ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  plycolemc GIF version

Theorem plycolemc 14928
Description: Lemma for plyco 14929. The result expressed as a sum, with a degree and coefficients for 𝐹 specified as hypotheses. (Contributed by Jim Kingdon, 20-Sep-2025.)
Hypotheses
Ref Expression
plyco.1 (𝜑𝐹 ∈ (Poly‘𝑆))
plyco.2 (𝜑𝐺 ∈ (Poly‘𝑆))
plyco.3 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
plyco.4 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 · 𝑦) ∈ 𝑆)
plycolemc.n (𝜑𝑁 ∈ ℕ0)
plycolemc.a (𝜑𝐴:ℕ0⟶(𝑆 ∪ {0}))
plycolemc.z (𝜑 → (𝐴 “ (ℤ‘(𝑁 + 1))) = {0})
plycolemc.f (𝜑𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑥𝑘))))
Assertion
Ref Expression
plycolemc (𝜑 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · ((𝐺𝑧)↑𝑘))) ∈ (Poly‘𝑆))
Distinct variable groups:   𝑘,𝐺,𝑧   𝐴,𝑘   𝑘,𝑁   𝑥,𝐴,𝑦,𝑧,𝑘   𝑥,𝐺,𝑦   𝑧,𝑁   𝑥,𝑆,𝑦   𝜑,𝑘,𝑥,𝑦,𝑧
Allowed substitution hints:   𝑆(𝑧,𝑘)   𝐹(𝑥,𝑦,𝑧,𝑘)   𝑁(𝑥,𝑦)

Proof of Theorem plycolemc
Dummy variables 𝑑 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 plycolemc.n . 2 (𝜑𝑁 ∈ ℕ0)
2 oveq2 5927 . . . . . . 7 (𝑤 = 0 → (0...𝑤) = (0...0))
32sumeq1d 11512 . . . . . 6 (𝑤 = 0 → Σ𝑘 ∈ (0...𝑤)((𝐴𝑘) · ((𝐺𝑧)↑𝑘)) = Σ𝑘 ∈ (0...0)((𝐴𝑘) · ((𝐺𝑧)↑𝑘)))
43mpteq2dv 4121 . . . . 5 (𝑤 = 0 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑤)((𝐴𝑘) · ((𝐺𝑧)↑𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...0)((𝐴𝑘) · ((𝐺𝑧)↑𝑘))))
54eleq1d 2262 . . . 4 (𝑤 = 0 → ((𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑤)((𝐴𝑘) · ((𝐺𝑧)↑𝑘))) ∈ (Poly‘𝑆) ↔ (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...0)((𝐴𝑘) · ((𝐺𝑧)↑𝑘))) ∈ (Poly‘𝑆)))
65imbi2d 230 . . 3 (𝑤 = 0 → ((𝜑 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑤)((𝐴𝑘) · ((𝐺𝑧)↑𝑘))) ∈ (Poly‘𝑆)) ↔ (𝜑 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...0)((𝐴𝑘) · ((𝐺𝑧)↑𝑘))) ∈ (Poly‘𝑆))))
7 oveq2 5927 . . . . . . 7 (𝑤 = 𝑑 → (0...𝑤) = (0...𝑑))
87sumeq1d 11512 . . . . . 6 (𝑤 = 𝑑 → Σ𝑘 ∈ (0...𝑤)((𝐴𝑘) · ((𝐺𝑧)↑𝑘)) = Σ𝑘 ∈ (0...𝑑)((𝐴𝑘) · ((𝐺𝑧)↑𝑘)))
98mpteq2dv 4121 . . . . 5 (𝑤 = 𝑑 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑤)((𝐴𝑘) · ((𝐺𝑧)↑𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝐴𝑘) · ((𝐺𝑧)↑𝑘))))
109eleq1d 2262 . . . 4 (𝑤 = 𝑑 → ((𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑤)((𝐴𝑘) · ((𝐺𝑧)↑𝑘))) ∈ (Poly‘𝑆) ↔ (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝐴𝑘) · ((𝐺𝑧)↑𝑘))) ∈ (Poly‘𝑆)))
1110imbi2d 230 . . 3 (𝑤 = 𝑑 → ((𝜑 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑤)((𝐴𝑘) · ((𝐺𝑧)↑𝑘))) ∈ (Poly‘𝑆)) ↔ (𝜑 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝐴𝑘) · ((𝐺𝑧)↑𝑘))) ∈ (Poly‘𝑆))))
12 oveq2 5927 . . . . . . 7 (𝑤 = (𝑑 + 1) → (0...𝑤) = (0...(𝑑 + 1)))
1312sumeq1d 11512 . . . . . 6 (𝑤 = (𝑑 + 1) → Σ𝑘 ∈ (0...𝑤)((𝐴𝑘) · ((𝐺𝑧)↑𝑘)) = Σ𝑘 ∈ (0...(𝑑 + 1))((𝐴𝑘) · ((𝐺𝑧)↑𝑘)))
1413mpteq2dv 4121 . . . . 5 (𝑤 = (𝑑 + 1) → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑤)((𝐴𝑘) · ((𝐺𝑧)↑𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(𝑑 + 1))((𝐴𝑘) · ((𝐺𝑧)↑𝑘))))
1514eleq1d 2262 . . . 4 (𝑤 = (𝑑 + 1) → ((𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑤)((𝐴𝑘) · ((𝐺𝑧)↑𝑘))) ∈ (Poly‘𝑆) ↔ (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(𝑑 + 1))((𝐴𝑘) · ((𝐺𝑧)↑𝑘))) ∈ (Poly‘𝑆)))
