ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hash2iun1dif1 GIF version

Theorem hash2iun1dif1 11256
Description: The cardinality of a nested disjoint indexed union. (Contributed by AV, 9-Jan-2022.)
Hypotheses
Ref Expression
hash2iun1dif1.a (𝜑𝐴 ∈ Fin)
hash2iun1dif1.b 𝐵 = (𝐴 ∖ {𝑥})
hash2iun1dif1.c ((𝜑𝑥𝐴𝑦𝐵) → 𝐶 ∈ Fin)
hash2iun1dif1.da (𝜑Disj 𝑥𝐴 𝑦𝐵 𝐶)
hash2iun1dif1.db ((𝜑𝑥𝐴) → Disj 𝑦𝐵 𝐶)
hash2iun1dif1.1 ((𝜑𝑥𝐴𝑦𝐵) → (♯‘𝐶) = 1)
Assertion
Ref Expression
hash2iun1dif1 (𝜑 → (♯‘ 𝑥𝐴 𝑦𝐵 𝐶) = ((♯‘𝐴) · ((♯‘𝐴) − 1)))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑦,𝐵   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥,𝑦)

Proof of Theorem hash2iun1dif1
StepHypRef Expression
1 hash2iun1dif1.a . . 3 (𝜑𝐴 ∈ Fin)
2 hash2iun1dif1.b . . . 4 𝐵 = (𝐴 ∖ {𝑥})
31adantr 274 . . . . 5 ((𝜑𝑥𝐴) → 𝐴 ∈ Fin)
4 snfig 6708 . . . . . 6 (𝑥𝐴 → {𝑥} ∈ Fin)
54adantl 275 . . . . 5 ((𝜑𝑥𝐴) → {𝑥} ∈ Fin)
6 snssi 3664 . . . . . 6 (𝑥𝐴 → {𝑥} ⊆ 𝐴)
76adantl 275 . . . . 5 ((𝜑𝑥𝐴) → {𝑥} ⊆ 𝐴)
8 diffifi 6788 . . . . 5 ((𝐴 ∈ Fin ∧ {𝑥} ∈ Fin ∧ {𝑥} ⊆ 𝐴) → (𝐴 ∖ {𝑥}) ∈ Fin)
93, 5, 7, 8syl3anc 1216 . . . 4 ((𝜑𝑥𝐴) → (𝐴 ∖ {𝑥}) ∈ Fin)
102, 9eqeltrid 2226 . . 3 ((𝜑𝑥𝐴) → 𝐵 ∈ Fin)
11 hash2iun1dif1.c . . 3 ((𝜑𝑥𝐴𝑦𝐵) → 𝐶 ∈ Fin)
12 hash2iun1dif1.da . . 3 (𝜑Disj 𝑥𝐴 𝑦𝐵 𝐶)
13 hash2iun1dif1.db . . 3 ((𝜑𝑥𝐴) → Disj 𝑦𝐵 𝐶)
141, 10, 11, 12, 13hash2iun 11255 . 2 (𝜑 → (♯‘ 𝑥𝐴 𝑦𝐵 𝐶) = Σ𝑥𝐴 Σ𝑦𝐵 (♯‘𝐶))
15 hash2iun1dif1.1 . . 3 ((𝜑𝑥𝐴𝑦𝐵) → (♯‘𝐶) = 1)
16152sumeq2dv 11147 . 2 (𝜑 → Σ𝑥𝐴 Σ𝑦𝐵 (♯‘𝐶) = Σ𝑥𝐴 Σ𝑦𝐵 1)
17 1cnd 7789 . . . . 5 ((𝜑𝑥𝐴) → 1 ∈ ℂ)
18 fsumconst 11230 . . . . 5 ((𝐵 ∈ Fin ∧ 1 ∈ ℂ) → Σ𝑦𝐵 1 = ((♯‘𝐵) · 1))
1910, 17, 18syl2anc 408 . . . 4 ((𝜑𝑥𝐴) → Σ𝑦𝐵 1 = ((♯‘𝐵) · 1))
2019sumeq2dv 11144 . . 3 (𝜑 → Σ𝑥𝐴 Σ𝑦𝐵 1 = Σ𝑥𝐴 ((♯‘𝐵) · 1))
212a1i 9 . . . . . . 7 ((𝜑𝑥𝐴) → 𝐵 = (𝐴 ∖ {𝑥}))
2221fveq2d 5425 . . . . . 6 ((𝜑𝑥𝐴) → (♯‘𝐵) = (♯‘(𝐴 ∖ {𝑥})))
23 hashdifsn 10572 . . . . . . 7 ((𝐴 ∈ Fin ∧ 𝑥𝐴) → (♯‘(𝐴 ∖ {𝑥})) = ((♯‘𝐴) − 1))
241, 23sylan 281 . . . . . 6 ((𝜑𝑥𝐴) → (♯‘(𝐴 ∖ {𝑥})) = ((♯‘𝐴) − 1))
2522, 24eqtrd 2172 . . . . 5 ((𝜑𝑥𝐴) → (♯‘𝐵) = ((♯‘𝐴) − 1))
2625oveq1d 5789 . . . 4 ((𝜑𝑥𝐴) → ((♯‘𝐵) · 1) = (((♯‘𝐴) − 1) · 1))
2726sumeq2dv 11144 . . 3 (𝜑 → Σ𝑥𝐴 ((♯‘𝐵) · 1) = Σ𝑥𝐴 (((♯‘𝐴) − 1) · 1))
28 hashcl 10534 . . . . . . . . 9 (𝐴 ∈ Fin → (♯‘𝐴) ∈ ℕ0)
291, 28syl 14 . . . . . . . 8 (𝜑 → (♯‘𝐴) ∈ ℕ0)
