![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > prmu | GIF version |
Description: A positive real's upper cut is inhabited. (Contributed by Jim Kingdon, 27-Sep-2019.) |
Ref | Expression |
---|---|
prmu | ⊢ (〈𝐿, 𝑈〉 ∈ P → ∃𝑥 ∈ Q 𝑥 ∈ 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elinp 7087 | . 2 ⊢ (〈𝐿, 𝑈〉 ∈ P ↔ (((𝐿 ⊆ Q ∧ 𝑈 ⊆ Q) ∧ (∃𝑦 ∈ Q 𝑦 ∈ 𝐿 ∧ ∃𝑥 ∈ Q 𝑥 ∈ 𝑈)) ∧ ((∀𝑦 ∈ Q (𝑦 ∈ 𝐿 ↔ ∃𝑥 ∈ Q (𝑦 <Q 𝑥 ∧ 𝑥 ∈ 𝐿)) ∧ ∀𝑥 ∈ Q (𝑥 ∈ 𝑈 ↔ ∃𝑦 ∈ Q (𝑦 <Q 𝑥 ∧ 𝑦 ∈ 𝑈))) ∧ ∀𝑦 ∈ Q ¬ (𝑦 ∈ 𝐿 ∧ 𝑦 ∈ 𝑈) ∧ ∀𝑦 ∈ Q ∀𝑥 ∈ Q (𝑦 <Q 𝑥 → (𝑦 ∈ 𝐿 ∨ 𝑥 ∈ 𝑈))))) | |
2 | simplrr 504 | . 2 ⊢ ((((𝐿 ⊆ Q ∧ 𝑈 ⊆ Q) ∧ (∃𝑦 ∈ Q 𝑦 ∈ 𝐿 ∧ ∃𝑥 ∈ Q 𝑥 ∈ 𝑈)) ∧ ((∀𝑦 ∈ Q (𝑦 ∈ 𝐿 ↔ ∃𝑥 ∈ Q (𝑦 <Q 𝑥 ∧ 𝑥 ∈ 𝐿)) ∧ ∀𝑥 ∈ Q (𝑥 ∈ 𝑈 ↔ ∃𝑦 ∈ Q (𝑦 <Q 𝑥 ∧ 𝑦 ∈ 𝑈))) ∧ ∀𝑦 ∈ Q ¬ (𝑦 ∈ 𝐿 ∧ 𝑦 ∈ 𝑈) ∧ ∀𝑦 ∈ Q ∀𝑥 ∈ Q (𝑦 <Q 𝑥 → (𝑦 ∈ 𝐿 ∨ 𝑥 ∈ 𝑈)))) → ∃𝑥 ∈ Q 𝑥 ∈ 𝑈) | |
3 | 1, 2 | sylbi 120 | 1 ⊢ (〈𝐿, 𝑈〉 ∈ P → ∃𝑥 ∈ Q 𝑥 ∈ 𝑈) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 ↔ wb 104 ∨ wo 665 ∧ w3a 925 ∈ wcel 1439 ∀wral 2360 ∃wrex 2361 ⊆ wss 3000 〈cop 3453 class class class wbr 3851 Qcnq 6893 <Q cltq 6898 Pcnp 6904 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 580 ax-in2 581 ax-io 666 ax-5 1382 ax-7 1383 ax-gen 1384 ax-ie1 1428 ax-ie2 1429 ax-8 1441 ax-10 1442 ax-11 1443 ax-i12 1444 ax-bndl 1445 ax-4 1446 ax-13 1450 ax-14 1451 ax-17 1465 ax-i9 1469 ax-ial 1473 ax-i5r 1474 ax-ext 2071 ax-coll 3960 ax-sep 3963 ax-pow 4015 ax-pr 4045 ax-un 4269 ax-iinf 4416 |
This theorem depends on definitions: df-bi 116 df-3an 927 df-tru 1293 df-nf 1396 df-sb 1694 df-eu 1952 df-mo 1953 df-clab 2076 df-cleq 2082 df-clel 2085 df-nfc 2218 df-ral 2365 df-rex 2366 df-reu 2367 df-rab 2369 df-v 2622 df-sbc 2842 df-csb 2935 df-dif 3002 df-un 3004 df-in 3006 df-ss 3013 df-pw 3435 df-sn 3456 df-pr 3457 df-op 3459 df-uni 3660 df-int 3695 df-iun 3738 df-br 3852 df-opab 3906 df-mpt 3907 df-id 4129 df-iom 4419 df-xp 4457 df-rel 4458 df-cnv 4459 df-co 4460 df-dm 4461 df-rn 4462 df-res 4463 df-ima 4464 df-iota 4993 df-fun 5030 df-fn 5031 df-f 5032 df-f1 5033 df-fo 5034 df-f1o 5035 df-fv 5036 df-qs 6312 df-ni 6917 df-nqqs 6961 df-inp 7079 |
This theorem is referenced by: prarloc 7116 genpmu 7131 ltexprlemm 7213 ltexprlemloc 7220 recexprlemm 7237 archpr 7256 caucvgprprlemmu 7308 |
Copyright terms: Public domain | W3C validator |