1615imbi2d 230 . . 3 (𝑤 = (𝑑 + 1) → ((𝜑 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑤)((𝐴𝑘) · ((𝐺𝑧)↑𝑘))) ∈ (Poly‘𝑆)) ↔ (𝜑 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(𝑑 + 1))((𝐴𝑘) · ((𝐺𝑧)↑𝑘))) ∈ (Poly‘𝑆))))
17 oveq2 5927 . . . . . . 7 (𝑤 = 𝑁 → (0...𝑤) = (0...𝑁))
1817sumeq1d 11512 . . . . . 6 (𝑤 = 𝑁 → Σ𝑘 ∈ (0...𝑤)((𝐴𝑘) · ((𝐺𝑧)↑𝑘)) = Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · ((𝐺𝑧)↑𝑘)))
1918mpteq2dv 4121 . . . . 5 (𝑤 = 𝑁 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑤)((𝐴𝑘) · ((𝐺𝑧)↑𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · ((𝐺𝑧)↑𝑘))))
2019eleq1d 2262 . . . 4 (𝑤 = 𝑁 → ((𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑤)((𝐴𝑘) · ((𝐺𝑧)↑𝑘))) ∈ (Poly‘𝑆) ↔ (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · ((𝐺𝑧)↑𝑘))) ∈ (Poly‘𝑆)))
2120imbi2d 230 . . 3 (𝑤 = 𝑁 → ((𝜑 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑤)((𝐴𝑘) · ((𝐺𝑧)↑𝑘))) ∈ (Poly‘𝑆)) ↔ (𝜑 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · ((𝐺𝑧)↑𝑘))) ∈ (Poly‘𝑆))))
22 0z 9331 . . . . . . . 8 0 ∈ ℤ
23 plyco.2 . . . . . . . . . . . . . 14 (𝜑𝐺 ∈ (Poly‘𝑆))
24 plyf 14908 . . . . . . . . . . . . . 14 (𝐺 ∈ (Poly‘𝑆) → 𝐺:ℂ⟶ℂ)
2523, 24syl 14 . . . . . . . . . . . . 13 (𝜑𝐺:ℂ⟶ℂ)
2625ffvelcdmda 5694 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ ℂ) → (𝐺𝑧) ∈ ℂ)
2726exp0d 10741 . . . . . . . . . . 11 ((𝜑𝑧 ∈ ℂ) → ((𝐺𝑧)↑0) = 1)
2827oveq2d 5935 . . . . . . . . . 10 ((𝜑𝑧 ∈ ℂ) → ((𝐴‘0) · ((𝐺𝑧)↑0)) = ((𝐴‘0) · 1))
29 plyco.1 . . . . . . . . . . . . . . 15 (𝜑𝐹 ∈ (Poly‘𝑆))
30 plybss 14904 . . . . . . . . . . . . . . 15 (𝐹 ∈ (Poly‘𝑆) → 𝑆 ⊆ ℂ)
3129, 30syl 14 . . . . . . . . . . . . . 14 (𝜑𝑆 ⊆ ℂ)
32 0cnd 8014 . . . . . . . . . . . . . . 15 (𝜑 → 0 ∈ ℂ)
3332snssd 3764 . . . . . . . . . . . . . 14 (𝜑 → {0} ⊆ ℂ)
3431, 33unssd 3336 . . . . . . . . . . . . 13 (𝜑 → (𝑆 ∪ {0}) ⊆ ℂ)
35 plycolemc.a . . . . . . . . . . . . . 14 (𝜑𝐴:ℕ0⟶(𝑆 ∪ {0}))
36 0nn0 9258 . . . . . . . . . . . . . . 15 0 ∈ ℕ0
3736a1i 9 . . . . . . . . . . . . . 14 (𝜑 → 0 ∈ ℕ0)
3835, 37ffvelcdmd 5695 . . . . . . . . . . . . 13 (𝜑 → (𝐴‘0) ∈ (𝑆 ∪ {0}))
3934, 38sseldd 3181 . . . . . . . . . . . 12 (𝜑 → (𝐴‘0) ∈ ℂ)
4039adantr 276 . . . . . . . . . . 11 ((𝜑𝑧 ∈ ℂ) → (𝐴‘0) ∈ ℂ)
4140mulridd 8038 . . . . . . . . . 10 ((𝜑𝑧 ∈ ℂ) → ((𝐴‘0) · 1) = (𝐴‘0))
4228, 41eqtrd 2226 . . . . . . . . 9 ((𝜑𝑧 ∈ ℂ) → ((𝐴‘0) · ((𝐺𝑧)↑0)) = (𝐴‘0))
4342, 40eqeltrd 2270 . . . . . . . 8 ((𝜑𝑧 ∈ ℂ) → ((𝐴‘0) · ((𝐺𝑧)↑0)) ∈ ℂ)
44 fveq2 5555 . . . . . . . . . 10 (𝑘 = 0 → (𝐴𝑘) = (𝐴‘0))
45 oveq2 5927 . . . . . . . . . 10 (𝑘 = 0 → ((𝐺𝑧)↑𝑘) = ((𝐺𝑧)↑0))
4644, 45oveq12d 5937 . . . . . . . . 9 (𝑘 = 0 → ((𝐴𝑘) · ((𝐺𝑧)↑𝑘)) = ((𝐴‘0) · ((𝐺𝑧)↑0)))
4746fsum1 11558 . . . . . . . 8 ((0 ∈ ℤ ∧ ((𝐴‘0) · ((𝐺𝑧)↑0)) ∈ ℂ) → Σ𝑘 ∈ (0...0)((𝐴𝑘) · ((𝐺𝑧)↑𝑘)) = ((𝐴‘0) · ((𝐺𝑧)↑0)))
4822, 43, 47sylancr 414 . . . . . . 7 ((𝜑𝑧 ∈ ℂ) → Σ𝑘 ∈ (0...0)((𝐴𝑘) · ((𝐺𝑧)↑𝑘)) = ((𝐴‘0) · ((𝐺𝑧)↑0)))
4948, 42eqtrd 2226 . . . . . 6 ((𝜑𝑧 ∈ ℂ) → Σ𝑘 ∈ (0...0)((𝐴𝑘) · ((𝐺𝑧)↑𝑘)) = (𝐴‘0))
5049mpteq2dva 4120 . . . . 5 (𝜑 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...0)((𝐴𝑘) · ((𝐺𝑧)↑𝑘))) = (𝑧 ∈ ℂ ↦ (𝐴‘0)))
51 fconstmpt 4707 . . . . 5 (ℂ × {(𝐴‘0)}) = (𝑧 ∈ ℂ ↦ (𝐴‘0))
