ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  plycolemc GIF version

Theorem plycolemc 15397
Description: Lemma for plyco 15398. The result expressed as a sum, with a degree and coefficients for 𝐹 specified as hypotheses. (Contributed by Jim Kingdon, 20-Sep-2025.)
Hypotheses
Ref Expression
plyco.1 (𝜑𝐹 ∈ (Poly‘𝑆))
plyco.2 (𝜑𝐺 ∈ (Poly‘𝑆))
plyco.3 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
plyco.4 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 · 𝑦) ∈ 𝑆)
plycolemc.n (𝜑𝑁 ∈ ℕ0)
plycolemc.a (𝜑𝐴:ℕ0⟶(𝑆 ∪ {0}))
plycolemc.z (𝜑 → (𝐴 “ (ℤ‘(𝑁 + 1))) = {0})
plycolemc.f (𝜑𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑥𝑘))))
Assertion
Ref Expression
plycolemc (𝜑 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · ((𝐺𝑧)↑𝑘))) ∈ (Poly‘𝑆))
Distinct variable groups:   𝑘,𝐺,𝑧   𝐴,𝑘   𝑘,𝑁   𝑥,𝐴,𝑦,𝑧,𝑘   𝑥,𝐺,𝑦   𝑧,𝑁   𝑥,𝑆,𝑦   𝜑,𝑘,𝑥,𝑦,𝑧
Allowed substitution hints:   𝑆(𝑧,𝑘)   𝐹(𝑥,𝑦,𝑧,𝑘)   𝑁(𝑥,𝑦)

Proof of Theorem plycolemc
Dummy variables 𝑑 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 plycolemc.n . 2 (𝜑𝑁 ∈ ℕ0)
2 oveq2 5982 . . . . . . 7 (𝑤 = 0 → (0...𝑤) = (0...0))
32sumeq1d 11843 . . . . . 6 (𝑤 = 0 → Σ𝑘 ∈ (0...𝑤)((𝐴𝑘) · ((𝐺𝑧)↑𝑘)) = Σ𝑘 ∈ (0...0)((𝐴𝑘) · ((𝐺𝑧)↑𝑘)))
43mpteq2dv 4154 . . . . 5 (𝑤 = 0 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑤)((𝐴𝑘) · ((𝐺𝑧)↑𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...0)((𝐴𝑘) · ((𝐺𝑧)↑𝑘))))
54eleq1d 2278 . . . 4 (𝑤 = 0 → ((𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑤)((𝐴𝑘) · ((𝐺𝑧)↑𝑘))) ∈ (Poly‘𝑆) ↔ (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...0)((𝐴𝑘) · ((𝐺𝑧)↑𝑘))) ∈ (Poly‘𝑆)))
65imbi2d 230 . . 3 (𝑤 = 0 → ((𝜑 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑤)((𝐴𝑘) · ((𝐺𝑧)↑𝑘))) ∈ (Poly‘𝑆)) ↔ (𝜑 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...0)((𝐴𝑘) · ((𝐺𝑧)↑𝑘))) ∈ (Poly‘𝑆))))
7 oveq2 5982 . . . . . . 7 (𝑤 = 𝑑 → (0...𝑤) = (0...𝑑))
87sumeq1d 11843 . . . . . 6 (𝑤 = 𝑑 → Σ𝑘 ∈ (0...𝑤)((𝐴𝑘) · ((𝐺𝑧)↑𝑘)) = Σ𝑘 ∈ (0...𝑑)((𝐴𝑘) · ((𝐺𝑧)↑𝑘)))
98mpteq2dv 4154 . . . . 5 (𝑤 = 𝑑 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑤)((𝐴𝑘) · ((𝐺𝑧)↑𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝐴𝑘) · ((𝐺𝑧)↑𝑘))))
109eleq1d 2278 . . . 4 (𝑤 = 𝑑 → ((𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑤)((𝐴𝑘) · ((𝐺𝑧)↑𝑘))) ∈ (Poly‘𝑆) ↔ (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝐴𝑘) · ((𝐺𝑧)↑𝑘))) ∈ (Poly‘𝑆)))
1110imbi2d 230 . . 3 (𝑤 = 𝑑 → ((𝜑 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑤)((𝐴𝑘) · ((𝐺𝑧)↑𝑘))) ∈ (Poly‘𝑆)) ↔ (𝜑 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝐴𝑘) · ((𝐺𝑧)↑𝑘))) ∈ (Poly‘𝑆))))
12 oveq2 5982 . . . . . . 7 (𝑤 = (𝑑 + 1) → (0...𝑤) = (0...(𝑑 + 1)))
1312sumeq1d 11843 . . . . . 6 (𝑤 = (𝑑 + 1) → Σ𝑘 ∈ (0...𝑤)((𝐴𝑘) · ((𝐺𝑧)↑𝑘)) = Σ𝑘 ∈ (0...(𝑑 + 1))((𝐴𝑘) · ((𝐺𝑧)↑𝑘)))
1413mpteq2dv 4154 . . . . 5 (𝑤 = (𝑑 + 1) → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑤)((𝐴𝑘) · ((𝐺𝑧)↑𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(𝑑 + 1))((𝐴𝑘) · ((𝐺𝑧)↑𝑘))))
1514eleq1d 2278 . . . 4 (𝑤 = (𝑑 + 1) → ((𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑤)((𝐴𝑘) · ((𝐺𝑧)↑𝑘))) ∈ (Poly‘𝑆) ↔ (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(𝑑 + 1))((𝐴𝑘) · ((𝐺𝑧)↑𝑘))) ∈ (Poly‘𝑆)))
