![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > oddpwdc | GIF version |
Description: The function 𝐹 that decomposes a number into its "odd" and "even" parts, which is to say the largest power of two and largest odd divisor of a number, is a bijection from pairs of a nonnegative integer and an odd number to positive integers. (Contributed by Thierry Arnoux, 15-Aug-2017.) |
Ref | Expression |
---|---|
oddpwdc.j | ⊢ 𝐽 = {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} |
oddpwdc.f | ⊢ 𝐹 = (𝑥 ∈ 𝐽, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥)) |
Ref | Expression |
---|---|
oddpwdc | ⊢ 𝐹:(𝐽 × ℕ0)–1-1-onto→ℕ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oddpwdc.f | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐽, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥)) | |
2 | 2cnd 9010 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0) → 2 ∈ ℂ) | |
3 | simpr 110 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0) → 𝑦 ∈ ℕ0) | |
4 | 2, 3 | expcld 10672 | . . . . 5 ⊢ ((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0) → (2↑𝑦) ∈ ℂ) |
5 | breq2 4022 | . . . . . . . . . 10 ⊢ (𝑧 = 𝑥 → (2 ∥ 𝑧 ↔ 2 ∥ 𝑥)) | |
6 | 5 | notbid 668 | . . . . . . . . 9 ⊢ (𝑧 = 𝑥 → (¬ 2 ∥ 𝑧 ↔ ¬ 2 ∥ 𝑥)) |
7 | oddpwdc.j | . . . . . . . . 9 ⊢ 𝐽 = {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} | |
8 | 6, 7 | elrab2 2911 | . . . . . . . 8 ⊢ (𝑥 ∈ 𝐽 ↔ (𝑥 ∈ ℕ ∧ ¬ 2 ∥ 𝑥)) |
9 | 8 | simplbi 274 | . . . . . . 7 ⊢ (𝑥 ∈ 𝐽 → 𝑥 ∈ ℕ) |
10 | 9 | adantr 276 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0) → 𝑥 ∈ ℕ) |
11 | 10 | nncnd 8951 | . . . . 5 ⊢ ((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0) → 𝑥 ∈ ℂ) |
12 | 4, 11 | mulcld 7996 | . . . 4 ⊢ ((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0) → ((2↑𝑦) · 𝑥) ∈ ℂ) |
13 | 12 | adantl 277 | . . 3 ⊢ ((⊤ ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0)) → ((2↑𝑦) · 𝑥) ∈ ℂ) |
14 | nnnn0 9201 | . . . . . 6 ⊢ (𝑎 ∈ ℕ → 𝑎 ∈ ℕ0) | |
15 | 2nn 9098 | . . . . . . 7 ⊢ 2 ∈ ℕ | |
16 | pw2dvdseu 12186 | . . . . . . . 8 ⊢ (𝑎 ∈ ℕ → ∃!𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝑎 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝑎)) | |
17 | riotacl 5861 | . . . . . . . 8 ⊢ (∃!𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝑎 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝑎) → (℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝑎 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝑎)) ∈ ℕ0) | |
18 | 16, 17 | syl 14 | . . . . . . 7 ⊢ (𝑎 ∈ ℕ → (℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝑎 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝑎)) ∈ ℕ0) |
19 | nnexpcl 10551 | . . . . . . 7 ⊢ ((2 ∈ ℕ ∧ (℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝑎 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝑎)) ∈ ℕ0) → (2↑(℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝑎 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝑎))) ∈ ℕ) | |
20 | 15, 18, 19 | sylancr 414 | . . . . . 6 ⊢ (𝑎 ∈ ℕ → (2↑(℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝑎 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝑎))) ∈ ℕ) |
21 | nn0nndivcl 9256 | . . . . . 6 ⊢ ((𝑎 ∈ ℕ0 ∧ (2↑(℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝑎 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝑎))) ∈ ℕ) → (𝑎 / (2↑(℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝑎 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝑎)))) ∈ ℝ) | |
22 | 14, 20, 21 | syl2anc 411 | . . . . 5 ⊢ (𝑎 ∈ ℕ → (𝑎 / (2↑(℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝑎 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝑎)))) ∈ ℝ) |
23 | 22, 18 | jca 306 | . . . 4 ⊢ (𝑎 ∈ ℕ → ((𝑎 / (2↑(℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝑎 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝑎)))) ∈ ℝ ∧ (℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝑎 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝑎)) ∈ ℕ0)) |
