| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > oddpwdc | GIF version | ||
| Description: The function 𝐹 that decomposes a number into its "odd" and "even" parts, which is to say the largest power of two and largest odd divisor of a number, is a bijection from pairs of a nonnegative integer and an odd number to positive integers. (Contributed by Thierry Arnoux, 15-Aug-2017.) |
| Ref | Expression |
|---|---|
| oddpwdc.j | ⊢ 𝐽 = {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} |
| oddpwdc.f | ⊢ 𝐹 = (𝑥 ∈ 𝐽, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥)) |
| Ref | Expression |
|---|---|
| oddpwdc | ⊢ 𝐹:(𝐽 × ℕ0)–1-1-onto→ℕ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oddpwdc.f | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐽, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥)) | |
| 2 | 2cnd 9171 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0) → 2 ∈ ℂ) | |
| 3 | simpr 110 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0) → 𝑦 ∈ ℕ0) | |
| 4 | 2, 3 | expcld 10882 | . . . . 5 ⊢ ((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0) → (2↑𝑦) ∈ ℂ) |
| 5 | breq2 4086 | . . . . . . . . . 10 ⊢ (𝑧 = 𝑥 → (2 ∥ 𝑧 ↔ 2 ∥ 𝑥)) | |
| 6 | 5 | notbid 671 | . . . . . . . . 9 ⊢ (𝑧 = 𝑥 → (¬ 2 ∥ 𝑧 ↔ ¬ 2 ∥ 𝑥)) |
| 7 | oddpwdc.j | . . . . . . . . 9 ⊢ 𝐽 = {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} | |
| 8 | 6, 7 | elrab2 2962 | . . . . . . . 8 ⊢ (𝑥 ∈ 𝐽 ↔ (𝑥 ∈ ℕ ∧ ¬ 2 ∥ 𝑥)) |
| 9 | 8 | simplbi 274 | . . . . . . 7 ⊢ (𝑥 ∈ 𝐽 → 𝑥 ∈ ℕ) |
| 10 | 9 | adantr 276 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0) → 𝑥 ∈ ℕ) |
| 11 | 10 | nncnd 9112 | . . . . 5 ⊢ ((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0) → 𝑥 ∈ ℂ) |
| 12 | 4, 11 | mulcld 8155 | . . . 4 ⊢ ((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0) → ((2↑𝑦) · 𝑥) ∈ ℂ) |
| 13 | 12 | adantl 277 | . . 3 ⊢ ((⊤ ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0)) → ((2↑𝑦) · 𝑥) ∈ ℂ) |
| 14 | nnnn0 9364 | . . . . . 6 ⊢ (𝑎 ∈ ℕ → 𝑎 ∈ ℕ0) | |
| 15 | 2nn 9260 | . . . . . . 7 ⊢ 2 ∈ ℕ | |
| 16 | pw2dvdseu 12676 | . . . . . . . 8 ⊢ (𝑎 ∈ ℕ → ∃!𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝑎 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝑎)) | |
| 17 | riotacl 5963 | . . . . . . . 8 ⊢ (∃!𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝑎 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝑎) → (℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝑎 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝑎)) ∈ ℕ0) | |
| 18 | 16, 17 | syl 14 | . . . . . . 7 ⊢ (𝑎 ∈ ℕ → (℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝑎 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝑎)) ∈ ℕ0) |
| 19 | nnexpcl 10761 | . . . . . . 7 ⊢ ((2 ∈ ℕ ∧ (℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝑎 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝑎)) ∈ ℕ0) → (2↑(℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝑎 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝑎))) ∈ ℕ) | |
| 20 | 15, 18, 19 | sylancr 414 | . . . . . 6 ⊢ (𝑎 ∈ ℕ → (2↑(℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝑎 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝑎))) ∈ ℕ) |
| 21 | nn0nndivcl 9419 | . . . . . 6 ⊢ ((𝑎 ∈ ℕ0 ∧ (2↑(℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝑎 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝑎))) ∈ ℕ) → (𝑎 / (2↑(℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝑎 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝑎)))) ∈ ℝ) | |
| 22 | 14, 20, 21 | syl2anc 411 | . . . . 5 ⊢ (𝑎 ∈ ℕ → (𝑎 / (2↑(℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝑎 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝑎)))) ∈ ℝ) |