5250, 51eqtr4di 2244 . . . 4 (𝜑 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...0)((𝐴𝑘) · ((𝐺𝑧)↑𝑘))) = (ℂ × {(𝐴‘0)}))
53 plyconst 14916 . . . . . 6 (((𝑆 ∪ {0}) ⊆ ℂ ∧ (𝐴‘0) ∈ (𝑆 ∪ {0})) → (ℂ × {(𝐴‘0)}) ∈ (Poly‘(𝑆 ∪ {0})))
5434, 38, 53syl2anc 411 . . . . 5 (𝜑 → (ℂ × {(𝐴‘0)}) ∈ (Poly‘(𝑆 ∪ {0})))
55 plyun0 14907 . . . . 5 (Poly‘(𝑆 ∪ {0})) = (Poly‘𝑆)
5654, 55eleqtrdi 2286 . . . 4 (𝜑 → (ℂ × {(𝐴‘0)}) ∈ (Poly‘𝑆))
5752, 56eqeltrd 2270 . . 3 (𝜑 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...0)((𝐴𝑘) · ((𝐺𝑧)↑𝑘))) ∈ (Poly‘𝑆))
58 simprr 531 . . . . . . . 8 ((𝜑 ∧ (𝑑 ∈ ℕ0 ∧ (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝐴𝑘) · ((𝐺𝑧)↑𝑘))) ∈ (Poly‘𝑆))) → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝐴𝑘) · ((𝐺𝑧)↑𝑘))) ∈ (Poly‘𝑆))
5934adantr 276 . . . . . . . . . . . 12 ((𝜑𝑑 ∈ ℕ0) → (𝑆 ∪ {0}) ⊆ ℂ)
60 peano2nn0 9283 . . . . . . . . . . . . 13 (𝑑 ∈ ℕ0 → (𝑑 + 1) ∈ ℕ0)
61 ffvelcdm 5692 . . . . . . . . . . . . 13 ((𝐴:ℕ0⟶(𝑆 ∪ {0}) ∧ (𝑑 + 1) ∈ ℕ0) → (𝐴‘(𝑑 + 1)) ∈ (𝑆 ∪ {0}))
6235, 60, 61syl2an 289 . . . . . . . . . . . 12 ((𝜑𝑑 ∈ ℕ0) → (𝐴‘(𝑑 + 1)) ∈ (𝑆 ∪ {0}))
63 plyconst 14916 . . . . . . . . . . . 12 (((𝑆 ∪ {0}) ⊆ ℂ ∧ (𝐴‘(𝑑 + 1)) ∈ (𝑆 ∪ {0})) → (ℂ × {(𝐴‘(𝑑 + 1))}) ∈ (Poly‘(𝑆 ∪ {0})))
6459, 62, 63syl2anc 411 . . . . . . . . . . 11 ((𝜑𝑑 ∈ ℕ0) → (ℂ × {(𝐴‘(𝑑 + 1))}) ∈ (Poly‘(𝑆 ∪ {0})))
6564, 55eleqtrdi 2286 . . . . . . . . . 10 ((𝜑𝑑 ∈ ℕ0) → (ℂ × {(𝐴‘(𝑑 + 1))}) ∈ (Poly‘𝑆))
66 nn0p1nn 9282 . . . . . . . . . . . 12 (𝑑 ∈ ℕ0 → (𝑑 + 1) ∈ ℕ)
67 oveq2 5927 . . . . . . . . . . . . . . . 16 (𝑤 = 1 → ((𝐺𝑧)↑𝑤) = ((𝐺𝑧)↑1))
6867mpteq2dv 4121 . . . . . . . . . . . . . . 15 (𝑤 = 1 → (𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑𝑤)) = (𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑1)))
6968eleq1d 2262 . . . . . . . . . . . . . 14 (𝑤 = 1 → ((𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑𝑤)) ∈ (Poly‘𝑆) ↔ (𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑1)) ∈ (Poly‘𝑆)))
7069imbi2d 230 . . . . . . . . . . . . 13 (𝑤 = 1 → ((𝜑 → (𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑𝑤)) ∈ (Poly‘𝑆)) ↔ (𝜑 → (𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑1)) ∈ (Poly‘𝑆))))
71 oveq2 5927 . . . . . . . . . . . . . . . 16 (𝑤 = 𝑑 → ((𝐺𝑧)↑𝑤) = ((𝐺𝑧)↑𝑑))
7271mpteq2dv 4121 . . . . . . . . . . . . . . 15 (𝑤 = 𝑑 → (𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑𝑤)) = (𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑𝑑)))
7372eleq1d 2262 . . . . . . . . . . . . . 14 (𝑤 = 𝑑 → ((𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑𝑤)) ∈ (Poly‘𝑆) ↔ (𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑𝑑)) ∈ (Poly‘𝑆)))
7473imbi2d 230 . . . . . . . . . . . . 13 (𝑤 = 𝑑 → ((𝜑 → (𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑𝑤)) ∈ (Poly‘𝑆)) ↔ (𝜑 → (𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑𝑑)) ∈ (Poly‘𝑆))))
75 oveq2 5927 . . . . . . . . . . . . . . . 16 (𝑤 = (𝑑 + 1) → ((𝐺𝑧)↑𝑤) = ((𝐺𝑧)↑(𝑑 + 1)))
7675mpteq2dv 4121 . . . . . . . . . . . . . . 15 (𝑤 = (𝑑 + 1) → (𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑𝑤)) = (𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑(𝑑 + 1))))
7776eleq1d 2262 . . . . . . . . . . . . . 14 (𝑤 = (𝑑 + 1) → ((𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑𝑤)) ∈ (Poly‘𝑆) ↔ (𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑(𝑑 + 1))) ∈ (Poly‘𝑆)))
7877imbi2d 230 . . . . . . . . . . . . 13 (𝑤 = (𝑑 + 1) → ((𝜑 → (𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑𝑤)) ∈ (Poly‘𝑆)) ↔ (𝜑 → (𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑(𝑑 + 1))) ∈ (Poly‘𝑆))))
7926exp1d 10742 . . . . . . . . . . . . . . . 16 ((𝜑𝑧 ∈ ℂ) → ((𝐺𝑧)↑1) = (𝐺𝑧))
8079mpteq2dva 4120 . . . . . . . . . . . . . . 15 (𝜑 → (𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑1)) = (𝑧 ∈ ℂ ↦ (𝐺𝑧)))
8125feqmptd 5611 . . . . . . . . . . . . . . 15 (𝜑𝐺 = (𝑧 ∈ ℂ ↦ (𝐺𝑧)))
8280, 81eqtr4d 2229 . . . . . . . . . . . . . 14 (𝜑 → (𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑1)) = 𝐺)
8382, 23eqeltrd 2270 . . . . . . . . . . . . 13 (𝜑 → (𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑1)) ∈ (Poly‘𝑆))
84 simprr 531 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑑 ∈ ℕ ∧ (𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑𝑑)) ∈ (Poly‘𝑆))) → (𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑𝑑)) ∈ (Poly‘𝑆))
8523adantr 276 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑑 ∈ ℕ ∧ (𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑𝑑)) ∈ (Poly‘𝑆))) → 𝐺 ∈ (Poly‘𝑆))
86 plyco.3 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
8786adantlr 477 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑑 ∈ ℕ ∧ (𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑𝑑)) ∈ (Poly‘𝑆))) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
88 plyco.4 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 · 𝑦) ∈ 𝑆)
8988adantlr 477 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑑 ∈ ℕ ∧ (𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑𝑑)) ∈ (Poly‘𝑆))) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 · 𝑦) ∈ 𝑆)
9084, 85, 87, 89plymul 14923 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑑 ∈ ℕ ∧ (𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑𝑑)) ∈ (Poly‘𝑆))) → ((𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑𝑑)) ∘𝑓 · 𝐺) ∈ (Poly‘𝑆))
9190expr 375 . . . . . . . . . . . . . . . 16 ((𝜑𝑑 ∈ ℕ) → ((𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑𝑑)) ∈ (Poly‘𝑆) → ((𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑𝑑)) ∘𝑓 · 𝐺) ∈ (Poly‘𝑆)))
92 cnex 7998 . . . . . . . . . . . . . . . . . . . 20 ℂ ∈ V
9392a1i 9 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑑 ∈ ℕ) → ℂ ∈ V)
9426adantlr 477 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑑 ∈ ℕ) ∧ 𝑧 ∈ ℂ) → (𝐺𝑧) ∈ ℂ)
95 nnnn0 9250 . . . . . . . . . . . . . . . . . . . . 21 (𝑑 ∈ ℕ → 𝑑 ∈ ℕ0)
9695ad2antlr 489 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑑 ∈ ℕ) ∧ 𝑧 ∈ ℂ) → 𝑑 ∈ ℕ0)
9794, 96expcld 10747 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ ℕ) ∧ 𝑧 ∈ ℂ) → ((𝐺𝑧)↑𝑑) ∈ ℂ)
9825adantr 276 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑑 ∈ ℕ) → 𝐺:ℂ⟶ℂ)
9998ffvelcdmda 5694 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ ℕ) ∧ 𝑧 ∈ ℂ) → (𝐺𝑧) ∈ ℂ)
100 eqidd 2194 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑑 ∈ ℕ) → (𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑𝑑)) = (𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑𝑑)))
