Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elprnql | GIF version |
Description: An element of a positive real's lower cut is a positive fraction. (Contributed by Jim Kingdon, 28-Sep-2019.) |
Ref | Expression |
---|---|
elprnql | ⊢ ((〈𝐿, 𝑈〉 ∈ P ∧ 𝐵 ∈ 𝐿) → 𝐵 ∈ Q) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prssnql 7420 | . 2 ⊢ (〈𝐿, 𝑈〉 ∈ P → 𝐿 ⊆ Q) | |
2 | 1 | sselda 3142 | 1 ⊢ ((〈𝐿, 𝑈〉 ∈ P ∧ 𝐵 ∈ 𝐿) → 𝐵 ∈ Q) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∈ wcel 2136 〈cop 3579 Qcnq 7221 Pcnp 7232 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-iinf 4565 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-qs 6507 df-ni 7245 df-nqqs 7289 df-inp 7407 |
This theorem is referenced by: prubl 7427 prnmaxl 7429 prarloclemlt 7434 prarloclemlo 7435 prarloclem5 7441 genpdf 7449 genipv 7450 genpelvl 7453 genpml 7458 genprndl 7462 genpassl 7465 addnqprllem 7468 addnqprl 7470 addlocprlemeqgt 7473 addlocprlemgt 7475 addlocprlem 7476 nqprl 7492 prmuloc 7507 mulnqprl 7509 addcomprg 7519 mulcomprg 7521 distrlem1prl 7523 distrlem4prl 7525 1idprl 7531 ltsopr 7537 ltexprlemm 7541 ltexprlemopl 7542 ltexprlemopu 7544 ltexprlemupu 7545 ltexprlemdisj 7547 ltexprlemloc 7548 ltexprlemfl 7550 ltexprlemrl 7551 ltexprlemfu 7552 ltexprlemru 7553 addcanprleml 7555 addcanprlemu 7556 recexprlemloc 7572 recexprlem1ssl 7574 recexprlem1ssu 7575 recexprlemss1l 7576 aptiprleml 7580 aptiprlemu 7581 caucvgprprlemopl 7638 suplocexprlemex 7663 |
Copyright terms: Public domain | W3C validator |