ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hash2iun1dif1 GIF version

Theorem hash2iun1dif1 11647
Description: The cardinality of a nested disjoint indexed union. (Contributed by AV, 9-Jan-2022.)
Hypotheses
Ref Expression
hash2iun1dif1.a (𝜑𝐴 ∈ Fin)
hash2iun1dif1.b 𝐵 = (𝐴 ∖ {𝑥})
hash2iun1dif1.c ((𝜑𝑥𝐴𝑦𝐵) → 𝐶 ∈ Fin)
hash2iun1dif1.da (𝜑Disj 𝑥𝐴 𝑦𝐵 𝐶)
hash2iun1dif1.db ((𝜑𝑥𝐴) → Disj 𝑦𝐵 𝐶)
hash2iun1dif1.1 ((𝜑𝑥𝐴𝑦𝐵) → (♯‘𝐶) = 1)
Assertion
Ref Expression
hash2iun1dif1 (𝜑 → (♯‘ 𝑥𝐴 𝑦𝐵 𝐶) = ((♯‘𝐴) · ((♯‘𝐴) − 1)))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑦,𝐵   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥,𝑦)

Proof of Theorem hash2iun1dif1
StepHypRef Expression
1 hash2iun1dif1.a . . 3 (𝜑𝐴 ∈ Fin)
2 hash2iun1dif1.b . . . 4 𝐵 = (𝐴 ∖ {𝑥})
31adantr 276 . . . . 5 ((𝜑𝑥𝐴) → 𝐴 ∈ Fin)
4 snfig 6874 . . . . . 6 (𝑥𝐴 → {𝑥} ∈ Fin)
54adantl 277 . . . . 5 ((𝜑𝑥𝐴) → {𝑥} ∈ Fin)
6 snssi 3767 . . . . . 6 (𝑥𝐴 → {𝑥} ⊆ 𝐴)
76adantl 277 . . . . 5 ((𝜑𝑥𝐴) → {𝑥} ⊆ 𝐴)
8 diffifi 6956 . . . . 5 ((𝐴 ∈ Fin ∧ {𝑥} ∈ Fin ∧ {𝑥} ⊆ 𝐴) → (𝐴 ∖ {𝑥}) ∈ Fin)
93, 5, 7, 8syl3anc 1249 . . . 4 ((𝜑𝑥𝐴) → (𝐴 ∖ {𝑥}) ∈ Fin)
102, 9eqeltrid 2283 . . 3 ((𝜑𝑥𝐴) → 𝐵 ∈ Fin)
11 hash2iun1dif1.c . . 3 ((𝜑𝑥𝐴𝑦𝐵) → 𝐶 ∈ Fin)
12 hash2iun1dif1.da . . 3 (𝜑Disj 𝑥𝐴 𝑦𝐵 𝐶)
13 hash2iun1dif1.db . . 3 ((𝜑𝑥𝐴) → Disj 𝑦𝐵 𝐶)
141, 10, 11, 12, 13hash2iun 11646 . 2 (𝜑 → (♯‘ 𝑥𝐴 𝑦𝐵 𝐶) = Σ𝑥𝐴 Σ𝑦𝐵 (♯‘𝐶))
15 hash2iun1dif1.1 . . 3 ((𝜑𝑥𝐴𝑦𝐵) → (♯‘𝐶) = 1)
16152sumeq2dv 11538 . 2 (𝜑 → Σ𝑥𝐴 Σ𝑦𝐵 (♯‘𝐶) = Σ𝑥𝐴 Σ𝑦𝐵 1)
17 1cnd 8044 . . . . 5 ((𝜑𝑥𝐴) → 1 ∈ ℂ)
18 fsumconst 11621 . . . . 5 ((𝐵 ∈ Fin ∧ 1 ∈ ℂ) → Σ𝑦𝐵 1 = ((♯‘𝐵) · 1))
1910, 17, 18syl2anc 411 . . . 4 ((𝜑𝑥𝐴) → Σ𝑦𝐵 1 = ((♯‘𝐵) · 1))
2019sumeq2dv 11535 . . 3 (𝜑 → Σ𝑥𝐴 Σ𝑦𝐵 1 = Σ𝑥𝐴 ((♯‘𝐵) · 1))
212a1i 9 . . . . . . 7 ((𝜑𝑥𝐴) → 𝐵 = (𝐴 ∖ {𝑥}))
2221fveq2d 5563 . . . . . 6 ((𝜑𝑥𝐴) → (♯‘𝐵) = (♯‘(𝐴 ∖ {𝑥})))
23 hashdifsn 10913 . . . . . . 7 ((𝐴 ∈ Fin ∧ 𝑥𝐴) → (♯‘(𝐴 ∖ {𝑥})) = ((♯‘𝐴) − 1))
241, 23sylan 283 . . . . . 6 ((𝜑𝑥𝐴) → (♯‘(𝐴 ∖ {𝑥})) = ((♯‘𝐴) − 1))
2522, 24eqtrd 2229 . . . . 5 ((𝜑𝑥𝐴) → (♯‘𝐵) = ((♯‘𝐴) − 1))
2625oveq1d 5938 . . . 4 ((𝜑𝑥𝐴) → ((♯‘𝐵) · 1) = (((♯‘𝐴) − 1) · 1))
2726sumeq2dv 11535 . . 3 (𝜑 → Σ𝑥𝐴 ((♯‘𝐵) · 1) = Σ𝑥𝐴 (((♯‘𝐴) − 1) · 1))
28 hashcl 10875 . . . . . . . . 9 (𝐴 ∈ Fin → (♯‘𝐴) ∈ ℕ0)
291, 28syl 14 . . . . . . . 8 (𝜑 → (♯‘𝐴) ∈ ℕ0)
