| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elprnql | GIF version | ||
| Description: An element of a positive real's lower cut is a positive fraction. (Contributed by Jim Kingdon, 28-Sep-2019.) |
| Ref | Expression |
|---|---|
| elprnql | ⊢ ((〈𝐿, 𝑈〉 ∈ P ∧ 𝐵 ∈ 𝐿) → 𝐵 ∈ Q) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prssnql 7546 | . 2 ⊢ (〈𝐿, 𝑈〉 ∈ P → 𝐿 ⊆ Q) | |
| 2 | 1 | sselda 3183 | 1 ⊢ ((〈𝐿, 𝑈〉 ∈ P ∧ 𝐵 ∈ 𝐿) → 𝐵 ∈ Q) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2167 〈cop 3625 Qcnq 7347 Pcnp 7358 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-iinf 4624 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-qs 6598 df-ni 7371 df-nqqs 7415 df-inp 7533 |
| This theorem is referenced by: prubl 7553 prnmaxl 7555 prarloclemlt 7560 prarloclemlo 7561 prarloclem5 7567 genpdf 7575 genipv 7576 genpelvl 7579 genpml 7584 genprndl 7588 genpassl 7591 addnqprllem 7594 addnqprl 7596 addlocprlemeqgt 7599 addlocprlemgt 7601 addlocprlem 7602 nqprl 7618 prmuloc 7633 mulnqprl 7635 addcomprg 7645 mulcomprg 7647 distrlem1prl 7649 distrlem4prl 7651 1idprl 7657 ltsopr 7663 ltexprlemm 7667 ltexprlemopl 7668 ltexprlemopu 7670 ltexprlemupu 7671 ltexprlemdisj 7673 ltexprlemloc 7674 ltexprlemfl 7676 ltexprlemrl 7677 ltexprlemfu 7678 ltexprlemru 7679 addcanprleml 7681 addcanprlemu 7682 recexprlemloc 7698 recexprlem1ssl 7700 recexprlem1ssu 7701 recexprlemss1l 7702 aptiprleml 7706 aptiprlemu 7707 caucvgprprlemopl 7764 suplocexprlemex 7789 |
| Copyright terms: Public domain | W3C validator |