3029nn0cnd 9039 . . . . . . 7 (𝜑 → (♯‘𝐴) ∈ ℂ)
31 peano2cnm 8035 . . . . . . 7 ((♯‘𝐴) ∈ ℂ → ((♯‘𝐴) − 1) ∈ ℂ)
3230, 31syl 14 . . . . . 6 (𝜑 → ((♯‘𝐴) − 1) ∈ ℂ)
3332mulid1d 7790 . . . . 5 (𝜑 → (((♯‘𝐴) − 1) · 1) = ((♯‘𝐴) − 1))
3433sumeq2ad 11145 . . . 4 (𝜑 → Σ𝑥𝐴 (((♯‘𝐴) − 1) · 1) = Σ𝑥𝐴 ((♯‘𝐴) − 1))
35 fsumconst 11230 . . . . 5 ((𝐴 ∈ Fin ∧ ((♯‘𝐴) − 1) ∈ ℂ) → Σ𝑥𝐴 ((♯‘𝐴) − 1) = ((♯‘𝐴) · ((♯‘𝐴) − 1)))
361, 32, 35syl2anc 408 . . . 4 (𝜑 → Σ𝑥𝐴 ((♯‘𝐴) − 1) = ((♯‘𝐴) · ((♯‘𝐴) − 1)))
3734, 36eqtrd 2172 . . 3 (𝜑 → Σ𝑥𝐴 (((♯‘𝐴) − 1) · 1) = ((♯‘𝐴) · ((♯‘𝐴) − 1)))
3820, 27, 373eqtrd 2176 . 2 (𝜑 → Σ𝑥𝐴 Σ𝑦𝐵 1 = ((♯‘𝐴) · ((♯‘𝐴) − 1)))
3914, 16, 383eqtrd 2176 1 (𝜑 → (♯‘ 𝑥𝐴 𝑦𝐵 𝐶) = ((♯‘𝐴) · ((♯‘𝐴) − 1)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 962   = wceq 1331  wcel 1480  cdif 3068  wss 3071  {csn 3527   ciun 3813  Disj wdisj 3906  cfv 5123  (class class class)co 5774  Fincfn 6634  cc 7625  1c1 7628   · cmul 7632  cmin 7940  0cn0 8984  chash 10528  Σcsu 11129
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7718  ax-resscn 7719  ax-1cn 7720  ax-1re 7721  ax-icn 7722  ax-addcl 7723  ax-addrcl 7724  ax-mulcl 7725  ax-mulrcl 7726  ax-addcom 7727  ax-mulcom 7728  ax-addass 7729  ax-mulass 7730  ax-distr 7731  ax-i2m1 7732  ax-0lt1 7733  ax-1rid 7734  ax-0id 7735  ax-rnegex 7736  ax-precex 7737  ax-cnre 7738  ax-pre-ltirr 7739  ax-pre-ltwlin 7740  ax-pre-lttrn 7741  ax-pre-apti 7742  ax-pre-ltadd 7743  ax-pre-mulgt0 7744  ax-pre-mulext 7745  ax-arch 7746  ax-caucvg 7747
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-disj 3907  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-isom 5132  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-irdg 6267  df-frec 6288  df-1o 6313  df-oadd 6317  df-er 6429  df-en 6635  df-dom 6636  df-fin 6637  df-pnf 7809  df-mnf 7810  df-xr 7811  df-ltxr 7812  df-le 7813  df-sub 7942  df-neg 7943  df-reap 8344  df-ap 8351  df-div 8440  df-inn 8728  df-2 8786  df-3 8787  df-4 8788  df-n0 8985  df-z 9062  df-uz 9334  df-q 9419  df-rp 9449  df-fz 9798  df-fzo 9927  df-seqfrec 10226  df-exp 10300  df-ihash 10529  df-cj 10621  df-re 10622  df-im 10623  df-rsqrt 10777  df-abs 10778  df-clim 11055  df-sumdc 11130
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator