| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elprnql | GIF version | ||
| Description: An element of a positive real's lower cut is a positive fraction. (Contributed by Jim Kingdon, 28-Sep-2019.) |
| Ref | Expression |
|---|---|
| elprnql | ⊢ ((〈𝐿, 𝑈〉 ∈ P ∧ 𝐵 ∈ 𝐿) → 𝐵 ∈ Q) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prssnql 7674 | . 2 ⊢ (〈𝐿, 𝑈〉 ∈ P → 𝐿 ⊆ Q) | |
| 2 | 1 | sselda 3224 | 1 ⊢ ((〈𝐿, 𝑈〉 ∈ P ∧ 𝐵 ∈ 𝐿) → 𝐵 ∈ Q) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2200 〈cop 3669 Qcnq 7475 Pcnp 7486 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-iinf 4680 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-qs 6694 df-ni 7499 df-nqqs 7543 df-inp 7661 |
| This theorem is referenced by: prubl 7681 prnmaxl 7683 prarloclemlt 7688 prarloclemlo 7689 prarloclem5 7695 genpdf 7703 genipv 7704 genpelvl 7707 genpml 7712 genprndl 7716 genpassl 7719 addnqprllem 7722 addnqprl 7724 addlocprlemeqgt 7727 addlocprlemgt 7729 addlocprlem 7730 nqprl 7746 prmuloc 7761 mulnqprl 7763 addcomprg 7773 mulcomprg 7775 distrlem1prl 7777 distrlem4prl 7779 1idprl 7785 ltsopr 7791 ltexprlemm 7795 ltexprlemopl 7796 ltexprlemopu 7798 ltexprlemupu 7799 ltexprlemdisj 7801 ltexprlemloc 7802 ltexprlemfl 7804 ltexprlemrl 7805 ltexprlemfu 7806 ltexprlemru 7807 addcanprleml 7809 addcanprlemu 7810 recexprlemloc 7826 recexprlem1ssl 7828 recexprlem1ssu 7829 recexprlemss1l 7830 aptiprleml 7834 aptiprlemu 7835 caucvgprprlemopl 7892 suplocexprlemex 7917 |
| Copyright terms: Public domain | W3C validator |