ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prssnql GIF version

Theorem prssnql 7599
Description: The lower cut of a positive real is a subset of the positive fractions. (Contributed by Jim Kingdon, 28-Sep-2019.)
Assertion
Ref Expression
prssnql (⟨𝐿, 𝑈⟩ ∈ P𝐿Q)

Proof of Theorem prssnql
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elinp 7594 . 2 (⟨𝐿, 𝑈⟩ ∈ P ↔ (((𝐿Q𝑈Q) ∧ (∃𝑥Q 𝑥𝐿 ∧ ∃𝑦Q 𝑦𝑈)) ∧ ((∀𝑥Q (𝑥𝐿 ↔ ∃𝑦Q (𝑥 <Q 𝑦𝑦𝐿)) ∧ ∀𝑦Q (𝑦𝑈 ↔ ∃𝑥Q (𝑥 <Q 𝑦𝑥𝑈))) ∧ ∀𝑥Q ¬ (𝑥𝐿𝑥𝑈) ∧ ∀𝑥Q𝑦Q (𝑥 <Q 𝑦 → (𝑥𝐿𝑦𝑈)))))
2 simplll 533 . 2 ((((𝐿Q𝑈Q) ∧ (∃𝑥Q 𝑥𝐿 ∧ ∃𝑦Q 𝑦𝑈)) ∧ ((∀𝑥Q (𝑥𝐿 ↔ ∃𝑦Q (𝑥 <Q 𝑦𝑦𝐿)) ∧ ∀𝑦Q (𝑦𝑈 ↔ ∃𝑥Q (𝑥 <Q 𝑦𝑥𝑈))) ∧ ∀𝑥Q ¬ (𝑥𝐿𝑥𝑈) ∧ ∀𝑥Q𝑦Q (𝑥 <Q 𝑦 → (𝑥𝐿𝑦𝑈)))) → 𝐿Q)
31, 2sylbi 121 1 (⟨𝐿, 𝑈⟩ ∈ P𝐿Q)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 710  w3a 981  wcel 2177  wral 2485  wrex 2486  wss 3167  cop 3637   class class class wbr 4047  Qcnq 7400   <Q cltq 7405  Pcnp 7411
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4163  ax-sep 4166  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-iinf 4640
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-iun 3931  df-br 4048  df-opab 4110  df-mpt 4111  df-id 4344  df-iom 4643  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-f1 5281  df-fo 5282  df-f1o 5283  df-fv 5284  df-qs 6633  df-ni 7424  df-nqqs 7468  df-inp 7586
This theorem is referenced by:  elprnql  7601
  Copyright terms: Public domain W3C validator