1615imbi2d 230 . . 3 (𝑤 = (𝑑 + 1) → ((𝜑 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑤)((𝐴𝑘) · ((𝐺𝑧)↑𝑘))) ∈ (Poly‘𝑆)) ↔ (𝜑 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(𝑑 + 1))((𝐴𝑘) · ((𝐺𝑧)↑𝑘))) ∈ (Poly‘𝑆))))
17 oveq2 5982 . . . . . . 7 (𝑤 = 𝑁 → (0...𝑤) = (0...𝑁))
1817sumeq1d 11843 . . . . . 6 (𝑤 = 𝑁 → Σ𝑘 ∈ (0...𝑤)((𝐴𝑘) · ((𝐺𝑧)↑𝑘)) = Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · ((𝐺𝑧)↑𝑘)))
1918mpteq2dv 4154 . . . . 5 (𝑤 = 𝑁 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑤)((𝐴𝑘) · ((𝐺𝑧)↑𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · ((𝐺𝑧)↑𝑘))))
2019eleq1d 2278 . . . 4 (𝑤 = 𝑁 → ((𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑤)((𝐴𝑘) · ((𝐺𝑧)↑𝑘))) ∈ (Poly‘𝑆) ↔ (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · ((𝐺𝑧)↑𝑘))) ∈ (Poly‘𝑆)))
2120imbi2d 230 . . 3 (𝑤 = 𝑁 → ((𝜑 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑤)((𝐴𝑘) · ((𝐺𝑧)↑𝑘))) ∈ (Poly‘𝑆)) ↔ (𝜑 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · ((𝐺𝑧)↑𝑘))) ∈ (Poly‘𝑆))))
22 0z 9425 . . . . . . . 8 0 ∈ ℤ
23 plyco.2 . . . . . . . . . . . . . 14 (𝜑𝐺 ∈ (Poly‘𝑆))
24 plyf 15376 . . . . . . . . . . . . . 14 (𝐺 ∈ (Poly‘𝑆) → 𝐺:ℂ⟶ℂ)
2523, 24syl 14 . . . . . . . . . . . . 13 (𝜑𝐺:ℂ⟶ℂ)
2625ffvelcdmda 5743 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ ℂ) → (𝐺𝑧) ∈ ℂ)
2726exp0d 10856 . . . . . . . . . . 11 ((𝜑𝑧 ∈ ℂ) → ((𝐺𝑧)↑0) = 1)
2827oveq2d 5990 . . . . . . . . . 10 ((𝜑𝑧 ∈ ℂ) → ((𝐴‘0) · ((𝐺𝑧)↑0)) = ((𝐴‘0) · 1))
29 plyco.1 . . . . . . . . . . . . . . 15 (𝜑𝐹 ∈ (Poly‘𝑆))
30 plybss 15372 . . . . . . . . . . . . . . 15 (𝐹 ∈ (Poly‘𝑆) → 𝑆 ⊆ ℂ)
3129, 30syl 14 . . . . . . . . . . . . . 14 (𝜑𝑆 ⊆ ℂ)
32 0cnd 8107 . . . . . . . . . . . . . . 15 (𝜑 → 0 ∈ ℂ)
3332snssd 3792 . . . . . . . . . . . . . 14 (𝜑 → {0} ⊆ ℂ)
3431, 33unssd 3360 . . . . . . . . . . . . 13 (𝜑 → (𝑆 ∪ {0}) ⊆ ℂ)
35 plycolemc.a . . . . . . . . . . . . . 14 (𝜑𝐴:ℕ0⟶(𝑆 ∪ {0}))
36 0nn0 9352 . . . . . . . . . . . . . . 15 0 ∈ ℕ0
3736a1i 9 . . . . . . . . . . . . . 14 (𝜑 → 0 ∈ ℕ0)
3835, 37ffvelcdmd 5744 . . . . . . . . . . . . 13 (𝜑 → (𝐴‘0) ∈ (𝑆 ∪ {0}))
3934, 38sseldd 3205 . . . . . . . . . . . 12 (𝜑 → (𝐴‘0) ∈ ℂ)
4039adantr 276 . . . . . . . . . . 11 ((𝜑𝑧 ∈ ℂ) → (𝐴‘0) ∈ ℂ)
4140mulridd 8131 . . . . . . . . . 10 ((𝜑𝑧 ∈ ℂ) → ((𝐴‘0) · 1) = (𝐴‘0))
4228, 41eqtrd 2242 . . . . . . . . 9 ((𝜑𝑧 ∈ ℂ) → ((𝐴‘0) · ((𝐺𝑧)↑0)) = (𝐴‘0))
4342, 40eqeltrd 2286 . . . . . . . 8 ((𝜑𝑧 ∈ ℂ) → ((𝐴‘0) · ((𝐺𝑧)↑0)) ∈ ℂ)
44 fveq2 5603 . . . . . . . . . 10 (𝑘 = 0 → (𝐴𝑘) = (𝐴‘0))
45 oveq2 5982 . . . . . . . . . 10 (𝑘 = 0 → ((𝐺𝑧)↑𝑘) = ((𝐺𝑧)↑0))
4644, 45oveq12d 5992 . . . . . . . . 9 (𝑘 = 0 → ((𝐴𝑘) · ((𝐺𝑧)↑𝑘)) = ((𝐴‘0) · ((𝐺𝑧)↑0)))
4746fsum1 11889 . . . . . . . 8 ((0 ∈ ℤ ∧ ((𝐴‘0) · ((𝐺𝑧)↑0)) ∈ ℂ) → Σ𝑘 ∈ (0...0)((𝐴𝑘) · ((𝐺𝑧)↑𝑘)) = ((𝐴‘0) · ((𝐺𝑧)↑0)))
4822, 43, 47sylancr 414 . . . . . . 7 ((𝜑𝑧 ∈ ℂ) → Σ𝑘 ∈ (0...0)((𝐴𝑘) · ((𝐺𝑧)↑𝑘)) = ((𝐴‘0) · ((𝐺𝑧)↑0)))
4948, 42eqtrd 2242 . . . . . 6 ((𝜑𝑧 ∈ ℂ) → Σ𝑘 ∈ (0...0)((𝐴𝑘) · ((𝐺𝑧)↑𝑘)) = (𝐴‘0))
5049mpteq2dva 4153 . . . . 5 (𝜑 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...0)((𝐴𝑘) · ((𝐺𝑧)↑𝑘))) = (𝑧 ∈ ℂ ↦ (𝐴‘0)))
51 fconstmpt 4743 . . . . 5 (ℂ × {(𝐴‘0)}) = (𝑧 ∈ ℂ ↦ (𝐴‘0))
5250, 51eqtr4di 2260 . . . 4 (𝜑 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...0)((𝐴𝑘) · ((𝐺𝑧)↑𝑘))) = (ℂ × {(𝐴‘0)}))
53 plyconst 15384 . . . . . 6 (((𝑆 ∪ {0}) ⊆ ℂ ∧ (𝐴‘0) ∈ (𝑆 ∪ {0})) → (ℂ × {(𝐴‘0)}) ∈ (Poly‘(𝑆 ∪ {0})))
5434, 38, 53syl2anc 411 . . . . 5 (𝜑 → (ℂ × {(𝐴‘0)}) ∈ (Poly‘(𝑆 ∪ {0})))
55 plyun0 15375 . . . . 5 (Poly‘(𝑆 ∪ {0})) = (Poly‘𝑆)
5654, 55eleqtrdi 2302 . . . 4 (𝜑 → (ℂ × {(𝐴‘0)}) ∈ (Poly‘𝑆))
5752, 56eqeltrd 2286 . . 3 (𝜑 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...0)((𝐴𝑘) · ((𝐺𝑧)↑𝑘))) ∈ (Poly‘𝑆))
58 simprr 531 . . . . . . . 8 ((𝜑 ∧ (𝑑 ∈ ℕ0 ∧ (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝐴𝑘) · ((𝐺𝑧)↑𝑘))) ∈ (Poly‘𝑆))) → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝐴𝑘) · ((𝐺𝑧)↑𝑘))) ∈ (Poly‘𝑆))
5934adantr 276 . . . . . . . . . . . 12 ((𝜑𝑑 ∈ ℕ0) → (𝑆 ∪ {0}) ⊆ ℂ)
60 peano2nn0 9377 . . . . . . . . . . . . 13 (𝑑 ∈ ℕ0 → (𝑑 + 1) ∈ ℕ0)
61 ffvelcdm 5741 . . . . . . . . . . . . 13 ((𝐴:ℕ0⟶(𝑆 ∪ {0}) ∧ (𝑑 + 1) ∈ ℕ0) → (𝐴‘(𝑑 + 1)) ∈ (𝑆 ∪ {0}))
6235, 60, 61syl2an 289 . . . . . . . . . . . 12 ((𝜑𝑑 ∈ ℕ0) → (𝐴‘(𝑑 + 1)) ∈ (𝑆 ∪ {0}))
63 plyconst 15384 . . . . . . . . . . . 12 (((𝑆 ∪ {0}) ⊆ ℂ ∧ (𝐴‘(𝑑 + 1)) ∈ (𝑆 ∪ {0})) → (ℂ × {(𝐴‘(𝑑 + 1))}) ∈ (Poly‘(𝑆 ∪ {0})))
6459, 62, 63syl2anc 411 . . . . . . . . . . 11 ((𝜑𝑑 ∈ ℕ0) → (ℂ × {(𝐴‘(𝑑 + 1))}) ∈ (Poly‘(𝑆 ∪ {0})))
6564, 55eleqtrdi 2302 . . . . . . . . . 10 ((𝜑𝑑 ∈ ℕ0) → (ℂ × {(𝐴‘(𝑑 + 1))}) ∈ (Poly‘𝑆))
66 nn0p1nn 9376 . . . . . . . . . . . 12 (𝑑 ∈ ℕ0 → (𝑑 + 1) ∈ ℕ)
67 oveq2 5982 . . . . . . . . . . . . . . . 16 (𝑤 = 1 → ((𝐺𝑧)↑𝑤) = ((𝐺𝑧)↑1))
6867mpteq2dv 4154 . . . . . . . . . . . . . . 15 (𝑤 = 1 → (𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑𝑤)) = (𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑1)))
6968eleq1d 2278 . . . . . . . . . . . . . 14 (𝑤 = 1 → ((𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑𝑤)) ∈ (Poly‘𝑆) ↔ (𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑1)) ∈ (Poly‘𝑆)))
7069imbi2d 230 . . . . . . . . . . . . 13 (𝑤 = 1 → ((𝜑 → (𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑𝑤)) ∈ (Poly‘𝑆)) ↔ (𝜑 → (𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑1)) ∈ (Poly‘𝑆))))
71 oveq2 5982 . . . . . . . . . . . . . . . 16 (𝑤 = 𝑑 → ((𝐺𝑧)↑𝑤) = ((𝐺𝑧)↑𝑑))
7271mpteq2dv 4154 . . . . . . . . . . . . . . 15 (𝑤 = 𝑑 → (𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑𝑤)) = (𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑𝑑)))
7372eleq1d 2278 . . . . . . . . . . . . . 14 (𝑤 = 𝑑 → ((𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑𝑤)) ∈ (Poly‘𝑆) ↔ (𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑𝑑)) ∈ (Poly‘𝑆)))
7473imbi2d 230 . . . . . . . . . . . . 13 (𝑤 = 𝑑 → ((𝜑 → (𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑𝑤)) ∈ (Poly‘𝑆)) ↔ (𝜑 → (𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑𝑑)) ∈ (Poly‘𝑆))))
75 oveq2 5982 . . . . . . . . . . . . . . . 16 (𝑤 = (𝑑 + 1) → ((𝐺𝑧)↑𝑤) = ((𝐺𝑧)↑(𝑑 + 1)))
7675mpteq2dv 4154 . . . . . . . . . . . . . . 15 (𝑤 = (𝑑 + 1) → (𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑𝑤)) = (𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑(𝑑 + 1))))
7776eleq1d 2278 . . . . . . . . . . . . . 14 (𝑤 = (𝑑 + 1) → ((𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑𝑤)) ∈ (Poly‘𝑆) ↔ (𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑(𝑑 + 1))) ∈ (Poly‘𝑆)))
7877imbi2d 230 . . . . . . . . . . . . 13 (𝑤 = (𝑑 + 1) → ((𝜑 → (𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑𝑤)) ∈ (Poly‘𝑆)) ↔ (𝜑 → (𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑(𝑑 + 1))) ∈ (Poly‘𝑆))))
7926exp1d 10857 . . . . . . . . . . . . . . . 16 ((𝜑𝑧 ∈ ℂ) → ((𝐺𝑧)↑1) = (𝐺𝑧))
8079mpteq2dva 4153 . . . . . . . . . . . . . . 15 (𝜑 → (𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑1)) = (𝑧 ∈ ℂ ↦ (𝐺𝑧)))
8125feqmptd 5660 . . . . . . . . . . . . . . 15 (𝜑𝐺 = (𝑧 ∈ ℂ ↦ (𝐺𝑧)))
8280, 81eqtr4d 2245 . . . . . . . . . . . . . 14 (𝜑 → (𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑1)) = 𝐺)
8382, 23eqeltrd 2286 . . . . . . . . . . . . 13 (𝜑 → (𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑1)) ∈ (Poly‘𝑆))
84 simprr 531 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑑 ∈ ℕ ∧ (𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑𝑑)) ∈ (Poly‘𝑆))) → (𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑𝑑)) ∈ (Poly‘𝑆))
8523adantr 276 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑑 ∈ ℕ ∧ (𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑𝑑)) ∈ (Poly‘𝑆))) → 𝐺 ∈ (Poly‘𝑆))
86 plyco.3 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
8786adantlr 477 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑑 ∈ ℕ ∧ (𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑𝑑)) ∈ (Poly‘𝑆))) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
88 plyco.4 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 · 𝑦) ∈ 𝑆)
8988adantlr 477 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑑 ∈ ℕ ∧ (𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑𝑑)) ∈ (Poly‘𝑆))) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 · 𝑦) ∈ 𝑆)
9084, 85, 87, 89plymul 15391 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑑 ∈ ℕ ∧ (𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑𝑑)) ∈ (Poly‘𝑆))) → ((𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑𝑑)) ∘𝑓 · 𝐺) ∈ (Poly‘𝑆))
9190expr 375 . . . . . . . . . . . . . . . 16 ((𝜑𝑑 ∈ ℕ) → ((𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑𝑑)) ∈ (Poly‘𝑆) → ((𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑𝑑)) ∘𝑓 · 𝐺) ∈ (Poly‘𝑆)))
92 cnex 8091 . . . . . . . . . . . . . . . . . . . 20 ℂ ∈ V
9392a1i 9 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑑 ∈ ℕ) → ℂ ∈ V)
9426adantlr 477 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑑 ∈ ℕ) ∧ 𝑧 ∈ ℂ) → (𝐺𝑧) ∈ ℂ)
95 nnnn0 9344 . . . . . . . . . . . . . . . . . . . . 21 (𝑑 ∈ ℕ → 𝑑 ∈ ℕ0)
9695ad2antlr 489 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑑 ∈ ℕ) ∧ 𝑧 ∈ ℂ) → 𝑑 ∈ ℕ0)
9794, 96expcld 10862 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ ℕ) ∧ 𝑧 ∈ ℂ) → ((𝐺𝑧)↑𝑑) ∈ ℂ)
9825adantr 276 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑑 ∈ ℕ) → 𝐺:ℂ⟶ℂ)
9998ffvelcdmda 5743 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ ℕ) ∧ 𝑧 ∈ ℂ) → (𝐺𝑧) ∈ ℂ)
100 eqidd 2210 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑑 ∈ ℕ) → (𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑𝑑)) = (𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑𝑑)))
10181adantr 276 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑑 ∈ ℕ) → 𝐺 = (𝑧 ∈ ℂ ↦ (𝐺𝑧)))
10293, 97, 99, 100, 101offval2 6204 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 ∈ ℕ) → ((𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑𝑑)) ∘𝑓 · 𝐺) = (𝑧 ∈ ℂ ↦ (((𝐺𝑧)↑𝑑) · (𝐺𝑧))))
