![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elprnql | GIF version |
Description: An element of a positive real's lower cut is a positive fraction. (Contributed by Jim Kingdon, 28-Sep-2019.) |
Ref | Expression |
---|---|
elprnql | ⊢ ((〈𝐿, 𝑈〉 ∈ P ∧ 𝐵 ∈ 𝐿) → 𝐵 ∈ Q) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prssnql 7539 | . 2 ⊢ (〈𝐿, 𝑈〉 ∈ P → 𝐿 ⊆ Q) | |
2 | 1 | sselda 3179 | 1 ⊢ ((〈𝐿, 𝑈〉 ∈ P ∧ 𝐵 ∈ 𝐿) → 𝐵 ∈ Q) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2164 〈cop 3621 Qcnq 7340 Pcnp 7351 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4144 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-iinf 4620 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2986 df-csb 3081 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-iun 3914 df-br 4030 df-opab 4091 df-mpt 4092 df-id 4324 df-iom 4623 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-f1 5259 df-fo 5260 df-f1o 5261 df-fv 5262 df-qs 6593 df-ni 7364 df-nqqs 7408 df-inp 7526 |
This theorem is referenced by: prubl 7546 prnmaxl 7548 prarloclemlt 7553 prarloclemlo 7554 prarloclem5 7560 genpdf 7568 genipv 7569 genpelvl 7572 genpml 7577 genprndl 7581 genpassl 7584 addnqprllem 7587 addnqprl 7589 addlocprlemeqgt 7592 addlocprlemgt 7594 addlocprlem 7595 nqprl 7611 prmuloc 7626 mulnqprl 7628 addcomprg 7638 mulcomprg 7640 distrlem1prl 7642 distrlem4prl 7644 1idprl 7650 ltsopr 7656 ltexprlemm 7660 ltexprlemopl 7661 ltexprlemopu 7663 ltexprlemupu 7664 ltexprlemdisj 7666 ltexprlemloc 7667 ltexprlemfl 7669 ltexprlemrl 7670 ltexprlemfu 7671 ltexprlemru 7672 addcanprleml 7674 addcanprlemu 7675 recexprlemloc 7691 recexprlem1ssl 7693 recexprlem1ssu 7694 recexprlemss1l 7695 aptiprleml 7699 aptiprlemu 7700 caucvgprprlemopl 7757 suplocexprlemex 7782 |
Copyright terms: Public domain | W3C validator |