24 | 23 | adantl 277 | . . 3 ⊢ ((⊤ ∧ 𝑎 ∈ ℕ) → ((𝑎 / (2↑(℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝑎 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝑎)))) ∈ ℝ ∧ (℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝑎 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝑎)) ∈ ℕ0)) |
25 | 8 | anbi1i 458 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0) ↔ ((𝑥 ∈ ℕ ∧ ¬ 2 ∥ 𝑥) ∧ 𝑦 ∈ ℕ0)) |
26 | 25 | anbi1i 458 | . . . . 5 ⊢ (((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ↔ (((𝑥 ∈ ℕ ∧ ¬ 2 ∥ 𝑥) ∧ 𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥))) |
27 | oddpwdclemdc 12191 | . . . . 5 ⊢ ((((𝑥 ∈ ℕ ∧ ¬ 2 ∥ 𝑥) ∧ 𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ↔ (𝑎 ∈ ℕ ∧ (𝑥 = (𝑎 / (2↑(℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝑎 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝑎)))) ∧ 𝑦 = (℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝑎 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝑎))))) | |
28 | 26, 27 | bitri 184 | . . . 4 ⊢ (((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ↔ (𝑎 ∈ ℕ ∧ (𝑥 = (𝑎 / (2↑(℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝑎 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝑎)))) ∧ 𝑦 = (℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝑎 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝑎))))) |
29 | 28 | a1i 9 | . . 3 ⊢ (⊤ → (((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ↔ (𝑎 ∈ ℕ ∧ (𝑥 = (𝑎 / (2↑(℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝑎 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝑎)))) ∧ 𝑦 = (℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝑎 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝑎)))))) |
30 | 1, 13, 24, 29 | f1od2 6254 | . 2 ⊢ (⊤ → 𝐹:(𝐽 × ℕ0)–1-1-onto→ℕ) |
31 | 30 | mptru 1373 | 1 ⊢ 𝐹:(𝐽 × ℕ0)–1-1-onto→ℕ |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 ∧ wa 104 ↔ wb 105 = wceq 1364 ⊤wtru 1365 ∈ wcel 2160 ∃!wreu 2470 {crab 2472 class class class wbr 4018 × cxp 4639 –1-1-onto→wf1o 5230 ℩crio 5846 (class class class)co 5891 ∈ cmpo 5893 ℂcc 7827 ℝcr 7828 1c1 7830 + caddc 7832 · cmul 7834 / cdiv 8647 ℕcn 8937 2c2 8988 ℕ0cn0 9194 ↑cexp 10537 ∥ cdvds 11812 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-coll 4133 ax-sep 4136 ax-nul 4144 ax-pow 4189 ax-pr 4224 ax-un 4448 ax-setind 4551 ax-iinf 4602 ax-cnex 7920 ax-resscn 7921 ax-1cn 7922 ax-1re 7923 ax-icn 7924 ax-addcl 7925 ax-addrcl 7926 ax-mulcl 7927 ax-mulrcl 7928 ax-addcom 7929 ax-mulcom 7930 ax-addass 7931 ax-mulass 7932 ax-distr 7933 ax-i2m1 7934 ax-0lt1 7935 ax-1rid 7936 ax-0id 7937 ax-rnegex 7938 ax-precex 7939 ax-cnre 7940 ax-pre-ltirr 7941 ax-pre-ltwlin 7942 ax-pre-lttrn 7943 ax-pre-apti 7944 ax-pre-ltadd 7945 ax-pre-mulgt0 7946 ax-pre-mulext 7947 ax-arch 7948 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-nel 2456 df-ral 2473 df-rex 2474 df-reu 2475 df-rmo 2476 df-rab 2477 df-v 2754 df-sbc 2978 df-csb 3073 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-nul 3438 df-if 3550 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-int 3860 df-iun 3903 df-br 4019 df-opab 4080 df-mpt 4081 df-tr 4117 df-id 4308 df-po 4311 df-iso 4312 df-iord 4381 df-on 4383 df-ilim 4384 df-suc 4386 df-iom 4605 df-xp 4647 df-rel 4648 df-cnv 4649 df-co 4650 df-dm 4651 df-rn 4652 df-res 4653 df-ima 4654 df-iota 5193 df-fun 5233 df-fn 5234 df-f 5235 df-f1 5236 df-fo 5237 df-f1o 5238 df-fv 5239 df-riota 5847 df-ov 5894 df-oprab 5895 df-mpo 5896 df-1st 6159 df-2nd 6160 df-recs 6324 df-frec 6410 df-pnf 8012 df-mnf 8013 df-xr 8014 df-ltxr 8015 df-le 8016 df-sub 8148 df-neg 8149 df-reap 8550 df-ap 8557 df-div 8648 df-inn 8938 df-2 8996 df-n0 9195 df-z 9272 df-uz 9547 df-q 9638 df-rp 9672 df-fz 10027 df-fl 10288 df-mod 10341 df-seqfrec 10464 df-exp 10538 df-dvds 11813 |
This theorem is referenced by: sqpweven 12193 2sqpwodd 12194 xpnnen 12413 |
Copyright terms: Public domain | W3C validator |