Step | Hyp | Ref
| Expression |
1 | | plycolemc.n |
. 2
⊢ (𝜑 → 𝑁 ∈
ℕ0) |
2 | | oveq2 5927 |
. . . . . . 7
⊢ (𝑤 = 0 → (0...𝑤) = (0...0)) |
3 | 2 | sumeq1d 11512 |
. . . . . 6
⊢ (𝑤 = 0 → Σ𝑘 ∈ (0...𝑤)((𝐴‘𝑘) · ((𝐺‘𝑧)↑𝑘)) = Σ𝑘 ∈ (0...0)((𝐴‘𝑘) · ((𝐺‘𝑧)↑𝑘))) |
4 | 3 | mpteq2dv 4121 |
. . . . 5
⊢ (𝑤 = 0 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑤)((𝐴‘𝑘) · ((𝐺‘𝑧)↑𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...0)((𝐴‘𝑘) · ((𝐺‘𝑧)↑𝑘)))) |
5 | 4 | eleq1d 2262 |
. . . 4
⊢ (𝑤 = 0 → ((𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑤)((𝐴‘𝑘) · ((𝐺‘𝑧)↑𝑘))) ∈ (Poly‘𝑆) ↔ (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...0)((𝐴‘𝑘) · ((𝐺‘𝑧)↑𝑘))) ∈ (Poly‘𝑆))) |
6 | 5 | imbi2d 230 |
. . 3
⊢ (𝑤 = 0 → ((𝜑 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑤)((𝐴‘𝑘) · ((𝐺‘𝑧)↑𝑘))) ∈ (Poly‘𝑆)) ↔ (𝜑 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...0)((𝐴‘𝑘) · ((𝐺‘𝑧)↑𝑘))) ∈ (Poly‘𝑆)))) |
7 | | oveq2 5927 |
. . . . . . 7
⊢ (𝑤 = 𝑑 → (0...𝑤) = (0...𝑑)) |
8 | 7 | sumeq1d 11512 |
. . . . . 6
⊢ (𝑤 = 𝑑 → Σ𝑘 ∈ (0...𝑤)((𝐴‘𝑘) · ((𝐺‘𝑧)↑𝑘)) = Σ𝑘 ∈ (0...𝑑)((𝐴‘𝑘) · ((𝐺‘𝑧)↑𝑘))) |
9 | 8 | mpteq2dv 4121 |
. . . . 5
⊢ (𝑤 = 𝑑 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑤)((𝐴‘𝑘) · ((𝐺‘𝑧)↑𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝐴‘𝑘) · ((𝐺‘𝑧)↑𝑘)))) |
10 | 9 | eleq1d 2262 |
. . . 4
⊢ (𝑤 = 𝑑 → ((𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑤)((𝐴‘𝑘) · ((𝐺‘𝑧)↑𝑘))) ∈ (Poly‘𝑆) ↔ (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝐴‘𝑘) · ((𝐺‘𝑧)↑𝑘))) ∈ (Poly‘𝑆))) |
11 | 10 | imbi2d 230 |
. . 3
⊢ (𝑤 = 𝑑 → ((𝜑 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑤)((𝐴‘𝑘) · ((𝐺‘𝑧)↑𝑘))) ∈ (Poly‘𝑆)) ↔ (𝜑 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝐴‘𝑘) · ((𝐺‘𝑧)↑𝑘))) ∈ (Poly‘𝑆)))) |
12 | | oveq2 5927 |
. . . . . . 7
⊢ (𝑤 = (𝑑 + 1) → (0...𝑤) = (0...(𝑑 + 1))) |
13 | 12 | sumeq1d 11512 |
. . . . . 6
⊢ (𝑤 = (𝑑 + 1) → Σ𝑘 ∈ (0...𝑤)((𝐴‘𝑘) · ((𝐺‘𝑧)↑𝑘)) = Σ𝑘 ∈ (0...(𝑑 + 1))((𝐴‘𝑘) · ((𝐺‘𝑧)↑𝑘))) |
14 | 13 | mpteq2dv 4121 |
. . . . 5
⊢ (𝑤 = (𝑑 + 1) → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑤)((𝐴‘𝑘) · ((𝐺‘𝑧)↑𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(𝑑 + 1))((𝐴‘𝑘) · ((𝐺‘𝑧)↑𝑘)))) |
15 | 14 | eleq1d 2262 |
. . . 4
⊢ (𝑤 = (𝑑 + 1) → ((𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑤)((𝐴‘𝑘) · ((𝐺‘𝑧)↑𝑘))) ∈ (Poly‘𝑆) ↔ (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(𝑑 + 1))((𝐴‘𝑘) · ((𝐺‘𝑧)↑𝑘))) ∈ (Poly‘𝑆))) |
16 | 15 | imbi2d 230 |
. . 3
⊢ (𝑤 = (𝑑 + 1) → ((𝜑 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑤)((𝐴‘𝑘) · ((𝐺‘𝑧)↑𝑘))) ∈ (Poly‘𝑆)) ↔ (𝜑 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(𝑑 + 1))((𝐴‘𝑘) · ((𝐺‘𝑧)↑𝑘))) ∈ (Poly‘𝑆)))) |
17 | | oveq2 5927 |
. . . . . . 7
⊢ (𝑤 = 𝑁 → (0...𝑤) = (0...𝑁)) |
18 | 17 | sumeq1d 11512 |
. . . . . 6
