![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > prssnql | GIF version |
Description: The lower cut of a positive real is a subset of the positive fractions. (Contributed by Jim Kingdon, 28-Sep-2019.) |
Ref | Expression |
---|---|
prssnql | ⊢ (〈𝐿, 𝑈〉 ∈ P → 𝐿 ⊆ Q) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elinp 6935 | . 2 ⊢ (〈𝐿, 𝑈〉 ∈ P ↔ (((𝐿 ⊆ Q ∧ 𝑈 ⊆ Q) ∧ (∃𝑥 ∈ Q 𝑥 ∈ 𝐿 ∧ ∃𝑦 ∈ Q 𝑦 ∈ 𝑈)) ∧ ((∀𝑥 ∈ Q (𝑥 ∈ 𝐿 ↔ ∃𝑦 ∈ Q (𝑥 <Q 𝑦 ∧ 𝑦 ∈ 𝐿)) ∧ ∀𝑦 ∈ Q (𝑦 ∈ 𝑈 ↔ ∃𝑥 ∈ Q (𝑥 <Q 𝑦 ∧ 𝑥 ∈ 𝑈))) ∧ ∀𝑥 ∈ Q ¬ (𝑥 ∈ 𝐿 ∧ 𝑥 ∈ 𝑈) ∧ ∀𝑥 ∈ Q ∀𝑦 ∈ Q (𝑥 <Q 𝑦 → (𝑥 ∈ 𝐿 ∨ 𝑦 ∈ 𝑈))))) | |
2 | simplll 500 | . 2 ⊢ ((((𝐿 ⊆ Q ∧ 𝑈 ⊆ Q) ∧ (∃𝑥 ∈ Q 𝑥 ∈ 𝐿 ∧ ∃𝑦 ∈ Q 𝑦 ∈ 𝑈)) ∧ ((∀𝑥 ∈ Q (𝑥 ∈ 𝐿 ↔ ∃𝑦 ∈ Q (𝑥 <Q 𝑦 ∧ 𝑦 ∈ 𝐿)) ∧ ∀𝑦 ∈ Q (𝑦 ∈ 𝑈 ↔ ∃𝑥 ∈ Q (𝑥 <Q 𝑦 ∧ 𝑥 ∈ 𝑈))) ∧ ∀𝑥 ∈ Q ¬ (𝑥 ∈ 𝐿 ∧ 𝑥 ∈ 𝑈) ∧ ∀𝑥 ∈ Q ∀𝑦 ∈ Q (𝑥 <Q 𝑦 → (𝑥 ∈ 𝐿 ∨ 𝑦 ∈ 𝑈)))) → 𝐿 ⊆ Q) | |
3 | 1, 2 | sylbi 119 | 1 ⊢ (〈𝐿, 𝑈〉 ∈ P → 𝐿 ⊆ Q) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 102 ↔ wb 103 ∨ wo 662 ∧ w3a 920 ∈ wcel 1434 ∀wral 2353 ∃wrex 2354 ⊆ wss 2984 〈cop 3425 class class class wbr 3811 Qcnq 6741 <Q cltq 6746 Pcnp 6752 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 577 ax-in2 578 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-13 1445 ax-14 1446 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2065 ax-coll 3919 ax-sep 3922 ax-pow 3974 ax-pr 3999 ax-un 4223 ax-iinf 4365 |
This theorem depends on definitions: df-bi 115 df-3an 922 df-tru 1288 df-nf 1391 df-sb 1688 df-eu 1946 df-mo 1947 df-clab 2070 df-cleq 2076 df-clel 2079 df-nfc 2212 df-ral 2358 df-rex 2359 df-reu 2360 df-rab 2362 df-v 2614 df-sbc 2827 df-csb 2920 df-dif 2986 df-un 2988 df-in 2990 df-ss 2997 df-pw 3408 df-sn 3428 df-pr 3429 df-op 3431 df-uni 3628 df-int 3663 df-iun 3706 df-br 3812 df-opab 3866 df-mpt 3867 df-id 4083 df-iom 4368 df-xp 4406 df-rel 4407 df-cnv 4408 df-co 4409 df-dm 4410 df-rn 4411 df-res 4412 df-ima 4413 df-iota 4933 df-fun 4970 df-fn 4971 df-f 4972 df-f1 4973 df-fo 4974 df-f1o 4975 df-fv 4976 df-qs 6227 df-ni 6765 df-nqqs 6809 df-inp 6927 |
This theorem is referenced by: elprnql 6942 |
Copyright terms: Public domain | W3C validator |