| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > oddpwdc | GIF version | ||
| Description: The function 𝐹 that decomposes a number into its "odd" and "even" parts, which is to say the largest power of two and largest odd divisor of a number, is a bijection from pairs of a nonnegative integer and an odd number to positive integers. (Contributed by Thierry Arnoux, 15-Aug-2017.) |
| Ref | Expression |
|---|---|
| oddpwdc.j | ⊢ 𝐽 = {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} |
| oddpwdc.f | ⊢ 𝐹 = (𝑥 ∈ 𝐽, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥)) |
| Ref | Expression |
|---|---|
| oddpwdc | ⊢ 𝐹:(𝐽 × ℕ0)–1-1-onto→ℕ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oddpwdc.f | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐽, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥)) | |
| 2 | 2cnd 9122 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0) → 2 ∈ ℂ) | |
| 3 | simpr 110 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0) → 𝑦 ∈ ℕ0) | |
| 4 | 2, 3 | expcld 10831 | . . . . 5 ⊢ ((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0) → (2↑𝑦) ∈ ℂ) |
| 5 | breq2 4052 | . . . . . . . . . 10 ⊢ (𝑧 = 𝑥 → (2 ∥ 𝑧 ↔ 2 ∥ 𝑥)) | |
| 6 | 5 | notbid 669 | . . . . . . . . 9 ⊢ (𝑧 = 𝑥 → (¬ 2 ∥ 𝑧 ↔ ¬ 2 ∥ 𝑥)) |
| 7 | oddpwdc.j | . . . . . . . . 9 ⊢ 𝐽 = {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} | |
| 8 | 6, 7 | elrab2 2934 | . . . . . . . 8 ⊢ (𝑥 ∈ 𝐽 ↔ (𝑥 ∈ ℕ ∧ ¬ 2 ∥ 𝑥)) |
| 9 | 8 | simplbi 274 | . . . . . . 7 ⊢ (𝑥 ∈ 𝐽 → 𝑥 ∈ ℕ) |
| 10 | 9 | adantr 276 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0) → 𝑥 ∈ ℕ) |
| 11 | 10 | nncnd 9063 | . . . . 5 ⊢ ((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0) → 𝑥 ∈ ℂ) |
| 12 | 4, 11 | mulcld 8106 | . . . 4 ⊢ ((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0) → ((2↑𝑦) · 𝑥) ∈ ℂ) |
| 13 | 12 | adantl 277 | . . 3 ⊢ ((⊤ ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0)) → ((2↑𝑦) · 𝑥) ∈ ℂ) |
| 14 | nnnn0 9315 | . . . . . 6 ⊢ (𝑎 ∈ ℕ → 𝑎 ∈ ℕ0) | |
| 15 | 2nn 9211 | . . . . . . 7 ⊢ 2 ∈ ℕ | |
| 16 | pw2dvdseu 12540 | . . . . . . . 8 ⊢ (𝑎 ∈ ℕ → ∃!𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝑎 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝑎)) | |
| 17 | riotacl 5924 | . . . . . . . 8 ⊢ (∃!𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝑎 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝑎) → (℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝑎 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝑎)) ∈ ℕ0) | |
| 18 | 16, 17 | syl 14 | . . . . . . 7 ⊢ (𝑎 ∈ ℕ → (℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝑎 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝑎)) ∈ ℕ0) |
| 19 | nnexpcl 10710 | . . . . . . 7 ⊢ ((2 ∈ ℕ ∧ (℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝑎 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝑎)) ∈ ℕ0) → (2↑(℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝑎 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝑎))) ∈ ℕ) | |
| 20 | 15, 18, 19 | sylancr 414 | . . . . . 6 ⊢ (𝑎 ∈ ℕ → (2↑(℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝑎 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝑎))) ∈ ℕ) |
| 21 | nn0nndivcl 9370 | . . . . . 6 ⊢ ((𝑎 ∈ ℕ0 ∧ (2↑(℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝑎 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝑎))) ∈ ℕ) → (𝑎 / (2↑(℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝑎 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝑎)))) ∈ ℝ) | |
| 22 | 14, 20, 21 | syl2anc 411 | . . . . 5 ⊢ (𝑎 ∈ ℕ → (𝑎 / (2↑(℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝑎 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝑎)))) ∈ ℝ) |
| 23 | 22, 18 | jca 306 | . . . 4 ⊢ (𝑎 ∈ ℕ → ((𝑎 / (2↑(℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝑎 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝑎)))) ∈ ℝ ∧ (℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝑎 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝑎)) ∈ ℕ0)) |
| 24 | 23 | adantl 277 | . . 3 ⊢ ((⊤ ∧ 𝑎 ∈ ℕ) → ((𝑎 / (2↑(℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝑎 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝑎)))) ∈ ℝ ∧ (℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝑎 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝑎)) ∈ ℕ0)) |
| 25 | 8 | anbi1i 458 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0) ↔ ((𝑥 ∈ ℕ ∧ ¬ 2 ∥ 𝑥) ∧ 𝑦 ∈ ℕ0)) |
| 26 | 25 | anbi1i 458 | . . . . 5 ⊢ (((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ↔ (((𝑥 ∈ ℕ ∧ ¬ 2 ∥ 𝑥) ∧ 𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥))) |
| 27 | oddpwdclemdc 12545 | . . . . 5 ⊢ ((((𝑥 ∈ ℕ ∧ ¬ 2 ∥ 𝑥) ∧ 𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ↔ (𝑎 ∈ ℕ ∧ (𝑥 = (𝑎 / (2↑(℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝑎 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝑎)))) ∧ 𝑦 = (℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝑎 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝑎))))) | |
| 28 | 26, 27 | bitri 184 | . . . 4 ⊢ (((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ↔ (𝑎 ∈ ℕ ∧ (𝑥 = (𝑎 / (2↑(℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝑎 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝑎)))) ∧ 𝑦 = (℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝑎 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝑎))))) |
| 29 | 28 | a1i 9 | . . 3 ⊢ (⊤ → (((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ↔ (𝑎 ∈ ℕ ∧ (𝑥 = (𝑎 / (2↑(℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝑎 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝑎)))) ∧ 𝑦 = (℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝑎 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝑎)))))) |
| 30 | 1, 13, 24, 29 | f1od2 6331 | . 2 ⊢ (⊤ → 𝐹:(𝐽 × ℕ0)–1-1-onto→ℕ) |
| 31 | 30 | mptru 1382 | 1 ⊢ 𝐹:(𝐽 × ℕ0)–1-1-onto→ℕ |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 ∧ wa 104 ↔ wb 105 = wceq 1373 ⊤wtru 1374 ∈ wcel 2177 ∃!wreu 2487 {crab 2489 class class class wbr 4048 × cxp 4678 –1-1-onto→wf1o 5276 ℩crio 5908 (class class class)co 5954 ∈ cmpo 5956 ℂcc 7936 ℝcr 7937 1c1 7939 + caddc 7941 · cmul 7943 / cdiv 8758 ℕcn 9049 2c2 9100 ℕ0cn0 9308 ↑cexp 10696 ∥ cdvds 12148 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4164 ax-sep 4167 ax-nul 4175 ax-pow 4223 ax-pr 4258 ax-un 4485 ax-setind 4590 ax-iinf 4641 ax-cnex 8029 ax-resscn 8030 ax-1cn 8031 ax-1re 8032 ax-icn 8033 ax-addcl 8034 ax-addrcl 8035 ax-mulcl 8036 ax-mulrcl 8037 ax-addcom 8038 ax-mulcom 8039 ax-addass 8040 ax-mulass 8041 ax-distr 8042 ax-i2m1 8043 ax-0lt1 8044 ax-1rid 8045 ax-0id 8046 ax-rnegex 8047 ax-precex 8048 ax-cnre 8049 ax-pre-ltirr 8050 ax-pre-ltwlin 8051 ax-pre-lttrn 8052 ax-pre-apti 8053 ax-pre-ltadd 8054 ax-pre-mulgt0 8055 ax-pre-mulext 8056 ax-arch 8057 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3001 df-csb 3096 df-dif 3170 df-un 3172 df-in 3174 df-ss 3181 df-nul 3463 df-if 3574 df-pw 3620 df-sn 3641 df-pr 3642 df-op 3644 df-uni 3854 df-int 3889 df-iun 3932 df-br 4049 df-opab 4111 df-mpt 4112 df-tr 4148 df-id 4345 df-po 4348 df-iso 4349 df-iord 4418 df-on 4420 df-ilim 4421 df-suc 4423 df-iom 4644 df-xp 4686 df-rel 4687 df-cnv 4688 df-co 4689 df-dm 4690 df-rn 4691 df-res 4692 df-ima 4693 df-iota 5238 df-fun 5279 df-fn 5280 df-f 5281 df-f1 5282 df-fo 5283 df-f1o 5284 df-fv 5285 df-riota 5909 df-ov 5957 df-oprab 5958 df-mpo 5959 df-1st 6236 df-2nd 6237 df-recs 6401 df-frec 6487 df-pnf 8122 df-mnf 8123 df-xr 8124 df-ltxr 8125 df-le 8126 df-sub 8258 df-neg 8259 df-reap 8661 df-ap 8668 df-div 8759 df-inn 9050 df-2 9108 df-n0 9309 df-z 9386 df-uz 9662 df-q 9754 df-rp 9789 df-fz 10144 df-fl 10426 df-mod 10481 df-seqfrec 10606 df-exp 10697 df-dvds 12149 |
| This theorem is referenced by: sqpweven 12547 2sqpwodd 12548 xpnnen 12815 |
| Copyright terms: Public domain | W3C validator |