| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > oddpwdc | GIF version | ||
| Description: The function 𝐹 that decomposes a number into its "odd" and "even" parts, which is to say the largest power of two and largest odd divisor of a number, is a bijection from pairs of a nonnegative integer and an odd number to positive integers. (Contributed by Thierry Arnoux, 15-Aug-2017.) |
| Ref | Expression |
|---|---|
| oddpwdc.j | ⊢ 𝐽 = {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} |
| oddpwdc.f | ⊢ 𝐹 = (𝑥 ∈ 𝐽, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥)) |
| Ref | Expression |
|---|---|
| oddpwdc | ⊢ 𝐹:(𝐽 × ℕ0)–1-1-onto→ℕ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oddpwdc.f | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐽, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥)) | |
| 2 | 2cnd 9191 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0) → 2 ∈ ℂ) | |
| 3 | simpr 110 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0) → 𝑦 ∈ ℕ0) | |
| 4 | 2, 3 | expcld 10903 | . . . . 5 ⊢ ((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0) → (2↑𝑦) ∈ ℂ) |
| 5 | breq2 4087 | . . . . . . . . . 10 ⊢ (𝑧 = 𝑥 → (2 ∥ 𝑧 ↔ 2 ∥ 𝑥)) | |
| 6 | 5 | notbid 671 | . . . . . . . . 9 ⊢ (𝑧 = 𝑥 → (¬ 2 ∥ 𝑧 ↔ ¬ 2 ∥ 𝑥)) |
| 7 | oddpwdc.j | . . . . . . . . 9 ⊢ 𝐽 = {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} | |
| 8 | 6, 7 | elrab2 2962 | . . . . . . . 8 ⊢ (𝑥 ∈ 𝐽 ↔ (𝑥 ∈ ℕ ∧ ¬ 2 ∥ 𝑥)) |
| 9 | 8 | simplbi 274 | . . . . . . 7 ⊢ (𝑥 ∈ 𝐽 → 𝑥 ∈ ℕ) |
| 10 | 9 | adantr 276 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0) → 𝑥 ∈ ℕ) |
| 11 | 10 | nncnd 9132 | . . . . 5 ⊢ ((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0) → 𝑥 ∈ ℂ) |
| 12 | 4, 11 | mulcld 8175 | . . . 4 ⊢ ((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0) → ((2↑𝑦) · 𝑥) ∈ ℂ) |
| 13 | 12 | adantl 277 | . . 3 ⊢ ((⊤ ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0)) → ((2↑𝑦) · 𝑥) ∈ ℂ) |
| 14 | nnnn0 9384 | . . . . . 6 ⊢ (𝑎 ∈ ℕ → 𝑎 ∈ ℕ0) | |
| 15 | 2nn 9280 | . . . . . . 7 ⊢ 2 ∈ ℕ | |
| 16 | pw2dvdseu 12698 | . . . . . . . 8 ⊢ (𝑎 ∈ ℕ → ∃!𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝑎 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝑎)) | |
| 17 | riotacl 5976 | . . . . . . . 8 ⊢ (∃!𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝑎 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝑎) → (℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝑎 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝑎)) ∈ ℕ0) | |
| 18 | 16, 17 | syl 14 | . . . . . . 7 ⊢ (𝑎 ∈ ℕ → (℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝑎 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝑎)) ∈ ℕ0) |
| 19 | nnexpcl 10782 | . . . . . . 7 ⊢ ((2 ∈ ℕ ∧ (℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝑎 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝑎)) ∈ ℕ0) → (2↑(℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝑎 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝑎))) ∈ ℕ) | |
| 20 | 15, 18, 19 | sylancr 414 | . . . . . 6 ⊢ (𝑎 ∈ ℕ → (2↑(℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝑎 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝑎))) ∈ ℕ) |
| 21 | nn0nndivcl 9439 | . . . . . 6 ⊢ ((𝑎 ∈ ℕ0 ∧ (2↑(℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝑎 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝑎))) ∈ ℕ) → (𝑎 / (2↑(℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝑎 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝑎)))) ∈ ℝ) | |
| 22 | 14, 20, 21 | syl2anc 411 | . . . . 5 ⊢ (𝑎 ∈ ℕ → (𝑎 / (2↑(℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝑎 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝑎)))) ∈ ℝ) |
