ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prmu GIF version

Theorem prmu 7308
Description: A positive real's upper cut is inhabited. (Contributed by Jim Kingdon, 27-Sep-2019.)
Assertion
Ref Expression
prmu (⟨𝐿, 𝑈⟩ ∈ P → ∃𝑥Q 𝑥𝑈)
Distinct variable groups:   𝑥,𝐿   𝑥,𝑈

Proof of Theorem prmu
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 elinp 7304 . 2 (⟨𝐿, 𝑈⟩ ∈ P ↔ (((𝐿Q𝑈Q) ∧ (∃𝑦Q 𝑦𝐿 ∧ ∃𝑥Q 𝑥𝑈)) ∧ ((∀𝑦Q (𝑦𝐿 ↔ ∃𝑥Q (𝑦 <Q 𝑥𝑥𝐿)) ∧ ∀𝑥Q (𝑥𝑈 ↔ ∃𝑦Q (𝑦 <Q 𝑥𝑦𝑈))) ∧ ∀𝑦Q ¬ (𝑦𝐿𝑦𝑈) ∧ ∀𝑦Q𝑥Q (𝑦 <Q 𝑥 → (𝑦𝐿𝑥𝑈)))))
2 simplrr 526 . 2 ((((𝐿Q𝑈Q) ∧ (∃𝑦Q 𝑦𝐿 ∧ ∃𝑥Q 𝑥𝑈)) ∧ ((∀𝑦Q (𝑦𝐿 ↔ ∃𝑥Q (𝑦 <Q 𝑥𝑥𝐿)) ∧ ∀𝑥Q (𝑥𝑈 ↔ ∃𝑦Q (𝑦 <Q 𝑥𝑦𝑈))) ∧ ∀𝑦Q ¬ (𝑦𝐿𝑦𝑈) ∧ ∀𝑦Q𝑥Q (𝑦 <Q 𝑥 → (𝑦𝐿𝑥𝑈)))) → ∃𝑥Q 𝑥𝑈)
31, 2sylbi 120 1 (⟨𝐿, 𝑈⟩ ∈ P → ∃𝑥Q 𝑥𝑈)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 698  w3a 963  wcel 1481  wral 2417  wrex 2418  wss 3074  cop 3533   class class class wbr 3935  Qcnq 7110   <Q cltq 7115  Pcnp 7121
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4049  ax-sep 4052  ax-pow 4104  ax-pr 4137  ax-un 4361  ax-iinf 4508
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2913  df-csb 3007  df-dif 3076  df-un 3078  df-in 3080  df-ss 3087  df-pw 3515  df-sn 3536  df-pr 3537  df-op 3539  df-uni 3743  df-int 3778  df-iun 3821  df-br 3936  df-opab 3996  df-mpt 3997  df-id 4221  df-iom 4511  df-xp 4551  df-rel 4552  df-cnv 4553  df-co 4554  df-dm 4555  df-rn 4556  df-res 4557  df-ima 4558  df-iota 5094  df-fun 5131  df-fn 5132  df-f 5133  df-f1 5134  df-fo 5135  df-f1o 5136  df-fv 5137  df-qs 6441  df-ni 7134  df-nqqs 7178  df-inp 7296
This theorem is referenced by:  prarloc  7333  genpmu  7348  ltexprlemm  7430  ltexprlemloc  7437  recexprlemm  7454  archpr  7473  caucvgprprlemmu  7525  suplocexprlemmu  7548
  Copyright terms: Public domain W3C validator