ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oddpwdc GIF version

Theorem oddpwdc 12352
Description: The function 𝐹 that decomposes a number into its "odd" and "even" parts, which is to say the largest power of two and largest odd divisor of a number, is a bijection from pairs of a nonnegative integer and an odd number to positive integers. (Contributed by Thierry Arnoux, 15-Aug-2017.)
Hypotheses
Ref Expression
oddpwdc.j 𝐽 = {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}
oddpwdc.f 𝐹 = (𝑥𝐽, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥))
Assertion
Ref Expression
oddpwdc 𝐹:(𝐽 × ℕ0)–1-1-onto→ℕ
Distinct variable groups:   𝑥,𝑦,𝑧   𝑥,𝐽,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦,𝑧)   𝐽(𝑧)

Proof of Theorem oddpwdc
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 oddpwdc.f . . 3 𝐹 = (𝑥𝐽, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥))
2 2cnd 9065 . . . . . 6 ((𝑥𝐽𝑦 ∈ ℕ0) → 2 ∈ ℂ)
3 simpr 110 . . . . . 6 ((𝑥𝐽𝑦 ∈ ℕ0) → 𝑦 ∈ ℕ0)
42, 3expcld 10767 . . . . 5 ((𝑥𝐽𝑦 ∈ ℕ0) → (2↑𝑦) ∈ ℂ)
5 breq2 4038 . . . . . . . . . 10 (𝑧 = 𝑥 → (2 ∥ 𝑧 ↔ 2 ∥ 𝑥))
65notbid 668 . . . . . . . . 9 (𝑧 = 𝑥 → (¬ 2 ∥ 𝑧 ↔ ¬ 2 ∥ 𝑥))
7 oddpwdc.j . . . . . . . . 9 𝐽 = {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}
86, 7elrab2 2923 . . . . . . . 8 (𝑥𝐽 ↔ (𝑥 ∈ ℕ ∧ ¬ 2 ∥ 𝑥))
98simplbi 274 . . . . . . 7 (𝑥𝐽𝑥 ∈ ℕ)
109adantr 276 . . . . . 6 ((𝑥𝐽𝑦 ∈ ℕ0) → 𝑥 ∈ ℕ)
1110nncnd 9006 . . . . 5 ((𝑥𝐽𝑦 ∈ ℕ0) → 𝑥 ∈ ℂ)
124, 11mulcld 8049 . . . 4 ((𝑥𝐽𝑦 ∈ ℕ0) → ((2↑𝑦) · 𝑥) ∈ ℂ)
1312adantl 277 . . 3 ((⊤ ∧ (𝑥𝐽𝑦 ∈ ℕ0)) → ((2↑𝑦) · 𝑥) ∈ ℂ)
14 nnnn0 9258 . . . . . 6 (𝑎 ∈ ℕ → 𝑎 ∈ ℕ0)
15 2nn 9154 . . . . . . 7 2 ∈ ℕ
16 pw2dvdseu 12346 . . . . . . . 8 (𝑎 ∈ ℕ → ∃!𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝑎 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝑎))
17 riotacl 5893 . . . . . . . 8 (∃!𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝑎 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝑎) → (𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝑎 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝑎)) ∈ ℕ0)
1816, 17syl 14 . . . . . . 7 (𝑎 ∈ ℕ → (𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝑎 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝑎)) ∈ ℕ0)
19 nnexpcl 10646 . . . . . . 7 ((2 ∈ ℕ ∧ (𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝑎 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝑎)) ∈ ℕ0) → (2↑(𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝑎 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝑎))) ∈ ℕ)
2015, 18, 19sylancr 414 . . . . . 6 (𝑎 ∈ ℕ → (2↑(𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝑎 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝑎))) ∈ ℕ)
21 nn0nndivcl 9313 . . . . . 6 ((𝑎 ∈ ℕ0 ∧ (2↑(𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝑎 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝑎))) ∈ ℕ) → (𝑎 / (2↑(𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝑎 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝑎)))) ∈ ℝ)
2214, 20, 21syl2anc 411 . . . . 5 (𝑎 ∈ ℕ → (𝑎 / (2↑(𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝑎 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝑎)))) ∈ ℝ)
