![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ltapii | GIF version |
Description: 'Less than' implies apart. (Contributed by Jim Kingdon, 12-Aug-2021.) |
Ref | Expression |
---|---|
ltapii.a | ⊢ 𝐴 ∈ ℝ |
ltapii.b | ⊢ 𝐵 ∈ ℝ |
ltapii.lt | ⊢ 𝐴 < 𝐵 |
Ref | Expression |
---|---|
ltapii | ⊢ 𝐴 # 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltapii.a | . . 3 ⊢ 𝐴 ∈ ℝ | |
2 | ltapii.b | . . 3 ⊢ 𝐵 ∈ ℝ | |
3 | ltapii.lt | . . 3 ⊢ 𝐴 < 𝐵 | |
4 | 1, 2, 3 | gtapii 8643 | . 2 ⊢ 𝐵 # 𝐴 |
5 | 2 | recni 8021 | . . 3 ⊢ 𝐵 ∈ ℂ |
6 | 1 | recni 8021 | . . 3 ⊢ 𝐴 ∈ ℂ |
7 | apsym 8615 | . . 3 ⊢ ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (𝐵 # 𝐴 ↔ 𝐴 # 𝐵)) | |
8 | 5, 6, 7 | mp2an 426 | . 2 ⊢ (𝐵 # 𝐴 ↔ 𝐴 # 𝐵) |
9 | 4, 8 | mpbi 145 | 1 ⊢ 𝐴 # 𝐵 |
Colors of variables: wff set class |
Syntax hints: ↔ wb 105 ∈ wcel 2164 class class class wbr 4029 ℂcc 7860 ℝcr 7861 < clt 8044 # cap 8590 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4462 ax-setind 4565 ax-cnex 7953 ax-resscn 7954 ax-1cn 7955 ax-1re 7956 ax-icn 7957 ax-addcl 7958 ax-addrcl 7959 ax-mulcl 7960 ax-mulrcl 7961 ax-addcom 7962 ax-mulcom 7963 ax-addass 7964 ax-mulass 7965 ax-distr 7966 ax-i2m1 7967 ax-0lt1 7968 ax-1rid 7969 ax-0id 7970 ax-rnegex 7971 ax-precex 7972 ax-cnre 7973 ax-pre-ltirr 7974 ax-pre-lttrn 7976 ax-pre-apti 7977 ax-pre-ltadd 7978 ax-pre-mulgt0 7979 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2986 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-br 4030 df-opab 4091 df-id 4322 df-xp 4661 df-rel 4662 df-cnv 4663 df-co 4664 df-dm 4665 df-iota 5207 df-fun 5248 df-fv 5254 df-riota 5865 df-ov 5913 df-oprab 5914 df-mpo 5915 df-pnf 8046 df-mnf 8047 df-ltxr 8049 df-sub 8182 df-neg 8183 df-reap 8584 df-ap 8591 |
This theorem is referenced by: 1ap2 9179 geo2sum 11644 cvgcmp2nlemabs 15460 |
Copyright terms: Public domain | W3C validator |