⊢ (𝑤 = 𝑁 → Σ𝑘 ∈ (0...𝑤)((𝐴‘𝑘) · ((𝐺‘𝑧)↑𝑘)) = Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · ((𝐺‘𝑧)↑𝑘))) |
19 | 18 | mpteq2dv 4121 |
. . . . 5
⊢ (𝑤 = 𝑁 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑤)((𝐴‘𝑘) · ((𝐺‘𝑧)↑𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · ((𝐺‘𝑧)↑𝑘)))) |
20 | 19 | eleq1d 2262 |
. . . 4
⊢ (𝑤 = 𝑁 → ((𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑤)((𝐴‘𝑘) · ((𝐺‘𝑧)↑𝑘))) ∈ (Poly‘𝑆) ↔ (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · ((𝐺‘𝑧)↑𝑘))) ∈ (Poly‘𝑆))) |
21 | 20 | imbi2d 230 |
. . 3
⊢ (𝑤 = 𝑁 → ((𝜑 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑤)((𝐴‘𝑘) · ((𝐺‘𝑧)↑𝑘))) ∈ (Poly‘𝑆)) ↔ (𝜑 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · ((𝐺‘𝑧)↑𝑘))) ∈ (Poly‘𝑆)))) |
22 | | 0z 9331 |
. . . . . . . 8
⊢ 0 ∈
ℤ |
23 | | plyco.2 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐺 ∈ (Poly‘𝑆)) |
24 | | plyf 14908 |
. . . . . . . . . . . . . 14
⊢ (𝐺 ∈ (Poly‘𝑆) → 𝐺:ℂ⟶ℂ) |
25 | 23, 24 | syl 14 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐺:ℂ⟶ℂ) |
26 | 25 | ffvelcdmda 5694 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → (𝐺‘𝑧) ∈ ℂ) |
27 | 26 | exp0d 10741 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → ((𝐺‘𝑧)↑0) = 1) |
28 | 27 | oveq2d 5935 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → ((𝐴‘0) · ((𝐺‘𝑧)↑0)) = ((𝐴‘0) · 1)) |
29 | | plyco.1 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) |
30 | | plybss 14904 |
. . . . . . . . . . . . . . 15
⊢ (𝐹 ∈ (Poly‘𝑆) → 𝑆 ⊆ ℂ) |
31 | 29, 30 | syl 14 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑆 ⊆ ℂ) |
32 | | 0cnd 8014 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 0 ∈
ℂ) |
33 | 32 | snssd 3764 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → {0} ⊆
ℂ) |
34 | 31, 33 | unssd 3336 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑆 ∪ {0}) ⊆
ℂ) |
35 | | plycolemc.a |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐴:ℕ0⟶(𝑆 ∪ {0})) |
36 | | 0nn0 9258 |
. . . . . . . . . . . . . . 15
⊢ 0 ∈
ℕ0 |
37 | 36 | a1i 9 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 0 ∈
ℕ0) |
38 | 35, 37 | ffvelcdmd 5695 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐴‘0) ∈ (𝑆 ∪ {0})) |
39 | 34, 38 | sseldd 3181 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐴‘0) ∈ ℂ) |
40 | 39 | adantr 276 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → (𝐴‘0) ∈ ℂ) |
41 | 40 | mulridd 8038 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → ((𝐴‘0) · 1) = (𝐴‘0)) |
42 | 28, 41 | eqtrd 2226 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → ((𝐴‘0) · ((𝐺‘𝑧)↑0)) = (𝐴‘0)) |
43 | 42, 40 | eqeltrd 2270 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → ((𝐴‘0) · ((𝐺‘𝑧)↑0)) ∈ ℂ) |
44 | | fveq2 5555 |
. . . . . . . . . 10
⊢ (𝑘 = 0 → (𝐴‘𝑘) = (𝐴‘0)) |
45 | | oveq2 5927 |
. . . . . . . . . 10
⊢ (𝑘 = 0 → ((𝐺‘𝑧)↑𝑘) = ((𝐺‘𝑧)↑0)) |
46 | 44, 45 | oveq12d 5937 |
. . . . . . . . 9
⊢ (𝑘 = 0 → ((𝐴‘𝑘) · ((𝐺‘𝑧)↑𝑘)) = ((𝐴‘0) · ((𝐺‘𝑧)↑0))) |
47 | 46 | fsum1 11558 |
. . . . . . . 8
⊢ ((0
∈ ℤ ∧ ((𝐴‘0) · ((𝐺‘𝑧)↑0)) ∈ ℂ) →
Σ𝑘 ∈
(0...0)((𝐴‘𝑘) · ((𝐺‘𝑧)↑𝑘)) = ((𝐴‘0) · ((𝐺‘𝑧)↑0))) |
48 | 22, 43, 47 | sylancr 414 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → Σ𝑘 ∈ (0...0)((𝐴‘𝑘) · ((𝐺‘𝑧)↑𝑘)) = ((𝐴‘0) · ((𝐺‘𝑧)↑0))) |
49 | 48, 42 | eqtrd 2226 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → Σ𝑘 ∈ (0...0)((𝐴‘𝑘) · ((𝐺‘𝑧)↑𝑘)) = (𝐴‘0)) |
50 | 49 | mpteq2dva 4120 |
. . . . 5
⊢ (𝜑 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...0)((𝐴‘𝑘) · ((𝐺‘𝑧)↑𝑘))) = (𝑧 ∈ ℂ ↦ (𝐴‘0))) |
51 | | fconstmpt 4707 |
. . . . 5
⊢ (ℂ
× {(𝐴‘0)}) =
(𝑧 ∈ ℂ ↦
(𝐴‘0)) |
52 | 50, 51 | eqtr4di 2244 |
. . . 4
⊢ (𝜑 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...0)((𝐴‘𝑘) · ((𝐺‘𝑧)↑𝑘))) = (ℂ × {(𝐴‘0)})) |
53 | | plyconst 14916 |
. . . . . 6
⊢ (((𝑆 ∪ {0}) ⊆ ℂ
∧ (𝐴‘0) ∈
(𝑆 ∪ {0})) →
(ℂ × {(𝐴‘0)}) ∈ (Poly‘(𝑆 ∪ {0}))) |
54 | 34, 38, 53 | syl2anc 411 |
. . . . 5
⊢ (𝜑 → (ℂ × {(𝐴‘0)}) ∈
(Poly‘(𝑆 ∪
{0}))) |
55 | | plyun0 14907 |
. . . . 5
⊢
(Poly‘(𝑆 ∪
{0})) = (Poly‘𝑆) |
56 | 54, 55 | eleqtrdi 2286 |
. . . 4
⊢ (𝜑 → (ℂ × {(𝐴‘0)}) ∈
(Poly‘𝑆)) |
57 | 52, 56 | eqeltrd 2270 |
. . 3
⊢ (𝜑 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...0)((𝐴‘𝑘) · ((𝐺‘𝑧)↑𝑘))) ∈ (Poly‘𝑆)) |
58 | | simprr 531 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑑 ∈ ℕ0 ∧ (𝑧 ∈ ℂ ↦
Σ𝑘 ∈ (0...𝑑)((𝐴‘𝑘) · ((𝐺‘𝑧)↑𝑘))) ∈ (Poly‘𝑆))) → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝐴‘𝑘) · ((𝐺‘𝑧)↑𝑘))) ∈ (Poly‘𝑆)) |
59 | 34 | adantr 276 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑑 ∈ ℕ0) → (𝑆 ∪ {0}) ⊆
ℂ) |
60 | | peano2nn0 9283 |
. . . . . . . . . . . . 13
⊢ (𝑑 ∈ ℕ0
→ (𝑑 + 1) ∈
ℕ0) |
61 | | ffvelcdm 5692 |
. . . . . . . . . . . . 13
⊢ ((𝐴:ℕ0⟶(𝑆 ∪ {0}) ∧ (𝑑 + 1) ∈
ℕ0) → (𝐴‘(𝑑 + 1)) ∈ (𝑆 ∪ {0})) |
62 | 35, 60, 61 | syl2an 289 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑑 ∈ ℕ0) → (𝐴‘(𝑑 + 1)) ∈ (𝑆 ∪ {0})) |
63 | | plyconst 14916 |
. . . . . . . . . . . 12
⊢ (((𝑆 ∪ {0}) ⊆ ℂ
∧ (𝐴‘(𝑑 + 1)) ∈ (𝑆 ∪ {0})) → (ℂ × {(𝐴‘(𝑑 + 1))}) ∈ (Poly‘(𝑆 ∪ {0}))) |
64 | 59, 62, 63 | syl2anc 411 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑑 ∈ ℕ0) → (ℂ
× {(𝐴‘(𝑑 + 1))}) ∈
(Poly‘(𝑆 ∪
{0}))) |
65 | 64, 55 | eleqtrdi 2286 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑑 ∈ ℕ0) → (ℂ
× {(𝐴‘(𝑑 + 1))}) ∈
(Poly‘𝑆)) |
66 | | nn0p1nn 9282 |
. . . . . . . . . . . 12
⊢ (𝑑 ∈ ℕ0
→ (𝑑 + 1) ∈
ℕ) |
67 | | oveq2 5927 |
. . . . . . . . . . . . . . . 16
⊢ (𝑤 = 1 → ((𝐺‘𝑧)↑𝑤) = ((𝐺‘𝑧)↑1)) |
68 | 67 | mpteq2dv 4121 |
. . . . . . . . . . . . . . 15
⊢ (𝑤 = 1 → (𝑧 ∈ ℂ ↦ ((𝐺‘𝑧)↑𝑤)) = (𝑧 ∈ ℂ ↦ ((𝐺‘𝑧)↑1))) |
69 | 68 | eleq1d 2262 |
. . . . . . . . . . . . . 14
⊢ (𝑤 = 1 → ((𝑧 ∈ ℂ ↦ ((𝐺‘𝑧)↑𝑤)) ∈ (Poly‘𝑆) ↔ (𝑧 ∈ ℂ ↦ ((𝐺‘𝑧)↑1)) ∈ (Poly‘𝑆))) |
70 | 69 | imbi2d 230 |
. . . . . . . . . . . . 13
⊢ (𝑤 = 1 → ((𝜑 → (𝑧 ∈ ℂ ↦ ((𝐺‘𝑧)↑𝑤)) ∈ (Poly‘𝑆)) ↔ (𝜑 → (𝑧 ∈ ℂ ↦ ((𝐺‘𝑧)↑1)) ∈ (Poly‘𝑆)))) |
71 | | oveq2 5927 |
. . . . . . . . . . . . . . . 16
⊢ (𝑤 = 𝑑 → ((𝐺‘𝑧)↑𝑤) = ((𝐺‘𝑧)↑𝑑)) |
72 | 71 | mpteq2dv 4121 |
. . . . . . . . . . . . . . 15
⊢ (𝑤 = 𝑑 → (𝑧 ∈ ℂ ↦ ((𝐺‘𝑧)↑𝑤)) = (𝑧 ∈ ℂ ↦ ((𝐺‘𝑧)↑𝑑))) |
73 | 72 | eleq1d 2262 |
. . . . . . . . . . . . . 14
⊢ (𝑤 = 𝑑 → ((𝑧 ∈ ℂ ↦ ((𝐺‘𝑧)↑𝑤)) ∈ (Poly‘𝑆) ↔ (𝑧 ∈ ℂ ↦ ((𝐺‘𝑧)↑𝑑)) ∈ (Poly‘𝑆))) |
74 | 73 | imbi2d 230 |
. . . . . . . . . . . . 13
⊢ (𝑤 = 𝑑 → ((𝜑 → (𝑧 ∈ ℂ ↦ ((𝐺‘𝑧)↑𝑤)) ∈ (Poly‘𝑆)) ↔ (𝜑 → (𝑧 ∈ ℂ ↦ ((𝐺‘𝑧)↑𝑑)) ∈ (Poly‘𝑆)))) |
75 | | oveq2 5927 |
. . . . . . . . . . . . . . . 16
⊢ (𝑤 = (𝑑 + 1) → ((𝐺‘𝑧)↑𝑤) = ((𝐺‘𝑧)↑(𝑑 + 1))) |
76 | 75 | mpteq2dv 4121 |
. . . . . . . . . . . . . . 15
⊢ (𝑤 = (𝑑 + 1) → (𝑧 ∈ ℂ ↦ ((𝐺‘𝑧)↑𝑤)) = (𝑧 ∈ ℂ ↦ ((𝐺‘𝑧)↑(𝑑 + 1)))) |
77 | 76 | eleq1d 2262 |
. . . . . . . . . . . . . 14
⊢ (𝑤 = (𝑑 + 1) → ((𝑧 ∈ ℂ ↦ ((𝐺‘𝑧)↑𝑤)) ∈ (Poly‘𝑆) ↔ (𝑧 ∈ ℂ ↦ ((𝐺‘𝑧)↑(𝑑 + 1))) ∈ (Poly‘𝑆))) |
78 | 77 | imbi2d 230 |
. . . . . . . . . . . . 13
⊢ (𝑤 = (𝑑 + 1) → ((𝜑 → (𝑧 ∈ ℂ ↦ ((𝐺‘𝑧)↑𝑤)) ∈ (Poly‘𝑆)) ↔ (𝜑 → (𝑧 ∈ ℂ ↦ ((𝐺‘𝑧)↑(𝑑 + 1))) ∈ (Poly‘𝑆)))) |
79 | 26 | exp1d 10742 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → ((𝐺‘𝑧)↑1) = (𝐺‘𝑧)) |
80 | 79 | mpteq2dva 4120 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑧 ∈ ℂ ↦ ((𝐺‘𝑧)↑1)) = (𝑧 ∈ ℂ ↦ (𝐺‘𝑧))) |
81 | 25 | feqmptd 5611 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐺 = (𝑧 ∈ ℂ ↦ (𝐺‘𝑧))) |
82 | 80, 81 | eqtr4d 2229 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑧 ∈ ℂ ↦ ((𝐺‘𝑧)↑1)) = 𝐺) |
83 | 82, 23 | eqeltrd 2270 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑧 ∈ ℂ ↦ ((𝐺‘𝑧)↑1)) ∈ (Poly‘𝑆)) |
84 | | simprr 531 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑑 ∈ ℕ ∧ (𝑧 ∈ ℂ ↦ ((𝐺‘𝑧)↑𝑑)) ∈ (Poly‘𝑆))) → (𝑧 ∈ ℂ ↦ ((𝐺‘𝑧)↑𝑑)) ∈ (Poly‘𝑆)) |
85 | 23 | adantr 276 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑑 ∈ ℕ ∧ (𝑧 ∈ ℂ ↦ ((𝐺‘𝑧)↑𝑑)) ∈ (Poly‘𝑆))) → 𝐺 ∈ (Poly‘𝑆)) |
86 | | plyco.3 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) |
87 | 86 | adantlr 477 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ (𝑑 ∈ ℕ ∧ (𝑧 ∈ ℂ ↦ ((𝐺‘𝑧)↑𝑑)) ∈ (Poly‘𝑆))) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) |
88 | | plyco.4 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 · 𝑦) ∈ 𝑆) |
89 | 88 | adantlr 477 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ (𝑑 ∈ ℕ ∧ (𝑧 ∈ ℂ ↦ ((𝐺‘𝑧)↑𝑑)) ∈ (Poly‘𝑆))) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 · 𝑦) ∈ 𝑆) |
90 | 84, 85, 87, 89 | plymul 14923 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑑 ∈ ℕ ∧ (𝑧 ∈ ℂ ↦ ((𝐺‘𝑧)↑𝑑)) ∈ (Poly‘𝑆))) → ((𝑧 ∈ ℂ ↦ ((𝐺‘𝑧)↑𝑑)) ∘𝑓 · 𝐺) ∈ (Poly‘𝑆)) |
91 | 90 | expr 375 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑑 ∈ ℕ) → ((𝑧 ∈ ℂ ↦ ((𝐺‘𝑧)↑𝑑)) ∈ (Poly‘𝑆) → ((𝑧 ∈ ℂ ↦ ((𝐺‘𝑧)↑𝑑)) ∘𝑓 · 𝐺) ∈ (Poly‘𝑆))) |
92 | | cnex 7998 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ℂ
∈ V |
93 | 92 | a1i 9 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑑 ∈ ℕ) → ℂ ∈
V) |
94 | 26 | adantlr 477 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑑 ∈ ℕ) ∧ 𝑧 ∈ ℂ) → (𝐺‘𝑧) ∈ ℂ) |
95 | | nnnn0 9250 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑑 ∈ ℕ → 𝑑 ∈
ℕ0) |
96 | 95 | ad2antlr 489 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑑 ∈ ℕ) ∧ 𝑧 ∈ ℂ) → 𝑑 ∈ ℕ0) |
97 | 94, 96 | expcld 10747 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑑 ∈ ℕ) ∧ 𝑧 ∈ ℂ) → ((𝐺‘𝑧)↑𝑑) ∈ ℂ) |
98 | 25 | adantr 276 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑑 ∈ ℕ) → 𝐺:ℂ⟶ℂ) |
99 | 98 | ffvelcdmda 5694 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑑 ∈ ℕ) ∧ 𝑧 ∈ ℂ) → (𝐺‘𝑧) ∈ ℂ) |
100 | | eqidd 2194 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑑 ∈ ℕ) → (𝑧 ∈ ℂ ↦ ((𝐺‘𝑧)↑𝑑)) = (𝑧 ∈ ℂ ↦ ((𝐺‘𝑧)↑𝑑))) |
101 | 81 | adantr 276 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑑 ∈ ℕ) → 𝐺 = (𝑧 ∈ ℂ ↦ (𝐺‘𝑧))) |
102 | 93, 97, 99, 100, 101 | offval2 6148 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑑 ∈ ℕ) → ((𝑧 ∈ ℂ ↦ ((𝐺‘𝑧)↑𝑑)) ∘𝑓 · 𝐺) = (𝑧 ∈ ℂ ↦ (((𝐺‘𝑧)↑𝑑) · (𝐺‘𝑧)))) |
103 | 94, 96 | expp1d 10748 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑑 ∈ ℕ) ∧ 𝑧 ∈ ℂ) → ((𝐺‘𝑧)↑(𝑑 + 1)) = (((𝐺‘𝑧)↑𝑑) · (𝐺‘𝑧))) |
104 | 103 | mpteq2dva 4120 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑑 ∈ ℕ) → (𝑧 ∈ ℂ ↦ ((𝐺‘𝑧)↑(𝑑 + 1))) = (𝑧 ∈ ℂ ↦ (((𝐺‘𝑧)↑𝑑) · (𝐺‘𝑧)))) |
105 | 102, 104 | eqtr4d 2229 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑑 ∈ ℕ) → ((𝑧 ∈ ℂ ↦ ((𝐺‘𝑧)↑𝑑)) ∘𝑓 · 𝐺) = (𝑧 ∈ ℂ ↦ ((𝐺‘𝑧)↑(𝑑 + 1)))) |
106 | 105 | eleq1d 2262 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑑 ∈ ℕ) → (((𝑧 ∈ ℂ ↦ ((𝐺‘𝑧)↑𝑑)) ∘𝑓 · 𝐺) ∈ (Poly‘𝑆) ↔ (𝑧 ∈ ℂ ↦ ((𝐺‘𝑧)↑(𝑑 + 1))) ∈ (Poly‘𝑆))) |
107 | 91, 106 | sylibd 149 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑑 ∈ ℕ) → ((𝑧 ∈ ℂ ↦ ((𝐺‘𝑧)↑𝑑)) ∈ (Poly‘𝑆) → (𝑧 ∈ ℂ ↦ ((𝐺‘𝑧)↑(𝑑 + 1))) ∈ (Poly‘𝑆))) |
108 | 107 | expcom 116 |
. . . . . . . . . . . . . 14
⊢ (𝑑 ∈ ℕ → (𝜑 → ((𝑧 ∈ ℂ ↦ ((𝐺‘𝑧)↑𝑑)) ∈ (Poly‘𝑆) → (𝑧 ∈ ℂ ↦ ((𝐺‘𝑧)↑(𝑑 + 1))) ∈ (Poly‘𝑆)))) |
109 | 108 | a2d 26 |
. . . . . . . . . . . . 13
⊢ (𝑑 ∈ ℕ → ((𝜑 → (𝑧 ∈ ℂ ↦ ((𝐺‘𝑧)↑𝑑)) ∈ (Poly‘𝑆)) → (𝜑 → (𝑧 ∈ ℂ ↦ ((𝐺‘𝑧)↑(𝑑 + 1))) ∈ (Poly‘𝑆)))) |
110 | 70, 74, 78, 78, 83, 109 | nnind 9000 |
. . . . . . . . . . . 12
⊢ ((𝑑 + 1) ∈ ℕ →
(𝜑 → (𝑧 ∈ ℂ ↦ ((𝐺‘𝑧)↑(𝑑 + 1))) ∈ (Poly‘𝑆))) |
111 | 66, 110 | syl 14 |
. . . . . . . . . . 11
⊢ (𝑑 ∈ ℕ0
→ (𝜑 → (𝑧 ∈ ℂ ↦ ((𝐺‘𝑧)↑(𝑑 + 1))) ∈ (Poly‘𝑆))) |
112 | 111 | impcom 125 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑑 ∈ ℕ0) → (𝑧 ∈ ℂ ↦ ((𝐺‘𝑧)↑(𝑑 + 1))) ∈ (Poly‘𝑆)) |
113 | 86 | adantlr 477 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑑 ∈ ℕ0) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) |
114 | 88 | adantlr 477 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑑 ∈ ℕ0) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 · 𝑦) ∈ 𝑆) |
115 | 65, 112, 113, 114 | plymul 14923 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑑 ∈ ℕ0) → ((ℂ
× {(𝐴‘(𝑑 + 1))})
∘𝑓 · (𝑧 ∈ ℂ ↦ ((𝐺‘𝑧)↑(𝑑 + 1)))) ∈ (Poly‘𝑆)) |
116 | 115 | adantrr 479 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑑 ∈ ℕ0 ∧ (𝑧 ∈ ℂ ↦
Σ𝑘 ∈ (0...𝑑)((𝐴‘𝑘) · ((𝐺‘𝑧)↑𝑘))) ∈ (Poly‘𝑆))) → ((ℂ × {(𝐴‘(𝑑 + 1))}) ∘𝑓 ·
(𝑧 ∈ ℂ ↦
((𝐺‘𝑧)↑(𝑑 + 1)))) ∈ (Poly‘𝑆)) |
117 | 86 | adantlr 477 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑑 ∈ ℕ0 ∧ (𝑧 ∈ ℂ ↦
Σ𝑘 ∈ (0...𝑑)((𝐴‘𝑘) · ((𝐺‘𝑧)↑𝑘))) ∈ (Poly‘𝑆))) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) |
118 | 58, 116, 117 | plyadd 14922 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑑 ∈ ℕ0 ∧ (𝑧 ∈ ℂ ↦
Σ𝑘 ∈ (0...𝑑)((𝐴‘𝑘) · ((𝐺‘𝑧)↑𝑘))) ∈ (Poly‘𝑆))) → ((𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝐴‘𝑘) · ((𝐺‘𝑧)↑𝑘))) ∘𝑓 + ((ℂ
× {(𝐴‘(𝑑 + 1))})
∘𝑓 · (𝑧 ∈ ℂ ↦ ((𝐺‘𝑧)↑(𝑑 + 1))))) ∈ (Poly‘𝑆)) |
119 | 118 | expr 375 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑑 ∈ ℕ0) → ((𝑧 ∈ ℂ ↦
Σ𝑘 ∈ (0...𝑑)((𝐴‘𝑘) · ((𝐺‘𝑧)↑𝑘))) ∈ (Poly‘𝑆) → ((𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝐴‘𝑘) · ((𝐺‘𝑧)↑𝑘))) ∘𝑓 + ((ℂ
× {(𝐴‘(𝑑 + 1))})
∘𝑓 · (𝑧 ∈ ℂ ↦ ((𝐺‘𝑧)↑(𝑑 + 1))))) ∈ (Poly‘𝑆))) |
120 | 92 | a1i 9 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑑 ∈ ℕ0) → ℂ
∈ V) |
121 | | 0zd 9332 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) → 0 ∈
ℤ) |
122 | | simplr 528 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) → 𝑑 ∈
ℕ0) |
123 | 122 | nn0zd 9440 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) → 𝑑 ∈
ℤ) |
124 | 121, 123 | fzfigd 10505 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) →
(0...𝑑) ∈
Fin) |
125 | 29, 55 | eleqtrrdi 2287 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐹 ∈ (Poly‘(𝑆 ∪ {0}))) |
126 | | plybss 14904 |
. . . . . . . . . . . . . 14
⊢ (𝐹 ∈ (Poly‘(𝑆 ∪ {0})) → (𝑆 ∪ {0}) ⊆
ℂ) |
127 | 125, 126 | syl 14 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑆 ∪ {0}) ⊆
ℂ) |
128 | 127 | ad3antrrr 492 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑑)) → (𝑆 ∪ {0}) ⊆
ℂ) |
129 | 35 | ad3antrrr 492 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑑)) → 𝐴:ℕ0⟶(𝑆 ∪ {0})) |
130 | | elfznn0 10183 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈ (0...𝑑) → 𝑘 ∈ ℕ0) |
131 | 130 | adantl 277 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑑)) → 𝑘 ∈ ℕ0) |
132 | 129, 131 | ffvelcdmd 5695 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑑)) → (𝐴‘𝑘) ∈ (𝑆 ∪ {0})) |
133 | 128, 132 | sseldd 3181 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑑)) → (𝐴‘𝑘) ∈ ℂ) |
134 | 26 | ad4ant13 513 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑑)) → (𝐺‘𝑧) ∈ ℂ) |