| 23 | 22, 18 | jca 306 | . . . 4 ⊢ (𝑎 ∈ ℕ → ((𝑎 / (2↑(℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝑎 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝑎)))) ∈ ℝ ∧ (℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝑎 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝑎)) ∈ ℕ0)) |
| 24 | 23 | adantl 277 | . . 3 ⊢ ((⊤ ∧ 𝑎 ∈ ℕ) → ((𝑎 / (2↑(℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝑎 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝑎)))) ∈ ℝ ∧ (℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝑎 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝑎)) ∈ ℕ0)) |
| 25 | 8 | anbi1i 458 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0) ↔ ((𝑥 ∈ ℕ ∧ ¬ 2 ∥ 𝑥) ∧ 𝑦 ∈ ℕ0)) |
| 26 | 25 | anbi1i 458 | . . . . 5 ⊢ (((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ↔ (((𝑥 ∈ ℕ ∧ ¬ 2 ∥ 𝑥) ∧ 𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥))) |
| 27 | oddpwdclemdc 12703 | . . . . 5 ⊢ ((((𝑥 ∈ ℕ ∧ ¬ 2 ∥ 𝑥) ∧ 𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ↔ (𝑎 ∈ ℕ ∧ (𝑥 = (𝑎 / (2↑(℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝑎 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝑎)))) ∧ 𝑦 = (℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝑎 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝑎))))) | |
| 28 | 26, 27 | bitri 184 | . . . 4 ⊢ (((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ↔ (𝑎 ∈ ℕ ∧ (𝑥 = (𝑎 / (2↑(℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝑎 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝑎)))) ∧ 𝑦 = (℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝑎 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝑎))))) |
| 29 | 28 | a1i 9 | . . 3 ⊢ (⊤ → (((𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ↔ (𝑎 ∈ ℕ ∧ (𝑥 = (𝑎 / (2↑(℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝑎 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝑎)))) ∧ 𝑦 = (℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝑎 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝑎)))))) |
| 30 | 1, 13, 24, 29 | f1od2 6387 | . 2 ⊢ (⊤ → 𝐹:(𝐽 × ℕ0)–1-1-onto→ℕ) |
| 31 | 30 | mptru 1404 | 1 ⊢ 𝐹:(𝐽 × ℕ0)–1-1-onto→ℕ |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 ∧ wa 104 ↔ wb 105 = wceq 1395 ⊤wtru 1396 ∈ wcel 2200 ∃!wreu 2510 {crab 2512 class class class wbr 4083 × cxp 4717 –1-1-onto→wf1o 5317 ℩crio 5959 (class class class)co 6007 ∈ cmpo 6009 ℂcc 8005 ℝcr 8006 1c1 8008 + caddc 8010 · cmul 8012 / cdiv 8827 ℕcn 9118 2c2 9169 ℕ0cn0 9377 ↑cexp 10768 ∥ cdvds 12306 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-iinf 4680 ax-cnex 8098 ax-resscn 8099 ax-1cn 8100 ax-1re 8101 ax-icn 8102 ax-addcl 8103 ax-addrcl 8104 ax-mulcl 8105 ax-mulrcl 8106 ax-addcom 8107 ax-mulcom 8108 ax-addass 8109 ax-mulass 8110 ax-distr 8111 ax-i2m1 8112 ax-0lt1 8113 ax-1rid 8114 ax-0id 8115 ax-rnegex 8116 ax-precex 8117 ax-cnre 8118 ax-pre-ltirr 8119 ax-pre-ltwlin 8120 ax-pre-lttrn 8121 ax-pre-apti 8122 ax-pre-ltadd 8123 ax-pre-mulgt0 8124 ax-pre-mulext 8125 ax-arch 8126 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-id 4384 df-po 4387 df-iso 4388 df-iord 4457 df-on 4459 df-ilim 4460 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-riota 5960 df-ov 6010 df-oprab 6011 df-mpo 6012 df-1st 6292 df-2nd 6293 df-recs 6457 df-frec 6543 df-pnf 8191 df-mnf 8192 df-xr 8193 df-ltxr 8194 df-le 8195 df-sub 8327 df-neg 8328 df-reap 8730 df-ap 8737 df-div 8828 df-inn 9119 df-2 9177 df-n0 9378 df-z 9455 df-uz 9731 df-q 9823 df-rp 9858 df-fz 10213 df-fl 10498 df-mod 10553 df-seqfrec 10678 df-exp 10769 df-dvds 12307 |
| This theorem is referenced by: sqpweven 12705 2sqpwodd 12706 xpnnen 12973 |
| Copyright terms: Public domain | W3C validator |