3029nn0cnd 9306 . . . . . . 7 (𝜑 → (♯‘𝐴) ∈ ℂ)
31 peano2cnm 8294 . . . . . . 7 ((♯‘𝐴) ∈ ℂ → ((♯‘𝐴) − 1) ∈ ℂ)
3230, 31syl 14 . . . . . 6 (𝜑 → ((♯‘𝐴) − 1) ∈ ℂ)
3332mulridd 8045 . . . . 5 (𝜑 → (((♯‘𝐴) − 1) · 1) = ((♯‘𝐴) − 1))
3433sumeq2ad 11536 . . . 4 (𝜑 → Σ𝑥𝐴 (((♯‘𝐴) − 1) · 1) = Σ𝑥𝐴 ((♯‘𝐴) − 1))
35 fsumconst 11621 . . . . 5 ((𝐴 ∈ Fin ∧ ((♯‘𝐴) − 1) ∈ ℂ) → Σ𝑥𝐴 ((♯‘𝐴) − 1) = ((♯‘𝐴) · ((♯‘𝐴) − 1)))
361, 32, 35syl2anc 411 . . . 4 (𝜑 → Σ𝑥𝐴 ((♯‘𝐴) − 1) = ((♯‘𝐴) · ((♯‘𝐴) − 1)))
3734, 36eqtrd 2229 . . 3 (𝜑 → Σ𝑥𝐴 (((♯‘𝐴) − 1) · 1) = ((♯‘𝐴) · ((♯‘𝐴) − 1)))
3820, 27, 373eqtrd 2233 . 2 (𝜑 → Σ𝑥𝐴 Σ𝑦𝐵 1 = ((♯‘𝐴) · ((♯‘𝐴) − 1)))
3914, 16, 383eqtrd 2233 1 (𝜑 → (♯‘ 𝑥𝐴 𝑦𝐵 𝐶) = ((♯‘𝐴) · ((♯‘𝐴) − 1)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980   = wceq 1364  wcel 2167  cdif 3154  wss 3157  {csn 3623   ciun 3917  Disj wdisj 4011  cfv 5259  (class class class)co 5923  Fincfn 6800  cc 7879  1c1 7882   · cmul 7886  cmin 8199  0cn0 9251  chash 10869  Σcsu 11520
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7972  ax-resscn 7973  ax-1cn 7974  ax-1re 7975  ax-icn 7976  ax-addcl 7977  ax-addrcl 7978  ax-mulcl 7979  ax-mulrcl 7980  ax-addcom 7981  ax-mulcom 7982  ax-addass 7983  ax-mulass 7984  ax-distr 7985  ax-i2m1 7986  ax-0lt1 7987  ax-1rid 7988  ax-0id 7989  ax-rnegex 7990  ax-precex 7991  ax-cnre 7992  ax-pre-ltirr 7993  ax-pre-ltwlin 7994  ax-pre-lttrn 7995  ax-pre-apti 7996  ax-pre-ltadd 7997  ax-pre-mulgt0 7998  ax-pre-mulext 7999  ax-arch 8000  ax-caucvg 8001
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-disj 4012  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-isom 5268  df-riota 5878  df-ov 5926  df-oprab 5927  df-mpo 5928  df-1st 6199  df-2nd 6200  df-recs 6364  df-irdg 6429  df-frec 6450  df-1o 6475  df-oadd 6479  df-er 6593  df-en 6801  df-dom 6802  df-fin 6803  df-pnf 8065  df-mnf 8066  df-xr 8067  df-ltxr 8068  df-le 8069  df-sub 8201  df-neg 8202  df-reap 8604  df-ap 8611  df-div 8702  df-inn 8993  df-2 9051  df-3 9052  df-4 9053  df-n0 9252  df-z 9329  df-uz 9604  df-q 9696  df-rp 9731  df-fz 10086  df-fzo 10220  df-seqfrec 10542  df-exp 10633  df-ihash 10870  df-cj 11009  df-re 11010  df-im 11011  df-rsqrt 11165  df-abs 11166  df-clim 11446  df-sumdc 11521
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator