1))}) ∘𝑓 · (𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑(𝑑 + 1))))) ∈ (Poly‘𝑆))
119118expr 375 . . . . . 6 ((𝜑𝑑 ∈ ℕ0) → ((𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝐴𝑘) · ((𝐺𝑧)↑𝑘))) ∈ (Poly‘𝑆) → ((𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝐴𝑘) · ((𝐺𝑧)↑𝑘))) ∘𝑓 + ((ℂ × {(𝐴‘(𝑑 + 1))}) ∘𝑓 · (𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑(𝑑 + 1))))) ∈ (Poly‘𝑆)))
12092a1i 9 . . . . . . . . 9 ((𝜑𝑑 ∈ ℕ0) → ℂ ∈ V)
121 0zd 9355 . . . . . . . . . . 11 (((𝜑𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) → 0 ∈ ℤ)
122 simplr 528 . . . . . . . . . . . 12 (((𝜑𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) → 𝑑 ∈ ℕ0)
123122nn0zd 9463 . . . . . . . . . . 11 (((𝜑𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) → 𝑑 ∈ ℤ)
124121, 123fzfigd 10540 . . . . . . . . . 10 (((𝜑𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) → (0...𝑑) ∈ Fin)
12529, 55eleqtrrdi 2290 . . . . . . . . . . . . . 14 (𝜑𝐹 ∈ (Poly‘(𝑆 ∪ {0})))
126 plybss 15053 . . . . . . . . . . . . . 14 (𝐹 ∈ (Poly‘(𝑆 ∪ {0})) → (𝑆 ∪ {0}) ⊆ ℂ)
127125, 126syl 14 . . . . . . . . . . . . 13 (𝜑 → (𝑆 ∪ {0}) ⊆ ℂ)
128127ad3antrrr 492 . . . . . . . . . . . 12 ((((𝜑𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑑)) → (𝑆 ∪ {0}) ⊆ ℂ)
12935ad3antrrr 492 . . . . . . . . . . . . 13 ((((𝜑𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑑)) → 𝐴:ℕ0⟶(𝑆 ∪ {0}))
130 elfznn0 10206 . . . . . . . . . . . . . 14 (𝑘 ∈ (0...𝑑) → 𝑘 ∈ ℕ0)
131130adantl 277 . . . . . . . . . . . . 13 ((((𝜑𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑑)) → 𝑘 ∈ ℕ0)
132129, 131ffvelcdmd 5701 . . . . . . . . . . . 12 ((((𝜑𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑑)) → (𝐴𝑘) ∈ (𝑆 ∪ {0}))
133128, 132sseldd 3185 . . . . . . . . . . 11 ((((𝜑𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑑)) → (𝐴𝑘) ∈ ℂ)
13426ad4ant13 513 . . . . . . . . . . . 12 ((((𝜑𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑑)) → (𝐺𝑧) ∈ ℂ)
135134, 131expcld 10782 . . . . . . . . . . 11 ((((𝜑𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑑)) → ((𝐺𝑧)↑𝑘) ∈ ℂ)
136133, 135mulcld 8064 . . . . . . . . . 10 ((((𝜑𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑑)) → ((𝐴𝑘) · ((𝐺𝑧)↑𝑘)) ∈ ℂ)
137124, 136fsumcl 11582 . . . . . . . . 9 (((𝜑𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) → Σ𝑘 ∈ (0...𝑑)((𝐴𝑘) · ((𝐺𝑧)↑𝑘)) ∈ ℂ)
138127ad2antrr 488 . . . . . . . . . . 11 (((𝜑𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) → (𝑆 ∪ {0}) ⊆ ℂ)
13962adantr 276 . . . . . . . . . . 11 (((𝜑𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) → (𝐴‘(𝑑 + 1)) ∈ (𝑆 ∪ {0}))
140138, 139sseldd 3185 . . . . . . . . . 10 (((𝜑𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) → (𝐴‘(𝑑 + 1)) ∈ ℂ)
14126adantlr 477 . . . . . . . . . . 11 (((𝜑𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) → (𝐺𝑧) ∈ ℂ)
14260ad2antlr 489 . . . . . . . . . . 11 (((𝜑𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) → (𝑑 + 1) ∈ ℕ0)
143141, 142expcld 10782 . . . . . . . . . 10 (((𝜑𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) → ((𝐺𝑧)↑(𝑑 + 1)) ∈ ℂ)