| 23 | 22, 18 | jca 306 | . . . 4 ⊢ (𝑎 ∈ ℕ → ((𝑎 / (2↑(℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝑎 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝑎)))) ∈ ℝ ∧ (℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝑎 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝑎)) ∈ ℕ0)) |
| 24 | 23 | adantl 277 | . . 3 ⊢ ((⊤ ∧ 𝑎 ∈ ℕ) → ((𝑎 / (2↑(℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝑎 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝑎)))) ∈ ℝ ∧ (℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝑎 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝑎)) ∈ ℕ0)) |
| 25 | 8 | anbi1i 458 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0) ↔ ((𝑥 ∈ ℕ ∧ ¬ 2 ∥ 𝑥) ∧ 𝑦 ∈ ℕ0)) |
| 26 | 25 | anbi1i 458 | . . . . 5 ⊢ (((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ↔ (((𝑥 ∈ ℕ ∧ ¬ 2 ∥ 𝑥) ∧ 𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥))) |
| 27 | oddpwdclemdc 12681 | . . . . 5 ⊢ ((((𝑥 ∈ ℕ ∧ ¬ 2 ∥ 𝑥) ∧ 𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ↔ (𝑎 ∈ ℕ ∧ (𝑥 = (𝑎 / (2↑(℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝑎 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝑎)))) ∧ 𝑦 = (℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝑎 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝑎))))) | |
| 28 | 26, 27 | bitri 184 | . . . 4 ⊢ (((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ↔ (𝑎 ∈ ℕ ∧ (𝑥 = (𝑎 / (2↑(℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝑎 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝑎)))) ∧ 𝑦 = (℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝑎 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝑎))))) |
| 29 | 28 | a1i 9 | . . 3 ⊢ (⊤ → (((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ↔ (𝑎 ∈ ℕ ∧ (𝑥 = (𝑎 / (2↑(℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝑎 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝑎)))) ∧ 𝑦 = (℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝑎 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝑎)))))) |
| 30 | 1, 13, 24, 29 | f1od2 6371 | . 2 ⊢ (⊤ → 𝐹:(𝐽 × ℕ0)–1-1-onto→ℕ) |
| 31 | 30 | mptru 1404 | 1 ⊢ 𝐹:(𝐽 × ℕ0)–1-1-onto→ℕ |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 ∧ wa 104 ↔ wb 105 = wceq 1395 ⊤wtru 1396 ∈ wcel 2200 ∃!wreu 2510 {crab 2512 class class class wbr 4082 × cxp 4714 –1-1-onto→wf1o 5313 ℩crio 5946 (class class class)co 5994 ∈ cmpo 5996 ℂcc 7985 ℝcr 7986 1c1 7988 + caddc 7990 · cmul 7992 / cdiv 8807 ℕcn 9098 2c2 9149 ℕ0cn0 9357 ↑cexp 10747 ∥ cdvds 12284 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4521 ax-setind 4626 ax-iinf 4677 ax-cnex 8078 ax-resscn 8079 ax-1cn 8080 ax-1re 8081 ax-icn 8082 ax-addcl 8083 ax-addrcl 8084 ax-mulcl 8085 ax-mulrcl 8086 ax-addcom 8087 ax-mulcom 8088 ax-addass 8089 ax-mulass 8090 ax-distr 8091 ax-i2m1 8092 ax-0lt1 8093 ax-1rid 8094 ax-0id 8095 ax-rnegex 8096 ax-precex 8097 ax-cnre 8098 ax-pre-ltirr 8099 ax-pre-ltwlin 8100 ax-pre-lttrn 8101 ax-pre-apti 8102 ax-pre-ltadd 8103 ax-pre-mulgt0 8104 ax-pre-mulext 8105 ax-arch 8106 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-id 4381 df-po 4384 df-iso 4385 df-iord 4454 df-on 4456 df-ilim 4457 df-suc 4459 df-iom 4680 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-rn 4727 df-res 4728 df-ima 4729 df-iota 5274 df-fun 5316 df-fn 5317 df-f 5318 df-f1 5319 df-fo 5320 df-f1o 5321 df-fv 5322 df-riota 5947 df-ov 5997 df-oprab 5998 df-mpo 5999 df-1st 6276 df-2nd 6277 df-recs 6441 df-frec 6527 df-pnf 8171 df-mnf 8172 df-xr 8173 df-ltxr 8174 df-le 8175 df-sub 8307 df-neg 8308 df-reap 8710 df-ap 8717 df-div 8808 df-inn 9099 df-2 9157 df-n0 9358 df-z 9435 df-uz 9711 df-q 9803 df-rp 9838 df-fz 10193 df-fl 10477 df-mod 10532 df-seqfrec 10657 df-exp 10748 df-dvds 12285 |
| This theorem is referenced by: sqpweven 12683 2sqpwodd 12684 xpnnen 12951 |
| Copyright terms: Public domain | W3C validator |