| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elprnql | GIF version | ||
| Description: An element of a positive real's lower cut is a positive fraction. (Contributed by Jim Kingdon, 28-Sep-2019.) |
| Ref | Expression |
|---|---|
| elprnql | ⊢ ((〈𝐿, 𝑈〉 ∈ P ∧ 𝐵 ∈ 𝐿) → 𝐵 ∈ Q) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prssnql 7565 | . 2 ⊢ (〈𝐿, 𝑈〉 ∈ P → 𝐿 ⊆ Q) | |
| 2 | 1 | sselda 3184 | 1 ⊢ ((〈𝐿, 𝑈〉 ∈ P ∧ 𝐵 ∈ 𝐿) → 𝐵 ∈ Q) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2167 〈cop 3626 Qcnq 7366 Pcnp 7377 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-iinf 4625 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-iom 4628 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-qs 6607 df-ni 7390 df-nqqs 7434 df-inp 7552 |
| This theorem is referenced by: prubl 7572 prnmaxl 7574 prarloclemlt 7579 prarloclemlo 7580 prarloclem5 7586 genpdf 7594 genipv 7595 genpelvl 7598 genpml 7603 genprndl 7607 genpassl 7610 addnqprllem 7613 addnqprl 7615 addlocprlemeqgt 7618 addlocprlemgt 7620 addlocprlem 7621 nqprl 7637 prmuloc 7652 mulnqprl 7654 addcomprg 7664 mulcomprg 7666 distrlem1prl 7668 distrlem4prl 7670 1idprl 7676 ltsopr 7682 ltexprlemm 7686 ltexprlemopl 7687 ltexprlemopu 7689 ltexprlemupu 7690 ltexprlemdisj 7692 ltexprlemloc 7693 ltexprlemfl 7695 ltexprlemrl 7696 ltexprlemfu 7697 ltexprlemru 7698 addcanprleml 7700 addcanprlemu 7701 recexprlemloc 7717 recexprlem1ssl 7719 recexprlem1ssu 7720 recexprlemss1l 7721 aptiprleml 7725 aptiprlemu 7726 caucvgprprlemopl 7783 suplocexprlemex 7808 |
| Copyright terms: Public domain | W3C validator |