135 | 134, 131 | expcld 10747 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑑)) → ((𝐺‘𝑧)↑𝑘) ∈ ℂ) |
136 | 133, 135 | mulcld 8042 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑑)) → ((𝐴‘𝑘) · ((𝐺‘𝑧)↑𝑘)) ∈ ℂ) |
137 | 124, 136 | fsumcl 11546 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) →
Σ𝑘 ∈ (0...𝑑)((𝐴‘𝑘) · ((𝐺‘𝑧)↑𝑘)) ∈ ℂ) |
138 | 127 | ad2antrr 488 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) → (𝑆 ∪ {0}) ⊆
ℂ) |
139 | 62 | adantr 276 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) → (𝐴‘(𝑑 + 1)) ∈ (𝑆 ∪ {0})) |
140 | 138, 139 | sseldd 3181 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) → (𝐴‘(𝑑 + 1)) ∈ ℂ) |
141 | 26 | adantlr 477 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) → (𝐺‘𝑧) ∈ ℂ) |
142 | 60 | ad2antlr 489 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) → (𝑑 + 1) ∈
ℕ0) |
143 | 141, 142 | expcld 10747 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) → ((𝐺‘𝑧)↑(𝑑 + 1)) ∈ ℂ) |
144 | 140, 143 | mulcld 8042 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) → ((𝐴‘(𝑑 + 1)) · ((𝐺‘𝑧)↑(𝑑 + 1))) ∈ ℂ) |
145 | | eqidd 2194 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑑 ∈ ℕ0) → (𝑧 ∈ ℂ ↦
Σ𝑘 ∈ (0...𝑑)((𝐴‘𝑘) · ((𝐺‘𝑧)↑𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝐴‘𝑘) · ((𝐺‘𝑧)↑𝑘)))) |
146 | | fconstmpt 4707 |
. . . . . . . . . . 11
⊢ (ℂ
× {(𝐴‘(𝑑 + 1))}) = (𝑧 ∈ ℂ ↦ (𝐴‘(𝑑 + 1))) |
147 | 146 | a1i 9 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑑 ∈ ℕ0) → (ℂ
× {(𝐴‘(𝑑 + 1))}) = (𝑧 ∈ ℂ ↦ (𝐴‘(𝑑 + 1)))) |
148 | | eqidd 2194 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑑 ∈ ℕ0) → (𝑧 ∈ ℂ ↦ ((𝐺‘𝑧)↑(𝑑 + 1))) = (𝑧 ∈ ℂ ↦ ((𝐺‘𝑧)↑(𝑑 + 1)))) |
149 | 120, 139,
143, 147, 148 | offval2 6148 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑑 ∈ ℕ0) → ((ℂ
× {(𝐴‘(𝑑 + 1))})
∘𝑓 · (𝑧 ∈ ℂ ↦ ((𝐺‘𝑧)↑(𝑑 + 1)))) = (𝑧 ∈ ℂ ↦ ((𝐴‘(𝑑 + 1)) · ((𝐺‘𝑧)↑(𝑑 + 1))))) |
150 | 120, 137,
144, 145, 149 | offval2 6148 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑑 ∈ ℕ0) → ((𝑧 ∈ ℂ ↦
Σ𝑘 ∈ (0...𝑑)((𝐴‘𝑘) · ((𝐺‘𝑧)↑𝑘))) ∘𝑓 + ((ℂ
× {(𝐴‘(𝑑 + 1))})
∘𝑓 · (𝑧 ∈ ℂ ↦ ((𝐺‘𝑧)↑(𝑑 + 1))))) = (𝑧 ∈ ℂ ↦ (Σ𝑘 ∈ (0...𝑑)((𝐴‘𝑘) · ((𝐺‘𝑧)↑𝑘)) + ((𝐴‘(𝑑 + 1)) · ((𝐺‘𝑧)↑(𝑑 + 1)))))) |
151 | | nn0uz 9630 |
. . . . . . . . . . 11
⊢
ℕ0 = (ℤ≥‘0) |
152 | 122, 151 | eleqtrdi 2286 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) → 𝑑 ∈
(ℤ≥‘0)) |
153 | 138 | adantr 276 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...(𝑑 + 1))) → (𝑆 ∪ {0}) ⊆
ℂ) |
154 | 35 | ad3antrrr 492 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...(𝑑 + 1))) → 𝐴:ℕ0⟶(𝑆 ∪ {0})) |
155 | | elfznn0 10183 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈ (0...(𝑑 + 1)) → 𝑘 ∈ ℕ0) |
156 | 155 | adantl 277 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...(𝑑 + 1))) → 𝑘 ∈ ℕ0) |