10394, 96expp1d 10863 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ ℕ) ∧ 𝑧 ∈ ℂ) → ((𝐺𝑧)↑(𝑑 + 1)) = (((𝐺𝑧)↑𝑑) · (𝐺𝑧)))
104103mpteq2dva 4153 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 ∈ ℕ) → (𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑(𝑑 + 1))) = (𝑧 ∈ ℂ ↦ (((𝐺𝑧)↑𝑑) · (𝐺𝑧))))
105102, 104eqtr4d 2245 . . . . . . . . . . . . . . . . 17 ((𝜑𝑑 ∈ ℕ) → ((𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑𝑑)) ∘𝑓 · 𝐺) = (𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑(𝑑 + 1))))
106105eleq1d 2278 . . . . . . . . . . . . . . . 16 ((𝜑𝑑 ∈ ℕ) → (((𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑𝑑)) ∘𝑓 · 𝐺) ∈ (Poly‘𝑆) ↔ (𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑(𝑑 + 1))) ∈ (Poly‘𝑆)))
10791, 106sylibd 149 . . . . . . . . . . . . . . 15 ((𝜑𝑑 ∈ ℕ) → ((𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑𝑑)) ∈ (Poly‘𝑆) → (𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑(𝑑 + 1))) ∈ (Poly‘𝑆)))
108107expcom 116 . . . . . . . . . . . . . 14 (𝑑 ∈ ℕ → (𝜑 → ((𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑𝑑)) ∈ (Poly‘𝑆) → (𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑(𝑑 + 1))) ∈ (Poly‘𝑆))))
109108a2d 26 . . . . . . . . . . . . 13 (𝑑 ∈ ℕ → ((𝜑 → (𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑𝑑)) ∈ (Poly‘𝑆)) → (𝜑 → (𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑(𝑑 + 1))) ∈ (Poly‘𝑆))))
11070, 74, 78, 78, 83, 109nnind 9094 . . . . . . . . . . . 12 ((𝑑 + 1) ∈ ℕ → (𝜑 → (𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑(𝑑 + 1))) ∈ (Poly‘𝑆)))
11166, 110syl 14 . . . . . . . . . . 11 (𝑑 ∈ ℕ0 → (𝜑 → (𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑(𝑑 + 1))) ∈ (Poly‘𝑆)))
112111impcom 125 . . . . . . . . . 10 ((𝜑𝑑 ∈ ℕ0) → (𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑(𝑑 + 1))) ∈ (Poly‘𝑆))
11386adantlr 477 . . . . . . . . . 10 (((𝜑𝑑 ∈ ℕ0) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
11488adantlr 477 . . . . . . . . . 10 (((𝜑𝑑 ∈ ℕ0) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 · 𝑦) ∈ 𝑆)
11565, 112, 113, 114plymul 15391 . . . . . . . . 9 ((𝜑𝑑 ∈ ℕ0) → ((ℂ × {(𝐴‘(𝑑 + 1))}) ∘𝑓 · (𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑(𝑑 + 1)))) ∈ (Poly‘𝑆))
116115adantrr 479 . . . . . . . 8 ((𝜑 ∧ (𝑑 ∈ ℕ0 ∧ (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝐴𝑘) · ((𝐺𝑧)↑𝑘))) ∈ (Poly‘𝑆))) → ((ℂ × {(𝐴‘(𝑑 + 1))}) ∘𝑓 · (𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑(𝑑 + 1)))) ∈ (Poly‘𝑆))
11786adantlr 477 . . . . . . . 8 (((𝜑 ∧ (𝑑 ∈ ℕ0 ∧ (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝐴𝑘) · ((𝐺𝑧)↑𝑘))) ∈ (Poly‘𝑆))) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
11858, 116, 117plyadd 15390 . . . . . . 7 ((𝜑 ∧ (𝑑 ∈ ℕ0 ∧ (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝐴𝑘) · ((𝐺𝑧)↑𝑘))) ∈ (Poly‘𝑆))) → ((𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝐴𝑘) · ((𝐺𝑧)↑𝑘))) ∘𝑓 + ((ℂ × {(𝐴‘(𝑑 + 1))}) ∘𝑓 · (𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑(𝑑 + 1))))) ∈ (Poly‘𝑆))
119118expr 375 . . . . . 6 ((𝜑𝑑 ∈ ℕ0) → ((𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝐴𝑘) · ((𝐺𝑧)↑𝑘))) ∈ (Poly‘𝑆) → ((𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝐴𝑘) · ((𝐺𝑧)↑𝑘))) ∘𝑓 + ((ℂ × {(𝐴‘(𝑑 + 1))}) ∘𝑓 · (𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑(𝑑 + 1))))) ∈ (Poly‘𝑆)))