144140, 143mulcld 8064 . . . . . . . . 9 (((𝜑𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) → ((𝐴‘(𝑑 + 1)) · ((𝐺𝑧)↑(𝑑 + 1))) ∈ ℂ)
145 eqidd 2197 . . . . . . . . 9 ((𝜑𝑑 ∈ ℕ0) → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝐴𝑘) · ((𝐺𝑧)↑𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝐴𝑘) · ((𝐺𝑧)↑𝑘))))
146 fconstmpt 4711 . . . . . . . . . . 11 (ℂ × {(𝐴‘(𝑑 + 1))}) = (𝑧 ∈ ℂ ↦ (𝐴‘(𝑑 + 1)))
147146a1i 9 . . . . . . . . . 10 ((𝜑𝑑 ∈ ℕ0) → (ℂ × {(𝐴‘(𝑑 + 1))}) = (𝑧 ∈ ℂ ↦ (𝐴‘(𝑑 + 1))))
148 eqidd 2197 . . . . . . . . . 10 ((𝜑𝑑 ∈ ℕ0) → (𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑(𝑑 + 1))) = (𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑(𝑑 + 1))))
149120, 139, 143, 147, 148offval2 6155 . . . . . . . . 9 ((𝜑𝑑 ∈ ℕ0) → ((ℂ × {(𝐴‘(𝑑 + 1))}) ∘𝑓 · (𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑(𝑑 + 1)))) = (𝑧 ∈ ℂ ↦ ((𝐴‘(𝑑 + 1)) · ((𝐺𝑧)↑(𝑑 + 1)))))
150120, 137, 144, 145, 149offval2 6155 . . . . . . . 8 ((𝜑𝑑 ∈ ℕ0) → ((𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝐴𝑘) · ((𝐺𝑧)↑𝑘))) ∘𝑓 + ((ℂ × {(𝐴‘(𝑑 + 1))}) ∘𝑓 · (𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑(𝑑 + 1))))) = (𝑧 ∈ ℂ ↦ (Σ𝑘 ∈ (0...𝑑)((𝐴𝑘) · ((𝐺𝑧)↑𝑘)) + ((𝐴‘(𝑑 + 1)) · ((𝐺𝑧)↑(𝑑 + 1))))))
151 nn0uz 9653 . . . . . . . . . . 11 0 = (ℤ‘0)
152122, 151eleqtrdi 2289 . . . . . . . . . 10 (((𝜑𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) → 𝑑 ∈ (ℤ‘0))
153138adantr 276 . . . . . . . . . . . 12 ((((𝜑𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...(𝑑 + 1))) → (𝑆 ∪ {0}) ⊆ ℂ)
15435ad3antrrr 492 . . . . . . . . . . . . 13 ((((𝜑𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...(𝑑 + 1))) → 𝐴:ℕ0⟶(𝑆 ∪ {0}))
155 elfznn0 10206 . . . . . . . . . . . . . 14 (𝑘 ∈ (0...(𝑑 + 1)) → 𝑘 ∈ ℕ0)
156155adantl 277 . . . . . . . . . . . . 13 ((((𝜑𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...(𝑑 + 1))) → 𝑘 ∈ ℕ0)
157154, 156ffvelcdmd 5701 . . . . . . . . . . . 12 ((((𝜑𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...(𝑑 + 1))) → (𝐴𝑘) ∈ (𝑆 ∪ {0}))
158153, 157sseldd 3185 . . . . . . . . . . 11 ((((𝜑𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...(𝑑 + 1))) → (𝐴𝑘) ∈ ℂ)
159141adantr 276 . . . . . . . . . . . 12 ((((𝜑𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...(𝑑 + 1))) → (𝐺𝑧) ∈ ℂ)
160159, 156expcld 10782 . . . . . . . . . . 11 ((((𝜑𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...(𝑑 + 1))) → ((𝐺𝑧)↑𝑘) ∈ ℂ)
161158, 160mulcld 8064 . . . . . . . . . 10 ((((𝜑𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...(𝑑 + 1))) → ((𝐴𝑘) · ((𝐺𝑧)↑𝑘)) ∈ ℂ)
162 fveq2 5561 . . . . . . . . . . 11 (𝑘 = (𝑑 + 1) → (𝐴𝑘) = (𝐴‘(𝑑 + 1)))
163 oveq2 5933 . . . . . . . . . . 11 (𝑘 = (𝑑 + 1) → ((𝐺𝑧)↑𝑘) = ((𝐺𝑧)↑(𝑑 + 1)))
164162, 163oveq12d 5943 . . . . . . . . . 10 (𝑘 = (𝑑 + 1) → ((𝐴𝑘) · ((𝐺𝑧)↑𝑘)) = ((𝐴‘(𝑑 + 1)) · ((𝐺𝑧)↑(𝑑 + 1))))
165152, 161, 164fsump1 11602 . . . . . . . . 9 (((𝜑𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) → Σ𝑘 ∈ (0...(𝑑 + 1))((𝐴𝑘) · ((𝐺𝑧)↑𝑘)) = (Σ𝑘 ∈ (0...𝑑)((𝐴𝑘) · ((𝐺𝑧)↑𝑘)) + ((𝐴‘(𝑑 + 1)) · ((𝐺𝑧)↑(𝑑 + 1)))))