10181adantr 276 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑑 ∈ ℕ) → 𝐺 = (𝑧 ∈ ℂ ↦ (𝐺𝑧)))
10293, 97, 99, 100, 101offval2 6148 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 ∈ ℕ) → ((𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑𝑑)) ∘𝑓 · 𝐺) = (𝑧 ∈ ℂ ↦ (((𝐺𝑧)↑𝑑) · (𝐺𝑧))))
10394, 96expp1d 10748 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ ℕ) ∧ 𝑧 ∈ ℂ) → ((𝐺𝑧)↑(𝑑 + 1)) = (((𝐺𝑧)↑𝑑) · (𝐺𝑧)))
104103mpteq2dva 4120 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 ∈ ℕ) → (𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑(𝑑 + 1))) = (𝑧 ∈ ℂ ↦ (((𝐺𝑧)↑𝑑) · (𝐺𝑧))))
105102, 104eqtr4d 2229 . . . . . . . . . . . . . . . . 17 ((𝜑𝑑 ∈ ℕ) → ((𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑𝑑)) ∘𝑓 · 𝐺) = (𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑(𝑑 + 1))))
106105eleq1d 2262 . . . . . . . . . . . . . . . 16 ((𝜑𝑑 ∈ ℕ) → (((𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑𝑑)) ∘𝑓 · 𝐺) ∈ (Poly‘𝑆) ↔ (𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑(𝑑 + 1))) ∈ (Poly‘𝑆)))
10791, 106sylibd 149 . . . . . . . . . . . . . . 15 ((𝜑𝑑 ∈ ℕ) → ((𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑𝑑)) ∈ (Poly‘𝑆) → (𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑(𝑑 + 1))) ∈ (Poly‘𝑆)))
108107expcom 116 . . . . . . . . . . . . . 14 (𝑑 ∈ ℕ → (𝜑 → ((𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑𝑑)) ∈ (Poly‘𝑆) → (𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑(𝑑 + 1))) ∈ (Poly‘𝑆))))
109108a2d 26 . . . . . . . . . . . . 13 (𝑑 ∈ ℕ → ((𝜑 → (𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑𝑑)) ∈ (Poly‘𝑆)) → (𝜑 → (𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑(𝑑 + 1))) ∈ (Poly‘𝑆))))
11070, 74, 78, 78, 83, 109nnind 9000 . . . . . . . . . . . 12 ((𝑑 + 1) ∈ ℕ → (𝜑 → (𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑(𝑑 + 1))) ∈ (Poly‘𝑆)))
11166, 110syl 14 . . . . . . . . . . 11 (𝑑 ∈ ℕ0 → (𝜑 → (𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑(𝑑 + 1))) ∈ (Poly‘𝑆)))
112111impcom 125 . . . . . . . . . 10 ((𝜑𝑑 ∈ ℕ0) → (𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑(𝑑 + 1))) ∈ (Poly‘𝑆))
11386adantlr 477 . . . . . . . . . 10 (((𝜑𝑑 ∈ ℕ0) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
11488adantlr 477 . . . . . . . . . 10 (((𝜑𝑑 ∈ ℕ0) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 · 𝑦) ∈ 𝑆)
11565, 112, 113, 114plymul 14923 . . . . . . . . 9 ((𝜑𝑑 ∈ ℕ0) → ((ℂ × {(𝐴‘(𝑑 + 1))}) ∘𝑓 · (𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑(𝑑 + 1)))) ∈ (Poly‘𝑆))
116115adantrr 479 . . . . . . . 8 ((𝜑 ∧ (𝑑 ∈ ℕ0 ∧ (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝐴𝑘) · ((𝐺𝑧)↑𝑘))) ∈ (Poly‘𝑆))) → ((ℂ × {(𝐴‘(𝑑 + 1))}) ∘𝑓 · (𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑(𝑑 + 1)))) ∈ (Poly‘𝑆))
11786adantlr 477 . . . . . . . 8 (((𝜑 ∧ (𝑑 ∈ ℕ0 ∧ (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝐴𝑘) · ((𝐺𝑧)↑𝑘))) ∈ (Poly‘𝑆))) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
11858, 116, 117plyadd 14922 . . . . . . 7 ((𝜑 ∧ (𝑑 ∈ ℕ0 ∧ (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝐴𝑘) · ((𝐺𝑧)↑𝑘))) ∈ (Poly‘𝑆))) → ((𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝐴𝑘) · ((𝐺𝑧)↑𝑘))) ∘𝑓 + ((ℂ × {(𝐴‘(𝑑 + 1))}) ∘𝑓 · (𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑(𝑑 + 1))))) ∈ (Poly‘𝑆))
