![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elprnql | GIF version |
Description: An element of a positive real's lower cut is a positive fraction. (Contributed by Jim Kingdon, 28-Sep-2019.) |
Ref | Expression |
---|---|
elprnql | ⊢ ((〈𝐿, 𝑈〉 ∈ P ∧ 𝐵 ∈ 𝐿) → 𝐵 ∈ Q) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prssnql 7541 | . 2 ⊢ (〈𝐿, 𝑈〉 ∈ P → 𝐿 ⊆ Q) | |
2 | 1 | sselda 3180 | 1 ⊢ ((〈𝐿, 𝑈〉 ∈ P ∧ 𝐵 ∈ 𝐿) → 𝐵 ∈ Q) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2164 〈cop 3622 Qcnq 7342 Pcnp 7353 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4145 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-iinf 4621 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-iun 3915 df-br 4031 df-opab 4092 df-mpt 4093 df-id 4325 df-iom 4624 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-f1 5260 df-fo 5261 df-f1o 5262 df-fv 5263 df-qs 6595 df-ni 7366 df-nqqs 7410 df-inp 7528 |
This theorem is referenced by: prubl 7548 prnmaxl 7550 prarloclemlt 7555 prarloclemlo 7556 prarloclem5 7562 genpdf 7570 genipv 7571 genpelvl 7574 genpml 7579 genprndl 7583 genpassl 7586 addnqprllem 7589 addnqprl 7591 addlocprlemeqgt 7594 addlocprlemgt 7596 addlocprlem 7597 nqprl 7613 prmuloc 7628 mulnqprl 7630 addcomprg 7640 mulcomprg 7642 distrlem1prl 7644 distrlem4prl 7646 1idprl 7652 ltsopr 7658 ltexprlemm 7662 ltexprlemopl 7663 ltexprlemopu 7665 ltexprlemupu 7666 ltexprlemdisj 7668 ltexprlemloc 7669 ltexprlemfl 7671 ltexprlemrl 7672 ltexprlemfu 7673 ltexprlemru 7674 addcanprleml 7676 addcanprlemu 7677 recexprlemloc 7693 recexprlem1ssl 7695 recexprlem1ssu 7696 recexprlemss1l 7697 aptiprleml 7701 aptiprlemu 7702 caucvgprprlemopl 7759 suplocexprlemex 7784 |
Copyright terms: Public domain | W3C validator |