157 | 154, 156 | ffvelcdmd 5695 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...(𝑑 + 1))) → (𝐴‘𝑘) ∈ (𝑆 ∪ {0})) |
158 | 153, 157 | sseldd 3181 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...(𝑑 + 1))) → (𝐴‘𝑘) ∈ ℂ) |
159 | 141 | adantr 276 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...(𝑑 + 1))) → (𝐺‘𝑧) ∈ ℂ) |
160 | 159, 156 | expcld 10747 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...(𝑑 + 1))) → ((𝐺‘𝑧)↑𝑘) ∈ ℂ) |
161 | 158, 160 | mulcld 8042 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...(𝑑 + 1))) → ((𝐴‘𝑘) · ((𝐺‘𝑧)↑𝑘)) ∈ ℂ) |
162 | | fveq2 5555 |
. . . . . . . . . . 11
⊢ (𝑘 = (𝑑 + 1) → (𝐴‘𝑘) = (𝐴‘(𝑑 + 1))) |
163 | | oveq2 5927 |
. . . . . . . . . . 11
⊢ (𝑘 = (𝑑 + 1) → ((𝐺‘𝑧)↑𝑘) = ((𝐺‘𝑧)↑(𝑑 + 1))) |
164 | 162, 163 | oveq12d 5937 |
. . . . . . . . . 10
⊢ (𝑘 = (𝑑 + 1) → ((𝐴‘𝑘) · ((𝐺‘𝑧)↑𝑘)) = ((𝐴‘(𝑑 + 1)) · ((𝐺‘𝑧)↑(𝑑 + 1)))) |
165 | 152, 161,
164 | fsump1 11566 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) →
Σ𝑘 ∈ (0...(𝑑 + 1))((𝐴‘𝑘) · ((𝐺‘𝑧)↑𝑘)) = (Σ𝑘 ∈ (0...𝑑)((𝐴‘𝑘) · ((𝐺‘𝑧)↑𝑘)) + ((𝐴‘(𝑑 + 1)) · ((𝐺‘𝑧)↑(𝑑 + 1))))) |
166 | 165 | mpteq2dva 4120 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑑 ∈ ℕ0) → (𝑧 ∈ ℂ ↦
Σ𝑘 ∈ (0...(𝑑 + 1))((𝐴‘𝑘) · ((𝐺‘𝑧)↑𝑘))) = (𝑧 ∈ ℂ ↦ (Σ𝑘 ∈ (0...𝑑)((𝐴‘𝑘) · ((𝐺‘𝑧)↑𝑘)) + ((𝐴‘(𝑑 + 1)) · ((𝐺‘𝑧)↑(𝑑 + 1)))))) |
167 | 150, 166 | eqtr4d 2229 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑑 ∈ ℕ0) → ((𝑧 ∈ ℂ ↦
Σ𝑘 ∈ (0...𝑑)((𝐴‘𝑘) · ((𝐺‘𝑧)↑𝑘))) ∘𝑓 + ((ℂ
× {(𝐴‘(𝑑 + 1))})
∘𝑓 · (𝑧 ∈ ℂ ↦ ((𝐺‘𝑧)↑(𝑑 + 1))))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(𝑑 + 1))((𝐴‘𝑘) · ((𝐺‘𝑧)↑𝑘)))) |
168 | 167 | eleq1d 2262 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑑 ∈ ℕ0) → (((𝑧 ∈ ℂ ↦
Σ𝑘 ∈ (0...𝑑)((𝐴‘𝑘) · ((𝐺‘𝑧)↑𝑘))) ∘𝑓 + ((ℂ
× {(𝐴‘(𝑑 + 1))})
∘𝑓 · (𝑧 ∈ ℂ ↦ ((𝐺‘𝑧)↑(𝑑 + 1))))) ∈ (Poly‘𝑆) ↔ (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(𝑑 + 1))((𝐴‘𝑘) · ((𝐺‘𝑧)↑𝑘))) ∈ (Poly‘𝑆))) |
169 | 119, 168 | sylibd 149 |
. . . . 5
⊢ ((𝜑 ∧ 𝑑 ∈ ℕ0) → ((𝑧 ∈ ℂ ↦
Σ𝑘 ∈ (0...𝑑)((𝐴‘𝑘) · ((𝐺‘𝑧)↑𝑘))) ∈ (Poly‘𝑆) → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(𝑑 + 1))((𝐴‘𝑘) · ((𝐺‘𝑧)↑𝑘))) ∈ (Poly‘𝑆))) |
170 | 169 | expcom 116 |
. . . 4
⊢ (𝑑 ∈ ℕ0
→ (𝜑 → ((𝑧 ∈ ℂ ↦
Σ𝑘 ∈ (0...𝑑)((𝐴‘𝑘) · ((𝐺‘𝑧)↑𝑘))) ∈ (Poly‘𝑆) → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(𝑑 + 1))((𝐴‘𝑘) · ((𝐺‘𝑧)↑𝑘))) ∈ (Poly‘𝑆)))) |
171 | 170 | a2d 26 |
. . 3
⊢ (𝑑 ∈ ℕ0
→ ((𝜑 → (𝑧 ∈ ℂ ↦
Σ𝑘 ∈ (0...𝑑)((𝐴‘𝑘) · ((𝐺‘𝑧)↑𝑘))) ∈ (Poly‘𝑆)) → (𝜑 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(𝑑 + 1))((𝐴‘𝑘) · ((𝐺‘𝑧)↑𝑘))) ∈ (Poly‘𝑆)))) |
172 | 6, 11, 16, 21, 57, 171 | nn0ind 9434 |
. 2
⊢ (𝑁 ∈ ℕ0
→ (𝜑 → (𝑧 ∈ ℂ ↦
Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · ((𝐺‘𝑧)↑𝑘))) ∈ (Poly‘𝑆))) |
173 | 1, 172 | mpcom 36 |
1
⊢ (𝜑 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · ((𝐺‘𝑧)↑𝑘))) ∈ (Poly‘𝑆)) |