119118expr 375 . . . . . 6 ((𝜑𝑑 ∈ ℕ0) → ((𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝐴𝑘) · ((𝐺𝑧)↑𝑘))) ∈ (Poly‘𝑆) → ((𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝐴𝑘) · ((𝐺𝑧)↑𝑘))) ∘𝑓 + ((ℂ × {(𝐴‘(𝑑 + 1))}) ∘𝑓 · (𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑(𝑑 + 1))))) ∈ (Poly‘𝑆)))
12092a1i 9 . . . . . . . . 9 ((𝜑𝑑 ∈ ℕ0) → ℂ ∈ V)
121 0zd 9332 . . . . . . . . . . 11 (((𝜑𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) → 0 ∈ ℤ)
122 simplr 528 . . . . . . . . . . . 12 (((𝜑𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) → 𝑑 ∈ ℕ0)
123122nn0zd 9440 . . . . . . . . . . 11 (((𝜑𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) → 𝑑 ∈ ℤ)
124121, 123fzfigd 10505 . . . . . . . . . 10 (((𝜑𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) → (0...𝑑) ∈ Fin)
12529, 55eleqtrrdi 2287 . . . . . . . . . . . . . 14 (𝜑𝐹 ∈ (Poly‘(𝑆 ∪ {0})))
126 plybss 14904 . . . . . . . . . . . . . 14 (𝐹 ∈ (Poly‘(𝑆 ∪ {0})) → (𝑆 ∪ {0}) ⊆ ℂ)
127125, 126syl 14 . . . . . . . . . . . . 13 (𝜑 → (𝑆 ∪ {0}) ⊆ ℂ)
128127ad3antrrr 492 . . . . . . . . . . . 12 ((((𝜑𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑑)) → (𝑆 ∪ {0}) ⊆ ℂ)
12935ad3antrrr 492 . . . . . . . . . . . . 13 ((((𝜑𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑑)) → 𝐴:ℕ0⟶(𝑆 ∪ {0}))
130 elfznn0 10183 . . . . . . . . . . . . . 14 (𝑘 ∈ (0...𝑑) → 𝑘 ∈ ℕ0)
131130adantl 277 . . . . . . . . . . . . 13 ((((𝜑𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑑)) → 𝑘 ∈ ℕ0)
132129, 131ffvelcdmd 5695 . . . . . . . . . . . 12 ((((𝜑𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑑)) → (𝐴𝑘) ∈ (𝑆 ∪ {0}))
133128, 132sseldd 3181 . . . . . . . . . . 11 ((((𝜑𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑑)) → (𝐴𝑘) ∈ ℂ)
13426ad4ant13 513 . . . . . . . . . . . 12 ((((𝜑𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑑)) → (𝐺𝑧) ∈ ℂ)
135134, 131expcld 10747 . . . . . . . . . . 11 ((((𝜑𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑑)) → ((𝐺𝑧)↑𝑘) ∈ ℂ)
136133, 135mulcld 8042 . . . . . . . . . 10 ((((𝜑𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑑)) → ((𝐴𝑘) · ((𝐺𝑧)↑𝑘)) ∈ ℂ)
137124, 136fsumcl 11546 . . . . . . . . 9 (((𝜑𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) → Σ𝑘 ∈ (0...𝑑)((𝐴𝑘) · ((𝐺𝑧)↑𝑘)) ∈ ℂ)
138127ad2antrr 488 . . . . . . . . . . 11 (((𝜑𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) → (𝑆 ∪ {0}) ⊆ ℂ)
13962adantr 276 . . . . . . . . . . 11 (((𝜑𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) → (𝐴‘(𝑑 + 1)) ∈ (𝑆 ∪ {0}))
140138, 139sseldd 3181 . . . . . . . . . 10 (((𝜑𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) → (𝐴‘(𝑑 + 1)) ∈ ℂ)
14126adantlr 477 . . . . . . . . . . 11 (((𝜑𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) → (𝐺𝑧) ∈ ℂ)
14260ad2antlr 489 . . . . . . . . . . 11 (((𝜑𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) → (𝑑 + 1) ∈ ℕ0)
143141, 142expcld 10747 . . . . . . . . . 10 (((𝜑𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) → ((𝐺𝑧)↑(𝑑 + 1)) ∈ ℂ)
144140, 143mulcld 8042 . . . . . . . . 9 (((𝜑𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) → ((𝐴‘(𝑑 + 1)) · ((𝐺𝑧)↑(𝑑 + 1))) ∈ ℂ)
