Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > oddpwdc | GIF version |
Description: The function 𝐹 that decomposes a number into its "odd" and "even" parts, which is to say the largest power of two and largest odd divisor of a number, is a bijection from pairs of a nonnegative integer and an odd number to positive integers. (Contributed by Thierry Arnoux, 15-Aug-2017.) |
Ref | Expression |
---|---|
oddpwdc.j | ⊢ 𝐽 = {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} |
oddpwdc.f | ⊢ 𝐹 = (𝑥 ∈ 𝐽, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥)) |
Ref | Expression |
---|---|
oddpwdc | ⊢ 𝐹:(𝐽 × ℕ0)–1-1-onto→ℕ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oddpwdc.f | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐽, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥)) | |
2 | 2cnd 8940 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0) → 2 ∈ ℂ) | |
3 | simpr 109 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0) → 𝑦 ∈ ℕ0) | |
4 | 2, 3 | expcld 10598 | . . . . 5 ⊢ ((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0) → (2↑𝑦) ∈ ℂ) |
5 | breq2 3991 | . . . . . . . . . 10 ⊢ (𝑧 = 𝑥 → (2 ∥ 𝑧 ↔ 2 ∥ 𝑥)) | |
6 | 5 | notbid 662 | . . . . . . . . 9 ⊢ (𝑧 = 𝑥 → (¬ 2 ∥ 𝑧 ↔ ¬ 2 ∥ 𝑥)) |
7 | oddpwdc.j | . . . . . . . . 9 ⊢ 𝐽 = {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} | |
8 | 6, 7 | elrab2 2889 | . . . . . . . 8 ⊢ (𝑥 ∈ 𝐽 ↔ (𝑥 ∈ ℕ ∧ ¬ 2 ∥ 𝑥)) |
9 | 8 | simplbi 272 | . . . . . . 7 ⊢ (𝑥 ∈ 𝐽 → 𝑥 ∈ ℕ) |
10 | 9 | adantr 274 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0) → 𝑥 ∈ ℕ) |
11 | 10 | nncnd 8881 | . . . . 5 ⊢ ((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0) → 𝑥 ∈ ℂ) |
12 | 4, 11 | mulcld 7929 | . . . 4 ⊢ ((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0) → ((2↑𝑦) · 𝑥) ∈ ℂ) |
13 | 12 | adantl 275 | . . 3 ⊢ ((⊤ ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0)) → ((2↑𝑦) · 𝑥) ∈ ℂ) |
14 | nnnn0 9131 | . . . . . 6 ⊢ (𝑎 ∈ ℕ → 𝑎 ∈ ℕ0) | |
15 | 2nn 9028 | . . . . . . 7 ⊢ 2 ∈ ℕ | |
16 | pw2dvdseu 12111 | . . . . . . . 8 ⊢ (𝑎 ∈ ℕ → ∃!𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝑎 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝑎)) | |
17 | riotacl 5821 | . . . . . . . 8 ⊢ (∃!𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝑎 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝑎) → (℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝑎 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝑎)) ∈ ℕ0) | |
18 | 16, 17 | syl 14 | . . . . . . 7 ⊢ (𝑎 ∈ ℕ → (℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝑎 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝑎)) ∈ ℕ0) |
19 | nnexpcl 10478 | . . . . . . 7 ⊢ ((2 ∈ ℕ ∧ (℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝑎 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝑎)) ∈ ℕ0) → (2↑(℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝑎 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝑎))) ∈ ℕ) | |
20 | 15, 18, 19 | sylancr 412 | . . . . . 6 ⊢ (𝑎 ∈ ℕ → (2↑(℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝑎 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝑎))) ∈ ℕ) |
21 | nn0nndivcl 9186 | . . . . . 6 ⊢ ((𝑎 ∈ ℕ0 ∧ (2↑(℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝑎 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝑎))) ∈ ℕ) → (𝑎 / (2↑(℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝑎 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝑎)))) ∈ ℝ) | |
22 | 14, 20, 21 | syl2anc 409 | . . . . 5 ⊢ (𝑎 ∈ ℕ → (𝑎 / (2↑(℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝑎 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝑎)))) ∈ ℝ) |
23 | 22, 18 | jca 304 | . . . 4 ⊢ (𝑎 ∈ ℕ → ((𝑎 / (2↑(℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝑎 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝑎)))) ∈ ℝ ∧ (℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝑎 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝑎)) ∈ ℕ0)) |
24 | 23 | adantl 275 | . . 3 ⊢ ((⊤ ∧ 𝑎 ∈ ℕ) → ((𝑎 / (2↑(℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝑎 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝑎)))) ∈ ℝ ∧ (℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝑎 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝑎)) ∈ ℕ0)) |
25 | 8 | anbi1i 455 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0) ↔ ((𝑥 ∈ ℕ ∧ ¬ 2 ∥ 𝑥) ∧ 𝑦 ∈ ℕ0)) |
26 | 25 | anbi1i 455 | . . . . 5 ⊢ (((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ↔ (((𝑥 ∈ ℕ ∧ ¬ 2 ∥ 𝑥) ∧ 𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥))) |
27 | oddpwdclemdc 12116 | . . . . 5 ⊢ ((((𝑥 ∈ ℕ ∧ ¬ 2 ∥ 𝑥) ∧ 𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ↔ (𝑎 ∈ ℕ ∧ (𝑥 = (𝑎 / (2↑(℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝑎 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝑎)))) ∧ 𝑦 = (℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝑎 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝑎))))) | |
28 | 26, 27 | bitri 183 | . . . 4 ⊢ (((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ↔ (𝑎 ∈ ℕ ∧ (𝑥 = (𝑎 / (2↑(℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝑎 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝑎)))) ∧ 𝑦 = (℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝑎 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝑎))))) |
29 | 28 | a1i 9 | . . 3 ⊢ (⊤ → (((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ↔ (𝑎 ∈ ℕ ∧ (𝑥 = (𝑎 / (2↑(℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝑎 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝑎)))) ∧ 𝑦 = (℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝑎 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝑎)))))) |
30 | 1, 13, 24, 29 | f1od2 6212 | . 2 ⊢ (⊤ → 𝐹:(𝐽 × ℕ0)–1-1-onto→ℕ) |
31 | 30 | mptru 1357 | 1 ⊢ 𝐹:(𝐽 × ℕ0)–1-1-onto→ℕ |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 ∧ wa 103 ↔ wb 104 = wceq 1348 ⊤wtru 1349 ∈ wcel 2141 ∃!wreu 2450 {crab 2452 class class class wbr 3987 × cxp 4607 –1-1-onto→wf1o 5195 ℩crio 5806 (class class class)co 5851 ∈ cmpo 5853 ℂcc 7761 ℝcr 7762 1c1 7764 + caddc 7766 · cmul 7768 / cdiv 8578 ℕcn 8867 2c2 8918 ℕ0cn0 9124 ↑cexp 10464 ∥ cdvds 11738 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4102 ax-sep 4105 ax-nul 4113 ax-pow 4158 ax-pr 4192 ax-un 4416 ax-setind 4519 ax-iinf 4570 ax-cnex 7854 ax-resscn 7855 ax-1cn 7856 ax-1re 7857 ax-icn 7858 ax-addcl 7859 ax-addrcl 7860 ax-mulcl 7861 ax-mulrcl 7862 ax-addcom 7863 ax-mulcom 7864 ax-addass 7865 ax-mulass 7866 ax-distr 7867 ax-i2m1 7868 ax-0lt1 7869 ax-1rid 7870 ax-0id 7871 ax-rnegex 7872 ax-precex 7873 ax-cnre 7874 ax-pre-ltirr 7875 ax-pre-ltwlin 7876 ax-pre-lttrn 7877 ax-pre-apti 7878 ax-pre-ltadd 7879 ax-pre-mulgt0 7880 ax-pre-mulext 7881 ax-arch 7882 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rmo 2456 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-if 3526 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-int 3830 df-iun 3873 df-br 3988 df-opab 4049 df-mpt 4050 df-tr 4086 df-id 4276 df-po 4279 df-iso 4280 df-iord 4349 df-on 4351 df-ilim 4352 df-suc 4354 df-iom 4573 df-xp 4615 df-rel 4616 df-cnv 4617 df-co 4618 df-dm 4619 df-rn 4620 df-res 4621 df-ima 4622 df-iota 5158 df-fun 5198 df-fn 5199 df-f 5200 df-f1 5201 df-fo 5202 df-f1o 5203 df-fv 5204 df-riota 5807 df-ov 5854 df-oprab 5855 df-mpo 5856 df-1st 6117 df-2nd 6118 df-recs 6282 df-frec 6368 df-pnf 7945 df-mnf 7946 df-xr 7947 df-ltxr 7948 df-le 7949 df-sub 8081 df-neg 8082 df-reap 8483 df-ap 8490 df-div 8579 df-inn 8868 df-2 8926 df-n0 9125 df-z 9202 df-uz 9477 df-q 9568 df-rp 9600 df-fz 9955 df-fl 10215 df-mod 10268 df-seqfrec 10391 df-exp 10465 df-dvds 11739 |
This theorem is referenced by: sqpweven 12118 2sqpwodd 12119 xpnnen 12338 |
Copyright terms: Public domain | W3C validator |