Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elprnql | GIF version |
Description: An element of a positive real's lower cut is a positive fraction. (Contributed by Jim Kingdon, 28-Sep-2019.) |
Ref | Expression |
---|---|
elprnql | ⊢ ((〈𝐿, 𝑈〉 ∈ P ∧ 𝐵 ∈ 𝐿) → 𝐵 ∈ Q) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prssnql 7428 | . 2 ⊢ (〈𝐿, 𝑈〉 ∈ P → 𝐿 ⊆ Q) | |
2 | 1 | sselda 3147 | 1 ⊢ ((〈𝐿, 𝑈〉 ∈ P ∧ 𝐵 ∈ 𝐿) → 𝐵 ∈ Q) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∈ wcel 2141 〈cop 3584 Qcnq 7229 Pcnp 7240 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4102 ax-sep 4105 ax-pow 4158 ax-pr 4192 ax-un 4416 ax-iinf 4570 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-int 3830 df-iun 3873 df-br 3988 df-opab 4049 df-mpt 4050 df-id 4276 df-iom 4573 df-xp 4615 df-rel 4616 df-cnv 4617 df-co 4618 df-dm 4619 df-rn 4620 df-res 4621 df-ima 4622 df-iota 5158 df-fun 5198 df-fn 5199 df-f 5200 df-f1 5201 df-fo 5202 df-f1o 5203 df-fv 5204 df-qs 6515 df-ni 7253 df-nqqs 7297 df-inp 7415 |
This theorem is referenced by: prubl 7435 prnmaxl 7437 prarloclemlt 7442 prarloclemlo 7443 prarloclem5 7449 genpdf 7457 genipv 7458 genpelvl 7461 genpml 7466 genprndl 7470 genpassl 7473 addnqprllem 7476 addnqprl 7478 addlocprlemeqgt 7481 addlocprlemgt 7483 addlocprlem 7484 nqprl 7500 prmuloc 7515 mulnqprl 7517 addcomprg 7527 mulcomprg 7529 distrlem1prl 7531 distrlem4prl 7533 1idprl 7539 ltsopr 7545 ltexprlemm 7549 ltexprlemopl 7550 ltexprlemopu 7552 ltexprlemupu 7553 ltexprlemdisj 7555 ltexprlemloc 7556 ltexprlemfl 7558 ltexprlemrl 7559 ltexprlemfu 7560 ltexprlemru 7561 addcanprleml 7563 addcanprlemu 7564 recexprlemloc 7580 recexprlem1ssl 7582 recexprlem1ssu 7583 recexprlemss1l 7584 aptiprleml 7588 aptiprlemu 7589 caucvgprprlemopl 7646 suplocexprlemex 7671 |
Copyright terms: Public domain | W3C validator |