12092a1i 9 . . . . . . . . 9 ((𝜑𝑑 ∈ ℕ0) → ℂ ∈ V)
121 0zd 9426 . . . . . . . . . . 11 (((𝜑𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) → 0 ∈ ℤ)
122 simplr 528 . . . . . . . . . . . 12 (((𝜑𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) → 𝑑 ∈ ℕ0)
123122nn0zd 9535 . . . . . . . . . . 11 (((𝜑𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) → 𝑑 ∈ ℤ)
124121, 123fzfigd 10620 . . . . . . . . . 10 (((𝜑𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) → (0...𝑑) ∈ Fin)
12529, 55eleqtrrdi 2303 . . . . . . . . . . . . . 14 (𝜑𝐹 ∈ (Poly‘(𝑆 ∪ {0})))
126 plybss 15372 . . . . . . . . . . . . . 14 (𝐹 ∈ (Poly‘(𝑆 ∪ {0})) → (𝑆 ∪ {0}) ⊆ ℂ)
127125, 126syl 14 . . . . . . . . . . . . 13 (𝜑 → (𝑆 ∪ {0}) ⊆ ℂ)
128127ad3antrrr 492 . . . . . . . . . . . 12 ((((𝜑𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑑)) → (𝑆 ∪ {0}) ⊆ ℂ)
12935ad3antrrr 492 . . . . . . . . . . . . 13 ((((𝜑𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑑)) → 𝐴:ℕ0⟶(𝑆 ∪ {0}))
130 elfznn0 10278 . . . . . . . . . . . . . 14 (𝑘 ∈ (0...𝑑) → 𝑘 ∈ ℕ0)
131130adantl 277 . . . . . . . . . . . . 13 ((((𝜑𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑑)) → 𝑘 ∈ ℕ0)
132129, 131ffvelcdmd 5744 . . . . . . . . . . . 12 ((((𝜑𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑑)) → (𝐴𝑘) ∈ (𝑆 ∪ {0}))
133128, 132sseldd 3205 . . . . . . . . . . 11 ((((𝜑𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑑)) → (𝐴𝑘) ∈ ℂ)
13426ad4ant13 513 . . . . . . . . . . . 12 ((((𝜑𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑑)) → (𝐺𝑧) ∈ ℂ)
135134, 131expcld 10862 . . . . . . . . . . 11 ((((𝜑𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑑)) → ((𝐺𝑧)↑𝑘) ∈ ℂ)
136133, 135mulcld 8135 . . . . . . . . . 10 ((((𝜑𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑑)) → ((𝐴𝑘) · ((𝐺𝑧)↑𝑘)) ∈ ℂ)
137124, 136fsumcl 11877 . . . . . . . . 9 (((𝜑𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) → Σ𝑘 ∈ (0...𝑑)((𝐴𝑘) · ((𝐺𝑧)↑𝑘)) ∈ ℂ)
138127ad2antrr 488 . . . . . . . . . . 11 (((𝜑𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) → (𝑆 ∪ {0}) ⊆ ℂ)
13962adantr 276 . . . . . . . . . . 11 (((𝜑𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) → (𝐴‘(𝑑 + 1)) ∈ (𝑆 ∪ {0}))
140138, 139sseldd 3205 . . . . . . . . . 10 (((𝜑𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) → (𝐴‘(𝑑 + 1)) ∈ ℂ)
14126adantlr 477 . . . . . . . . . . 11 (((𝜑𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) → (𝐺𝑧) ∈ ℂ)
14260ad2antlr 489 . . . . . . . . . . 11 (((𝜑𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) → (𝑑 + 1) ∈ ℕ0)
143141, 142expcld 10862 . . . . . . . . . 10 (((𝜑𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) → ((𝐺𝑧)↑(𝑑 + 1)) ∈ ℂ)
144140, 143mulcld 8135 . . . . . . . . 9 (((𝜑𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) → ((𝐴‘(𝑑 + 1)) · ((𝐺𝑧)↑(𝑑 + 1))) ∈ ℂ)
145 eqidd 2210 . . . . . . . . 9 ((𝜑𝑑 ∈ ℕ0) → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝐴𝑘) · ((𝐺𝑧)↑𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝐴𝑘) · ((𝐺𝑧)↑𝑘))))
146 fconstmpt 4743 . . . . . . . . . . 11 (ℂ × {(𝐴‘(𝑑 + 1))}) = (𝑧 ∈ ℂ ↦ (𝐴‘(𝑑 + 1)))
147146a1i 9 . . . . . . . . . 10 ((𝜑𝑑 ∈ ℕ0) → (ℂ × {(𝐴‘(𝑑 + 1))}) = (𝑧 ∈ ℂ ↦ (𝐴‘(𝑑 + 1))))
