| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elprnql | GIF version | ||
| Description: An element of a positive real's lower cut is a positive fraction. (Contributed by Jim Kingdon, 28-Sep-2019.) |
| Ref | Expression |
|---|---|
| elprnql | ⊢ ((〈𝐿, 𝑈〉 ∈ P ∧ 𝐵 ∈ 𝐿) → 𝐵 ∈ Q) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prssnql 7599 | . 2 ⊢ (〈𝐿, 𝑈〉 ∈ P → 𝐿 ⊆ Q) | |
| 2 | 1 | sselda 3194 | 1 ⊢ ((〈𝐿, 𝑈〉 ∈ P ∧ 𝐵 ∈ 𝐿) → 𝐵 ∈ Q) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2177 〈cop 3637 Qcnq 7400 Pcnp 7411 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4163 ax-sep 4166 ax-pow 4222 ax-pr 4257 ax-un 4484 ax-iinf 4640 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3000 df-csb 3095 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-int 3888 df-iun 3931 df-br 4048 df-opab 4110 df-mpt 4111 df-id 4344 df-iom 4643 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-res 4691 df-ima 4692 df-iota 5237 df-fun 5278 df-fn 5279 df-f 5280 df-f1 5281 df-fo 5282 df-f1o 5283 df-fv 5284 df-qs 6633 df-ni 7424 df-nqqs 7468 df-inp 7586 |
| This theorem is referenced by: prubl 7606 prnmaxl 7608 prarloclemlt 7613 prarloclemlo 7614 prarloclem5 7620 genpdf 7628 genipv 7629 genpelvl 7632 genpml 7637 genprndl 7641 genpassl 7644 addnqprllem 7647 addnqprl 7649 addlocprlemeqgt 7652 addlocprlemgt 7654 addlocprlem 7655 nqprl 7671 prmuloc 7686 mulnqprl 7688 addcomprg 7698 mulcomprg 7700 distrlem1prl 7702 distrlem4prl 7704 1idprl 7710 ltsopr 7716 ltexprlemm 7720 ltexprlemopl 7721 ltexprlemopu 7723 ltexprlemupu 7724 ltexprlemdisj 7726 ltexprlemloc 7727 ltexprlemfl 7729 ltexprlemrl 7730 ltexprlemfu 7731 ltexprlemru 7732 addcanprleml 7734 addcanprlemu 7735 recexprlemloc 7751 recexprlem1ssl 7753 recexprlem1ssu 7754 recexprlemss1l 7755 aptiprleml 7759 aptiprlemu 7760 caucvgprprlemopl 7817 suplocexprlemex 7842 |
| Copyright terms: Public domain | W3C validator |