145 eqidd 2194 . . . . . . . . 9 ((𝜑𝑑 ∈ ℕ0) → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝐴𝑘) · ((𝐺𝑧)↑𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝐴𝑘) · ((𝐺𝑧)↑𝑘))))
146 fconstmpt 4707 . . . . . . . . . . 11 (ℂ × {(𝐴‘(𝑑 + 1))}) = (𝑧 ∈ ℂ ↦ (𝐴‘(𝑑 + 1)))
147146a1i 9 . . . . . . . . . 10 ((𝜑𝑑 ∈ ℕ0) → (ℂ × {(𝐴‘(𝑑 + 1))}) = (𝑧 ∈ ℂ ↦ (𝐴‘(𝑑 + 1))))
148 eqidd 2194 . . . . . . . . . 10 ((𝜑𝑑 ∈ ℕ0) → (𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑(𝑑 + 1))) = (𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑(𝑑 + 1))))
149120, 139, 143, 147, 148offval2 6148 . . . . . . . . 9 ((𝜑𝑑 ∈ ℕ0) → ((ℂ × {(𝐴‘(𝑑 + 1))}) ∘𝑓 · (𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑(𝑑 + 1)))) = (𝑧 ∈ ℂ ↦ ((𝐴‘(𝑑 + 1)) · ((𝐺𝑧)↑(𝑑 + 1)))))
150120, 137, 144, 145, 149offval2 6148 . . . . . . . 8 ((𝜑𝑑 ∈ ℕ0) → ((𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝐴𝑘) · ((𝐺𝑧)↑𝑘))) ∘𝑓 + ((ℂ × {(𝐴‘(𝑑 + 1))}) ∘𝑓 · (𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑(𝑑 + 1))))) = (𝑧 ∈ ℂ ↦ (Σ𝑘 ∈ (0...𝑑)((𝐴𝑘) · ((𝐺𝑧)↑𝑘)) + ((𝐴‘(𝑑 + 1)) · ((𝐺𝑧)↑(𝑑 + 1))))))
151 nn0uz 9630 . . . . . . . . . . 11 0 = (ℤ‘0)
152122, 151eleqtrdi 2286 . . . . . . . . . 10 (((𝜑𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) → 𝑑 ∈ (ℤ‘0))
153138adantr 276 . . . . . . . . . . . 12 ((((𝜑𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...(𝑑 + 1))) → (𝑆 ∪ {0}) ⊆ ℂ)
15435ad3antrrr 492 . . . . . . . . . . . . 13 ((((𝜑𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...(𝑑 + 1))) → 𝐴:ℕ0⟶(𝑆 ∪ {0}))
155 elfznn0 10183 . . . . . . . . . . . . . 14 (𝑘 ∈ (0...(𝑑 + 1)) → 𝑘 ∈ ℕ0)
156155adantl 277 . . . . . . . . . . . . 13 ((((𝜑𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...(𝑑 + 1))) → 𝑘 ∈ ℕ0)
157154, 156ffvelcdmd 5695 . . . . . . . . . . . 12 ((((𝜑𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...(𝑑 + 1))) → (𝐴𝑘) ∈ (𝑆 ∪ {0}))
158153, 157sseldd 3181 . . . . . . . . . . 11 ((((𝜑𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...(𝑑 + 1))) → (𝐴𝑘) ∈ ℂ)
159141adantr 276 . . . . . . . . . . . 12 ((((𝜑𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...(𝑑 + 1))) → (𝐺𝑧) ∈ ℂ)
160159, 156expcld 10747 . . . . . . . . . . 11 ((((𝜑𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...(𝑑 + 1))) → ((𝐺𝑧)↑𝑘) ∈ ℂ)
161158, 160mulcld 8042 . . . . . . . . . 10 ((((𝜑𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...(𝑑 + 1))) → ((𝐴𝑘) · ((𝐺𝑧)↑𝑘)) ∈ ℂ)
162 fveq2 5555 . . . . . . . . . . 11 (𝑘 = (𝑑 + 1) → (𝐴𝑘) = (𝐴‘(𝑑 + 1)))
163 oveq2 5927 . . . . . . . . . . 11 (𝑘 = (𝑑 + 1) → ((𝐺𝑧)↑𝑘) = ((𝐺𝑧)↑(𝑑 + 1)))
164162, 163oveq12d 5937 . . . . . . . . . 10 (𝑘 = (𝑑 + 1) → ((𝐴𝑘) · ((𝐺𝑧)↑𝑘)) = ((𝐴‘(𝑑 + 1)) · ((𝐺𝑧)↑(𝑑 + 1))))
165152, 161, 164fsump1 11566 . . . . . . . . 9 (((𝜑𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) → Σ𝑘 ∈ (0...(𝑑 + 1))((𝐴𝑘) · ((𝐺𝑧)↑𝑘)) = (Σ𝑘 ∈ (0...𝑑)((𝐴𝑘) · ((𝐺𝑧)↑𝑘)) + ((𝐴‘(𝑑 + 1)) · ((𝐺𝑧)↑(𝑑 + 1)))))
166165mpteq2dva 4120 . . . . . . . 8 ((𝜑𝑑 ∈ ℕ0) → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(𝑑 + 1))((𝐴𝑘) · ((𝐺𝑧)↑𝑘))) = (𝑧 ∈ ℂ ↦ (Σ𝑘 ∈ (0...𝑑)((𝐴𝑘) · ((𝐺𝑧)↑𝑘)) + ((𝐴‘(𝑑 + 1)) · ((𝐺𝑧)↑(𝑑 + 1))))))
167150, 166eqtr4d 2229 . . . . . . 7 ((𝜑𝑑 ∈ ℕ0) → ((𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝐴𝑘) · ((𝐺𝑧)↑𝑘))) ∘𝑓 + ((ℂ × {(𝐴‘(𝑑 + 1))}) ∘𝑓 · (𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑(𝑑 + 1))))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(𝑑 + 1))((𝐴𝑘) · ((𝐺𝑧)↑𝑘))))
168167eleq1d 2262 . . . . . 6 ((𝜑𝑑 ∈ ℕ0) → (((𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝐴𝑘) · ((𝐺𝑧)↑𝑘))) ∘𝑓 + ((ℂ × {(𝐴‘(𝑑 + 1))}) ∘𝑓 · (𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑(𝑑 + 1))))) ∈ (Poly‘𝑆) ↔ (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(𝑑 + 1))((𝐴𝑘) · ((𝐺𝑧)↑𝑘))) ∈ (Poly‘𝑆)))
169119, 168sylibd 149 . . . . 5 ((𝜑𝑑 ∈ ℕ0) → ((𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝐴𝑘) · ((𝐺𝑧)↑𝑘))) ∈ (Poly‘𝑆) → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(𝑑 + 1))((𝐴𝑘) · ((𝐺𝑧)↑𝑘))) ∈ (Poly‘𝑆)))
170169expcom 116 . . . 4 (𝑑 ∈ ℕ0 → (𝜑 → ((𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝐴𝑘) · ((𝐺𝑧)↑𝑘))) ∈ (Poly‘𝑆) → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(𝑑 + 1))((𝐴𝑘) · ((𝐺𝑧)↑𝑘))) ∈ (Poly‘𝑆))))
171170a2d 26 . . 3 (𝑑 ∈ ℕ0 → ((𝜑 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝐴𝑘) · ((𝐺𝑧)↑𝑘))) ∈ (Poly‘𝑆)) → (𝜑 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(𝑑 + 1))((𝐴𝑘) · ((𝐺𝑧)↑𝑘))) ∈ (Poly‘𝑆))))
1726, 11, 16, 21, 57, 171nn0ind 9434 . 2 (𝑁 ∈ ℕ0 → (𝜑 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · ((𝐺𝑧)↑𝑘))) ∈ (Poly‘𝑆)))
1731, 172mpcom 36 1 (𝜑 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · ((𝐺𝑧)↑𝑘))) ∈ (Poly‘𝑆))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2164  Vcvv 2760  cun 3152  wss 3154  {csn 3619  cmpt 4091   × cxp 4658  cima 4663  wf 5251  cfv 5255  (class class class)co 5919  𝑓 cof 6130  cc 7872  0cc0 7874  1c1 7875   + caddc 7877   · cmul 7879  cn 8984  0cn0 9243  cz 9320  cuz 9595  ...cfz 10077  cexp 10612  Σcsu 11499  Polycply 14899
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-mulrcl 7973  ax-addcom 7974  ax-mulcom 7975  ax-addass 7976  ax-mulass 7977  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-1rid 7981  ax-0id 7982  ax-rnegex 7983  ax-precex 7984  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-apti 7989  ax-pre-ltadd 7990  ax-pre-mulgt0 7991  ax-pre-mulext 7992  ax-arch 7993  ax-caucvg 7994
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-if 3559  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-disj 4008  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-po 4328  df-iso 4329  df-iord 4398  df-on 4400  df-ilim 4401  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-of 6132  df-1st 6195  df-2nd 6196  df-recs 6360  df-irdg 6425  df-frec 6446  df-1o 6471  df-oadd 6475  df-er 6589  df-map 6706  df-en 6797  df-dom 6798  df-fin 6799  df-sup 7045  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-reap 8596  df-ap 8603  df-div 8694  df-inn 8985  df-2 9043  df-3 9044  df-4 9045  df-n0 9244  df-z 9321  df-uz 9596  df-q 9688  df-rp 9723  df-fz 10078  df-fzo 10212  df-seqfrec 10522  df-exp 10613  df-ihash 10850  df-cj 10989  df-re 10990  df-im 10991  df-rsqrt 11145  df-abs 11146  df-clim 11425  df-sumdc 11500  df-ply 14901
This theorem is referenced by:  plyco  14929
  Copyright terms: Public domain W3C validator