| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > hashdifsn | GIF version | ||
| Description: The size of the difference of a finite set and a singleton subset is the set's size minus 1. (Contributed by Alexander van der Vekens, 6-Jan-2018.) |
| Ref | Expression |
|---|---|
| hashdifsn | ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ 𝐴) → (♯‘(𝐴 ∖ {𝐵})) = ((♯‘𝐴) − 1)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 109 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ 𝐴) → 𝐴 ∈ Fin) | |
| 2 | snfig 6930 | . . . 4 ⊢ (𝐵 ∈ 𝐴 → {𝐵} ∈ Fin) | |
| 3 | 2 | adantl 277 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ 𝐴) → {𝐵} ∈ Fin) |
| 4 | snssi 3788 | . . . 4 ⊢ (𝐵 ∈ 𝐴 → {𝐵} ⊆ 𝐴) | |
| 5 | 4 | adantl 277 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ 𝐴) → {𝐵} ⊆ 𝐴) |
| 6 | fihashssdif 11000 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ {𝐵} ∈ Fin ∧ {𝐵} ⊆ 𝐴) → (♯‘(𝐴 ∖ {𝐵})) = ((♯‘𝐴) − (♯‘{𝐵}))) | |
| 7 | 1, 3, 5, 6 | syl3anc 1250 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ 𝐴) → (♯‘(𝐴 ∖ {𝐵})) = ((♯‘𝐴) − (♯‘{𝐵}))) |
| 8 | hashsng 10980 | . . . 4 ⊢ (𝐵 ∈ 𝐴 → (♯‘{𝐵}) = 1) | |
| 9 | 8 | adantl 277 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ 𝐴) → (♯‘{𝐵}) = 1) |
| 10 | 9 | oveq2d 5983 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ 𝐴) → ((♯‘𝐴) − (♯‘{𝐵})) = ((♯‘𝐴) − 1)) |
| 11 | 7, 10 | eqtrd 2240 | 1 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ 𝐴) → (♯‘(𝐴 ∖ {𝐵})) = ((♯‘𝐴) − 1)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2178 ∖ cdif 3171 ⊆ wss 3174 {csn 3643 ‘cfv 5290 (class class class)co 5967 Fincfn 6850 1c1 7961 − cmin 8278 ♯chash 10957 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-iinf 4654 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-addcom 8060 ax-addass 8062 ax-distr 8064 ax-i2m1 8065 ax-0lt1 8066 ax-0id 8068 ax-rnegex 8069 ax-cnre 8071 ax-pre-ltirr 8072 ax-pre-ltwlin 8073 ax-pre-lttrn 8074 ax-pre-apti 8075 ax-pre-ltadd 8076 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-if 3580 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-tr 4159 df-id 4358 df-iord 4431 df-on 4433 df-ilim 4434 df-suc 4436 df-iom 4657 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-1st 6249 df-2nd 6250 df-recs 6414 df-irdg 6479 df-frec 6500 df-1o 6525 df-oadd 6529 df-er 6643 df-en 6851 df-dom 6852 df-fin 6853 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 df-sub 8280 df-neg 8281 df-inn 9072 df-n0 9331 df-z 9408 df-uz 9684 df-fz 10166 df-ihash 10958 |
| This theorem is referenced by: hashdifpr 11002 zfz1isolemsplit 11020 zfz1isolemiso 11021 zfz1isolem1 11022 fsumdifsnconst 11881 hash2iun1dif1 11906 |
| Copyright terms: Public domain | W3C validator |