| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elprnql | GIF version | ||
| Description: An element of a positive real's lower cut is a positive fraction. (Contributed by Jim Kingdon, 28-Sep-2019.) |
| Ref | Expression |
|---|---|
| elprnql | ⊢ ((〈𝐿, 𝑈〉 ∈ P ∧ 𝐵 ∈ 𝐿) → 𝐵 ∈ Q) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prssnql 7563 | . 2 ⊢ (〈𝐿, 𝑈〉 ∈ P → 𝐿 ⊆ Q) | |
| 2 | 1 | sselda 3184 | 1 ⊢ ((〈𝐿, 𝑈〉 ∈ P ∧ 𝐵 ∈ 𝐿) → 𝐵 ∈ Q) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2167 〈cop 3626 Qcnq 7364 Pcnp 7375 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-iinf 4625 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-iom 4628 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-qs 6607 df-ni 7388 df-nqqs 7432 df-inp 7550 |
| This theorem is referenced by: prubl 7570 prnmaxl 7572 prarloclemlt 7577 prarloclemlo 7578 prarloclem5 7584 genpdf 7592 genipv 7593 genpelvl 7596 genpml 7601 genprndl 7605 genpassl 7608 addnqprllem 7611 addnqprl 7613 addlocprlemeqgt 7616 addlocprlemgt 7618 addlocprlem 7619 nqprl 7635 prmuloc 7650 mulnqprl 7652 addcomprg 7662 mulcomprg 7664 distrlem1prl 7666 distrlem4prl 7668 1idprl 7674 ltsopr 7680 ltexprlemm 7684 ltexprlemopl 7685 ltexprlemopu 7687 ltexprlemupu 7688 ltexprlemdisj 7690 ltexprlemloc 7691 ltexprlemfl 7693 ltexprlemrl 7694 ltexprlemfu 7695 ltexprlemru 7696 addcanprleml 7698 addcanprlemu 7699 recexprlemloc 7715 recexprlem1ssl 7717 recexprlem1ssu 7718 recexprlemss1l 7719 aptiprleml 7723 aptiprlemu 7724 caucvgprprlemopl 7781 suplocexprlemex 7806 |
| Copyright terms: Public domain | W3C validator |