| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > prmu | GIF version | ||
| Description: A positive real's upper cut is inhabited. (Contributed by Jim Kingdon, 27-Sep-2019.) |
| Ref | Expression |
|---|---|
| prmu | ⊢ (〈𝐿, 𝑈〉 ∈ P → ∃𝑥 ∈ Q 𝑥 ∈ 𝑈) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elinp 7569 | . 2 ⊢ (〈𝐿, 𝑈〉 ∈ P ↔ (((𝐿 ⊆ Q ∧ 𝑈 ⊆ Q) ∧ (∃𝑦 ∈ Q 𝑦 ∈ 𝐿 ∧ ∃𝑥 ∈ Q 𝑥 ∈ 𝑈)) ∧ ((∀𝑦 ∈ Q (𝑦 ∈ 𝐿 ↔ ∃𝑥 ∈ Q (𝑦 <Q 𝑥 ∧ 𝑥 ∈ 𝐿)) ∧ ∀𝑥 ∈ Q (𝑥 ∈ 𝑈 ↔ ∃𝑦 ∈ Q (𝑦 <Q 𝑥 ∧ 𝑦 ∈ 𝑈))) ∧ ∀𝑦 ∈ Q ¬ (𝑦 ∈ 𝐿 ∧ 𝑦 ∈ 𝑈) ∧ ∀𝑦 ∈ Q ∀𝑥 ∈ Q (𝑦 <Q 𝑥 → (𝑦 ∈ 𝐿 ∨ 𝑥 ∈ 𝑈))))) | |
| 2 | simplrr 536 | . 2 ⊢ ((((𝐿 ⊆ Q ∧ 𝑈 ⊆ Q) ∧ (∃𝑦 ∈ Q 𝑦 ∈ 𝐿 ∧ ∃𝑥 ∈ Q 𝑥 ∈ 𝑈)) ∧ ((∀𝑦 ∈ Q (𝑦 ∈ 𝐿 ↔ ∃𝑥 ∈ Q (𝑦 <Q 𝑥 ∧ 𝑥 ∈ 𝐿)) ∧ ∀𝑥 ∈ Q (𝑥 ∈ 𝑈 ↔ ∃𝑦 ∈ Q (𝑦 <Q 𝑥 ∧ 𝑦 ∈ 𝑈))) ∧ ∀𝑦 ∈ Q ¬ (𝑦 ∈ 𝐿 ∧ 𝑦 ∈ 𝑈) ∧ ∀𝑦 ∈ Q ∀𝑥 ∈ Q (𝑦 <Q 𝑥 → (𝑦 ∈ 𝐿 ∨ 𝑥 ∈ 𝑈)))) → ∃𝑥 ∈ Q 𝑥 ∈ 𝑈) | |
| 3 | 1, 2 | sylbi 121 | 1 ⊢ (〈𝐿, 𝑈〉 ∈ P → ∃𝑥 ∈ Q 𝑥 ∈ 𝑈) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 709 ∧ w3a 980 ∈ wcel 2175 ∀wral 2483 ∃wrex 2484 ⊆ wss 3165 〈cop 3635 class class class wbr 4043 Qcnq 7375 <Q cltq 7380 Pcnp 7386 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-coll 4158 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4478 ax-iinf 4634 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-reu 2490 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4338 df-iom 4637 df-xp 4679 df-rel 4680 df-cnv 4681 df-co 4682 df-dm 4683 df-rn 4684 df-res 4685 df-ima 4686 df-iota 5229 df-fun 5270 df-fn 5271 df-f 5272 df-f1 5273 df-fo 5274 df-f1o 5275 df-fv 5276 df-qs 6616 df-ni 7399 df-nqqs 7443 df-inp 7561 |
| This theorem is referenced by: prarloc 7598 genpmu 7613 ltexprlemm 7695 ltexprlemloc 7702 recexprlemm 7719 archpr 7738 caucvgprprlemmu 7790 suplocexprlemmu 7813 |
| Copyright terms: Public domain | W3C validator |