148 eqidd 2210 . . . . . . . . . 10 ((𝜑𝑑 ∈ ℕ0) → (𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑(𝑑 + 1))) = (𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑(𝑑 + 1))))
149120, 139, 143, 147, 148offval2 6204 . . . . . . . . 9 ((𝜑𝑑 ∈ ℕ0) → ((ℂ × {(𝐴‘(𝑑 + 1))}) ∘𝑓 · (𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑(𝑑 + 1)))) = (𝑧 ∈ ℂ ↦ ((𝐴‘(𝑑 + 1)) · ((𝐺𝑧)↑(𝑑 + 1)))))
150120, 137, 144, 145, 149offval2 6204 . . . . . . . 8 ((𝜑𝑑 ∈ ℕ0) → ((𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝐴𝑘) · ((𝐺𝑧)↑𝑘))) ∘𝑓 + ((ℂ × {(𝐴‘(𝑑 + 1))}) ∘𝑓 · (𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑(𝑑 + 1))))) = (𝑧 ∈ ℂ ↦ (Σ𝑘 ∈ (0...𝑑)((𝐴𝑘) · ((𝐺𝑧)↑𝑘)) + ((𝐴‘(𝑑 + 1)) · ((𝐺𝑧)↑(𝑑 + 1))))))
151 nn0uz 9725 . . . . . . . . . . 11 0 = (ℤ‘0)
152122, 151eleqtrdi 2302 . . . . . . . . . 10 (((𝜑𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) → 𝑑 ∈ (ℤ‘0))
153138adantr 276 . . . . . . . . . . . 12 ((((𝜑𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...(𝑑 + 1))) → (𝑆 ∪ {0}) ⊆ ℂ)
15435ad3antrrr 492 . . . . . . . . . . . . 13 ((((𝜑𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...(𝑑 + 1))) → 𝐴:ℕ0⟶(𝑆 ∪ {0}))
155 elfznn0 10278 . . . . . . . . . . . . . 14 (𝑘 ∈ (0...(𝑑 + 1)) → 𝑘 ∈ ℕ0)
156155adantl 277 . . . . . . . . . . . . 13 ((((𝜑𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...(𝑑 + 1))) → 𝑘 ∈ ℕ0)
157154, 156ffvelcdmd 5744 . . . . . . . . . . . 12 ((((𝜑𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...(𝑑 + 1))) → (𝐴𝑘) ∈ (𝑆 ∪ {0}))
158153, 157sseldd 3205 . . . . . . . . . . 11 ((((𝜑𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...(𝑑 + 1))) → (𝐴𝑘) ∈ ℂ)
159141adantr 276 . . . . . . . . . . . 12 ((((𝜑𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...(𝑑 + 1))) → (𝐺𝑧) ∈ ℂ)
160159, 156expcld 10862 . . . . . . . . . . 11 ((((𝜑𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...(𝑑 + 1))) → ((𝐺𝑧)↑𝑘) ∈ ℂ)
161158, 160mulcld 8135 . . . . . . . . . 10 ((((𝜑𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...(𝑑 + 1))) → ((𝐴𝑘) · ((𝐺𝑧)↑𝑘)) ∈ ℂ)
162 fveq2 5603 . . . . . . . . . . 11 (𝑘 = (𝑑 + 1) → (𝐴𝑘) = (𝐴‘(𝑑 + 1)))
163 oveq2 5982 . . . . . . . . . . 11 (𝑘 = (𝑑 + 1) → ((𝐺𝑧)↑𝑘) = ((𝐺𝑧)↑(𝑑 + 1)))
164162, 163oveq12d 5992 . . . . . . . . . 10 (𝑘 = (𝑑 + 1) → ((𝐴𝑘) · ((𝐺𝑧)↑𝑘)) = ((𝐴‘(𝑑 + 1)) · ((𝐺𝑧)↑(𝑑 + 1))))
165152, 161, 164fsump1 11897 . . . . . . . . 9 (((𝜑𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) → Σ𝑘 ∈ (0...(𝑑 + 1))((𝐴𝑘) · ((𝐺𝑧)↑𝑘)) = (Σ𝑘 ∈ (0...𝑑)((𝐴𝑘) · ((𝐺𝑧)↑𝑘)) + ((𝐴‘(𝑑 + 1)) · ((𝐺𝑧)↑(𝑑 + 1)))))
166165mpteq2dva 4153 . . . . . . . 8 ((𝜑𝑑 ∈ ℕ0) → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(𝑑 + 1))((𝐴𝑘) · ((𝐺𝑧)↑𝑘))) = (𝑧 ∈ ℂ ↦ (Σ𝑘 ∈ (0...𝑑)((𝐴𝑘) · ((𝐺𝑧)↑𝑘)) + ((𝐴‘(𝑑 + 1)) · ((𝐺𝑧)↑(𝑑 + 1))))))
167150, 166eqtr4d 2245 . . . . . . 7 ((𝜑𝑑 ∈ ℕ0) → ((𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝐴𝑘) · ((𝐺𝑧)↑𝑘))) ∘𝑓 + ((ℂ × {(𝐴‘(𝑑 + 1))}) ∘𝑓 · (𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑(𝑑 + 1))))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(𝑑 + 1))((𝐴𝑘) · ((𝐺𝑧)↑𝑘))))
168167eleq1d 2278 . . . . . 6 ((𝜑𝑑 ∈ ℕ0) → (((𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝐴𝑘) · ((𝐺𝑧)↑𝑘))) ∘𝑓 + ((ℂ × {(𝐴‘(𝑑 + 1))}) ∘𝑓 · (𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑(𝑑 + 1))))) ∈ (Poly‘𝑆) ↔ (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(𝑑 + 1))((𝐴𝑘) · ((𝐺𝑧)↑𝑘))) ∈ (Poly‘𝑆)))
169119, 168sylibd 149 . . . . 5 ((𝜑𝑑 ∈ ℕ0) → ((𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝐴𝑘) · ((𝐺𝑧)↑𝑘))) ∈ (Poly‘𝑆) → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(𝑑 + 1))((𝐴𝑘) · ((𝐺𝑧)↑𝑘))) ∈ (Poly‘𝑆)))
170169expcom 116 . . . 4 (𝑑 ∈ ℕ0 → (𝜑 → ((𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝐴𝑘) · ((𝐺𝑧)↑𝑘))) ∈ (Poly‘𝑆) → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(𝑑 + 1))((𝐴𝑘) · ((𝐺𝑧)↑𝑘))) ∈ (Poly‘𝑆))))
171170a2d 26 . . 3 (𝑑 ∈ ℕ0 → ((𝜑 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝐴𝑘) · ((𝐺𝑧)↑𝑘))) ∈ (Poly‘𝑆)) → (𝜑 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(𝑑 + 1))((𝐴𝑘) · ((𝐺𝑧)↑𝑘))) ∈ (Poly‘𝑆))))
1726, 11, 16, 21, 57, 171nn0ind 9529 . 2 (𝑁 ∈ ℕ0 → (𝜑 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · ((𝐺𝑧)↑𝑘))) ∈ (Poly‘𝑆)))
1731, 172mpcom 36 1 (𝜑 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · ((𝐺𝑧)↑𝑘))) ∈ (Poly‘𝑆))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1375  wcel 2180  Vcvv 2779  cun 3175  wss 3177  {csn 3646  cmpt 4124   × cxp 4694  cima 4699  wf 5290  cfv 5294  (class class class)co 5974  𝑓 cof 6186  cc 7965  0cc0 7967  1c1 7968   + caddc 7970   · cmul 7972  cn 9078  0cn0 9337  cz 9414  cuz 9690  ...cfz 10172  cexp 10727  Σcsu 11830  Polycply 15367
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-coll 4178  ax-sep 4181  ax-nul 4189  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-iinf 4657  ax-cnex 8058  ax-resscn 8059  ax-1cn 8060  ax-1re 8061  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-mulrcl 8066  ax-addcom 8067  ax-mulcom 8068  ax-addass 8069  ax-mulass 8070  ax-distr 8071  ax-i2m1 8072  ax-0lt1 8073  ax-1rid 8074  ax-0id 8075  ax-rnegex 8076  ax-precex 8077  ax-cnre 8078  ax-pre-ltirr 8079  ax-pre-ltwlin 8080  ax-pre-lttrn 8081  ax-pre-apti 8082  ax-pre-ltadd 8083  ax-pre-mulgt0 8084  ax-pre-mulext 8085  ax-arch 8086  ax-caucvg 8087
This theorem depends on definitions:  df-bi 117  df-dc 839  df-3or 984  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-nel 2476  df-ral 2493  df-rex 2494  df-reu 2495  df-rmo 2496  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-nul 3472  df-if 3583  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-disj 4039  df-br 4063  df-opab 4125  df-mpt 4126  df-tr 4162  df-id 4361  df-po 4364  df-iso 4365  df-iord 4434  df-on 4436  df-ilim 4437  df-suc 4439  df-iom 4660  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-isom 5303  df-riota 5927  df-ov 5977  df-oprab 5978  df-mpo 5979  df-of 6188  df-1st 6256  df-2nd 6257  df-recs 6421  df-irdg 6486  df-frec 6507  df-1o 6532  df-oadd 6536  df-er 6650  df-map 6767  df-en 6858  df-dom 6859  df-fin 6860  df-sup 7119  df-pnf 8151  df-mnf 8152  df-xr 8153  df-ltxr 8154  df-le 8155  df-sub 8287  df-neg 8288  df-reap 8690  df-ap 8697  df-div 8788  df-inn 9079  df-2 9137  df-3 9138  df-4 9139  df-n0 9338  df-z 9415  df-uz 9691  df-q 9783  df-rp 9818  df-fz 10173  df-fzo 10307  df-seqfrec 10637  df-exp 10728  df-ihash 10965  df-cj 11319  df-re 11320  df-im 11321  df-rsqrt 11475  df-abs 11476  df-clim 11756  df-sumdc 11831  df-ply 15369
This theorem is referenced by:  plyco  15398
  Copyright terms: Public domain W3C validator