2322, 18jca 306 . . . 4 (𝑎 ∈ ℕ → ((𝑎 / (2↑(𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝑎 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝑎)))) ∈ ℝ ∧ (𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝑎 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝑎)) ∈ ℕ0))
2423adantl 277 . . 3 ((⊤ ∧ 𝑎 ∈ ℕ) → ((𝑎 / (2↑(𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝑎 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝑎)))) ∈ ℝ ∧ (𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝑎 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝑎)) ∈ ℕ0))
258anbi1i 458 . . . . . 6 ((𝑥𝐽𝑦 ∈ ℕ0) ↔ ((𝑥 ∈ ℕ ∧ ¬ 2 ∥ 𝑥) ∧ 𝑦 ∈ ℕ0))
2625anbi1i 458 . . . . 5 (((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ↔ (((𝑥 ∈ ℕ ∧ ¬ 2 ∥ 𝑥) ∧ 𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)))
27 oddpwdclemdc 12351 . . . . 5 ((((𝑥 ∈ ℕ ∧ ¬ 2 ∥ 𝑥) ∧ 𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ↔ (𝑎 ∈ ℕ ∧ (𝑥 = (𝑎 / (2↑(𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝑎 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝑎)))) ∧ 𝑦 = (𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝑎 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝑎)))))
2826, 27bitri 184 . . . 4 (((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ↔ (𝑎 ∈ ℕ ∧ (𝑥 = (𝑎 / (2↑(𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝑎 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝑎)))) ∧ 𝑦 = (𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝑎 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝑎)))))
2928a1i 9 . . 3 (⊤ → (((𝑥𝐽𝑦 ∈ ℕ0) ∧ 𝑎 = ((2↑𝑦) · 𝑥)) ↔ (𝑎 ∈ ℕ ∧ (𝑥 = (𝑎 / (2↑(𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝑎 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝑎)))) ∧ 𝑦 = (𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝑎 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝑎))))))
301, 13, 24, 29f1od2 6294 . 2 (⊤ → 𝐹:(𝐽 × ℕ0)–1-1-onto→ℕ)
3130mptru 1373 1 𝐹:(𝐽 × ℕ0)–1-1-onto→ℕ
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wa 104  wb 105   = wceq 1364  wtru 1365  wcel 2167  ∃!wreu 2477  {crab 2479   class class class wbr 4034   × cxp 4662  1-1-ontowf1o 5258  crio 5877  (class class class)co 5923  cmpo 5925  cc 7879  cr 7880  1c1 7882   + caddc 7884   · cmul 7886   / cdiv 8701  cn 8992  2c2 9043  0cn0 9251  cexp 10632  cdvds 11954
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7972  ax-resscn 7973  ax-1cn 7974  ax-1re 7975  ax-icn 7976  ax-addcl 7977  ax-addrcl 7978  ax-mulcl 7979  ax-mulrcl 7980  ax-addcom 7981  ax-mulcom 7982  ax-addass 7983  ax-mulass 7984  ax-distr 7985  ax-i2m1 7986  ax-0lt1 7987  ax-1rid 7988  ax-0id 7989  ax-rnegex 7990  ax-precex 7991  ax-cnre 7992  ax-pre-ltirr 7993  ax-pre-ltwlin 7994  ax-pre-lttrn 7995  ax-pre-apti 7996  ax-pre-ltadd 7997  ax-pre-mulgt0 7998  ax-pre-mulext 7999  ax-arch 8000
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5878  df-ov 5926  df-oprab 5927  df-mpo 5928  df-1st 6199  df-2nd 6200  df-recs 6364  df-frec 6450  df-pnf 8065  df-mnf 8066  df-xr 8067  df-ltxr 8068  df-le 8069  df-sub 8201  df-neg 8202  df-reap 8604  df-ap 8611  df-div 8702  df-inn 8993  df-2 9051  df-n0 9252  df-z 9329  df-uz 9604  df-q 9696  df-rp 9731  df-fz 10086  df-fl 10362  df-mod 10417  df-seqfrec 10542  df-exp 10633  df-dvds 11955
This theorem is referenced by:  sqpweven  12353  2sqpwodd  12354  xpnnen  12621
  Copyright terms: Public domain W3C validator