166165mpteq2dva 4124 . . . . . . . 8 ((𝜑𝑑 ∈ ℕ0) → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(𝑑 + 1))((𝐴𝑘) · ((𝐺𝑧)↑𝑘))) = (𝑧 ∈ ℂ ↦ (Σ𝑘 ∈ (0...𝑑)((𝐴𝑘) · ((𝐺𝑧)↑𝑘)) + ((𝐴‘(𝑑 + 1)) · ((𝐺𝑧)↑(𝑑 + 1))))))
167150, 166eqtr4d 2232 . . . . . . 7 ((𝜑𝑑 ∈ ℕ0) → ((𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝐴𝑘) · ((𝐺𝑧)↑𝑘))) ∘𝑓 + ((ℂ × {(𝐴‘(𝑑 + 1))}) ∘𝑓 · (𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑(𝑑 + 1))))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(𝑑 + 1))((𝐴𝑘) · ((𝐺𝑧)↑𝑘))))
168167eleq1d 2265 . . . . . 6 ((𝜑𝑑 ∈ ℕ0) → (((𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝐴𝑘) · ((𝐺𝑧)↑𝑘))) ∘𝑓 + ((ℂ × {(𝐴‘(𝑑 + 1))}) ∘𝑓 · (𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑(𝑑 + 1))))) ∈ (Poly‘𝑆) ↔ (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(𝑑 + 1))((𝐴𝑘) · ((𝐺𝑧)↑𝑘))) ∈ (Poly‘𝑆)))
169119, 168sylibd 149 . . . . 5 ((𝜑𝑑 ∈ ℕ0) → ((𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝐴𝑘) · ((𝐺𝑧)↑𝑘))) ∈ (Poly‘𝑆) → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(𝑑 + 1))((𝐴𝑘) · ((𝐺𝑧)↑𝑘))) ∈ (Poly‘𝑆)))
170169expcom 116 . . . 4 (𝑑 ∈ ℕ0 → (𝜑 → ((𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝐴𝑘) · ((𝐺𝑧)↑𝑘))) ∈ (Poly‘𝑆) → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(𝑑 + 1))((𝐴𝑘) · ((𝐺𝑧)↑𝑘))) ∈ (Poly‘𝑆))))
171170a2d 26 . . 3 (𝑑 ∈ ℕ0 → ((𝜑 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝐴𝑘) · ((𝐺𝑧)↑𝑘))) ∈ (Poly‘𝑆)) → (𝜑 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(𝑑 + 1))((𝐴𝑘) · ((𝐺𝑧)↑𝑘))) ∈ (Poly‘𝑆))))
1726, 11, 16, 21, 57, 171nn0ind 9457 . 2 (𝑁 ∈ ℕ0 → (𝜑 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · ((𝐺𝑧)↑𝑘))) ∈ (Poly‘𝑆)))
1731, 172mpcom 36 1 (𝜑 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · ((𝐺𝑧)↑𝑘))) ∈ (Poly‘𝑆))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2167  Vcvv 2763  cun 3155  wss 3157  {csn 3623  cmpt 4095   × cxp 4662  cima 4667  wf 5255  cfv 5259  (class class class)co 5925  𝑓 cof 6137  cc 7894  0cc0 7896  1c1 7897   + caddc 7899   · cmul 7901  cn 9007  0cn0 9266  cz 9343  cuz 9618  ...cfz 10100  cexp 10647  Σcsu 11535  Polycply 15048
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013  ax-pre-mulext 8014  ax-arch 8015  ax-caucvg 8016
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-disj 4012  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-isom 5268  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-of 6139  df-1st 6207  df-2nd 6208  df-recs 6372  df-irdg 6437  df-frec 6458  df-1o 6483  df-oadd 6487  df-er 6601  df-map 6718  df-en 6809  df-dom 6810  df-fin 6811  df-sup 7059  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-reap 8619  df-ap 8626  df-div 8717  df-inn 9008  df-2 9066  df-3 9067  df-4 9068  df-n0 9267  df-z 9344  df-uz 9619  df-q 9711  df-rp 9746  df-fz 10101  df-fzo 10235  df-seqfrec 10557  df-exp 10648  df-ihash 10885  df-cj 11024  df-re 11025  df-im 11026  df-rsqrt 11180  df-abs 11181  df-clim 11461  df-sumdc 11536  df-ply 15050
This theorem is referenced by:  plyco  15079
  Copyright terms: Public domain W3C validator