| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > hash2iun1dif1 | GIF version | ||
| Description: The cardinality of a nested disjoint indexed union. (Contributed by AV, 9-Jan-2022.) |
| Ref | Expression |
|---|---|
| hash2iun1dif1.a | ⊢ (𝜑 → 𝐴 ∈ Fin) |
| hash2iun1dif1.b | ⊢ 𝐵 = (𝐴 ∖ {𝑥}) |
| hash2iun1dif1.c | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝐶 ∈ Fin) |
| hash2iun1dif1.da | ⊢ (𝜑 → Disj 𝑥 ∈ 𝐴 ∪ 𝑦 ∈ 𝐵 𝐶) |
| hash2iun1dif1.db | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → Disj 𝑦 ∈ 𝐵 𝐶) |
| hash2iun1dif1.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (♯‘𝐶) = 1) |
| Ref | Expression |
|---|---|
| hash2iun1dif1 | ⊢ (𝜑 → (♯‘∪ 𝑥 ∈ 𝐴 ∪ 𝑦 ∈ 𝐵 𝐶) = ((♯‘𝐴) · ((♯‘𝐴) − 1))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hash2iun1dif1.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
| 2 | hash2iun1dif1.b | . . . 4 ⊢ 𝐵 = (𝐴 ∖ {𝑥}) | |
| 3 | 1 | adantr 276 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐴 ∈ Fin) |
| 4 | snfig 6930 | . . . . . 6 ⊢ (𝑥 ∈ 𝐴 → {𝑥} ∈ Fin) | |
| 5 | 4 | adantl 277 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → {𝑥} ∈ Fin) |
| 6 | snssi 3788 | . . . . . 6 ⊢ (𝑥 ∈ 𝐴 → {𝑥} ⊆ 𝐴) | |
| 7 | 6 | adantl 277 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → {𝑥} ⊆ 𝐴) |
| 8 | diffifi 7017 | . . . . 5 ⊢ ((𝐴 ∈ Fin ∧ {𝑥} ∈ Fin ∧ {𝑥} ⊆ 𝐴) → (𝐴 ∖ {𝑥}) ∈ Fin) | |
| 9 | 3, 5, 7, 8 | syl3anc 1250 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐴 ∖ {𝑥}) ∈ Fin) |
| 10 | 2, 9 | eqeltrid 2294 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ Fin) |
| 11 | hash2iun1dif1.c | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝐶 ∈ Fin) | |
| 12 | hash2iun1dif1.da | . . 3 ⊢ (𝜑 → Disj 𝑥 ∈ 𝐴 ∪ 𝑦 ∈ 𝐵 𝐶) | |
| 13 | hash2iun1dif1.db | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → Disj 𝑦 ∈ 𝐵 𝐶) | |
| 14 | 1, 10, 11, 12, 13 | hash2iun 11905 | . 2 ⊢ (𝜑 → (♯‘∪ 𝑥 ∈ 𝐴 ∪ 𝑦 ∈ 𝐵 𝐶) = Σ𝑥 ∈ 𝐴 Σ𝑦 ∈ 𝐵 (♯‘𝐶)) |
| 15 | hash2iun1dif1.1 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (♯‘𝐶) = 1) | |
| 16 | 15 | 2sumeq2dv 11797 | . 2 ⊢ (𝜑 → Σ𝑥 ∈ 𝐴 Σ𝑦 ∈ 𝐵 (♯‘𝐶) = Σ𝑥 ∈ 𝐴 Σ𝑦 ∈ 𝐵 1) |
| 17 | 1cnd 8123 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 1 ∈ ℂ) | |
| 18 | fsumconst 11880 | . . . . 5 ⊢ ((𝐵 ∈ Fin ∧ 1 ∈ ℂ) → Σ𝑦 ∈ 𝐵 1 = ((♯‘𝐵) · 1)) | |
| 19 | 10, 17, 18 | syl2anc 411 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → Σ𝑦 ∈ 𝐵 1 = ((♯‘𝐵) · 1)) |
| 20 | 19 | sumeq2dv 11794 | . . 3 ⊢ (𝜑 → Σ𝑥 ∈ 𝐴 Σ𝑦 ∈ 𝐵 1 = Σ𝑥 ∈ 𝐴 ((♯‘𝐵) · 1)) |
| 21 | 2 | a1i 9 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = (𝐴 ∖ {𝑥})) |
| 22 | 21 | fveq2d 5603 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (♯‘𝐵) = (♯‘(𝐴 ∖ {𝑥}))) |
| 23 | hashdifsn 11001 | . . . . . . 7 ⊢ ((𝐴 ∈ Fin ∧ 𝑥 ∈ 𝐴) → (♯‘(𝐴 ∖ {𝑥})) = ((♯‘𝐴) − 1)) | |
| 24 | 1, 23 | sylan 283 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (♯‘(𝐴 ∖ {𝑥})) = ((♯‘𝐴) − 1)) |
| 25 | 22, 24 | eqtrd 2240 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (♯‘𝐵) = ((♯‘𝐴) − 1)) |
| 26 | 25 | oveq1d 5982 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((♯‘𝐵) · 1) = (((♯‘𝐴) − 1) · 1)) |
| 27 | 26 | sumeq2dv 11794 | . . 3 ⊢ (𝜑 → Σ𝑥 ∈ 𝐴 ((♯‘𝐵) · 1) = Σ𝑥 ∈ 𝐴 (((♯‘𝐴) − 1) · 1)) |
| 28 | hashcl 10963 | . . . . . . . . 9 ⊢ (𝐴 ∈ Fin → (♯‘𝐴) ∈ ℕ0) | |
| 29 | 1, 28 | syl 14 | . . . . . . . 8 ⊢ (𝜑 → (♯‘𝐴) ∈ ℕ0) |
| 30 | 29 | nn0cnd 9385 | . . . . . . 7 ⊢ (𝜑 → (♯‘𝐴) ∈ ℂ) |
| 31 | peano2cnm 8373 | . . . . . . 7 ⊢ ((♯‘𝐴) ∈ ℂ → ((♯‘𝐴) − 1) ∈ ℂ) | |
| 32 | 30, 31 | syl 14 | . . . . . 6 ⊢ (𝜑 → ((♯‘𝐴) − 1) ∈ ℂ) |
| 33 | 32 | mulridd 8124 | . . . . 5 ⊢ (𝜑 → (((♯‘𝐴) − 1) · 1) = ((♯‘𝐴) − 1)) |
| 34 | 33 | sumeq2ad 11795 | . . . 4 ⊢ (𝜑 → Σ𝑥 ∈ 𝐴 (((♯‘𝐴) − 1) · 1) = Σ𝑥 ∈ 𝐴 ((♯‘𝐴) − 1)) |
| 35 | fsumconst 11880 | . . . . 5 ⊢ ((𝐴 ∈ Fin ∧ ((♯‘𝐴) − 1) ∈ ℂ) → Σ𝑥 ∈ 𝐴 ((♯‘𝐴) − 1) = ((♯‘𝐴) · ((♯‘𝐴) − 1))) | |
| 36 | 1, 32, 35 | syl2anc 411 | . . . 4 ⊢ (𝜑 → Σ𝑥 ∈ 𝐴 ((♯‘𝐴) − 1) = ((♯‘𝐴) · ((♯‘𝐴) − 1))) |
| 37 | 34, 36 | eqtrd 2240 | . . 3 ⊢ (𝜑 → Σ𝑥 ∈ 𝐴 (((♯‘𝐴) − 1) · 1) = ((♯‘𝐴) · ((♯‘𝐴) − 1))) |
| 38 | 20, 27, 37 | 3eqtrd 2244 | . 2 ⊢ (𝜑 → Σ𝑥 ∈ 𝐴 Σ𝑦 ∈ 𝐵 1 = ((♯‘𝐴) · ((♯‘𝐴) − 1))) |
| 39 | 14, 16, 38 | 3eqtrd 2244 | 1 ⊢ (𝜑 → (♯‘∪ 𝑥 ∈ 𝐴 ∪ 𝑦 ∈ 𝐵 𝐶) = ((♯‘𝐴) · ((♯‘𝐴) − 1))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 981 = wceq 1373 ∈ wcel 2178 ∖ cdif 3171 ⊆ wss 3174 {csn 3643 ∪ ciun 3941 Disj wdisj 4035 ‘cfv 5290 (class class class)co 5967 Fincfn 6850 ℂcc 7958 1c1 7961 · cmul 7965 − cmin 8278 ℕ0cn0 9330 ♯chash 10957 Σcsu 11779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-iinf 4654 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-mulrcl 8059 ax-addcom 8060 ax-mulcom 8061 ax-addass 8062 ax-mulass 8063 ax-distr 8064 ax-i2m1 8065 ax-0lt1 8066 ax-1rid 8067 ax-0id 8068 ax-rnegex 8069 ax-precex 8070 ax-cnre 8071 ax-pre-ltirr 8072 ax-pre-ltwlin 8073 ax-pre-lttrn 8074 ax-pre-apti 8075 ax-pre-ltadd 8076 ax-pre-mulgt0 8077 ax-pre-mulext 8078 ax-arch 8079 ax-caucvg 8080 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rmo 2494 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-if 3580 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-disj 4036 df-br 4060 df-opab 4122 df-mpt 4123 df-tr 4159 df-id 4358 df-po 4361 df-iso 4362 df-iord 4431 df-on 4433 df-ilim 4434 df-suc 4436 df-iom 4657 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-isom 5299 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-1st 6249 df-2nd 6250 df-recs 6414 df-irdg 6479 df-frec 6500 df-1o 6525 df-oadd 6529 df-er 6643 df-en 6851 df-dom 6852 df-fin 6853 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 df-sub 8280 df-neg 8281 df-reap 8683 df-ap 8690 df-div 8781 df-inn 9072 df-2 9130 df-3 9131 df-4 9132 df-n0 9331 df-z 9408 df-uz 9684 df-q 9776 df-rp 9811 df-fz 10166 df-fzo 10300 df-seqfrec 10630 df-exp 10721 df-ihash 10958 df-cj 11268 df-re 11269 df-im 11270 df-rsqrt 11424 df-abs 11425 df-clim 11705 df-sumdc 11780 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |