ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hash2iun1dif1 GIF version

Theorem hash2iun1dif1 11626
Description: The cardinality of a nested disjoint indexed union. (Contributed by AV, 9-Jan-2022.)
Hypotheses
Ref Expression
hash2iun1dif1.a (𝜑𝐴 ∈ Fin)
hash2iun1dif1.b 𝐵 = (𝐴 ∖ {𝑥})
hash2iun1dif1.c ((𝜑𝑥𝐴𝑦𝐵) → 𝐶 ∈ Fin)
hash2iun1dif1.da (𝜑Disj 𝑥𝐴 𝑦𝐵 𝐶)
hash2iun1dif1.db ((𝜑𝑥𝐴) → Disj 𝑦𝐵 𝐶)
hash2iun1dif1.1 ((𝜑𝑥𝐴𝑦𝐵) → (♯‘𝐶) = 1)
Assertion
Ref Expression
hash2iun1dif1 (𝜑 → (♯‘ 𝑥𝐴 𝑦𝐵 𝐶) = ((♯‘𝐴) · ((♯‘𝐴) − 1)))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑦,𝐵   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥,𝑦)

Proof of Theorem hash2iun1dif1
StepHypRef Expression
1 hash2iun1dif1.a . . 3 (𝜑𝐴 ∈ Fin)
2 hash2iun1dif1.b . . . 4 𝐵 = (𝐴 ∖ {𝑥})
31adantr 276 . . . . 5 ((𝜑𝑥𝐴) → 𝐴 ∈ Fin)
4 snfig 6870 . . . . . 6 (𝑥𝐴 → {𝑥} ∈ Fin)
54adantl 277 . . . . 5 ((𝜑𝑥𝐴) → {𝑥} ∈ Fin)
6 snssi 3763 . . . . . 6 (𝑥𝐴 → {𝑥} ⊆ 𝐴)
76adantl 277 . . . . 5 ((𝜑𝑥𝐴) → {𝑥} ⊆ 𝐴)
8 diffifi 6952 . . . . 5 ((𝐴 ∈ Fin ∧ {𝑥} ∈ Fin ∧ {𝑥} ⊆ 𝐴) → (𝐴 ∖ {𝑥}) ∈ Fin)
93, 5, 7, 8syl3anc 1249 . . . 4 ((𝜑𝑥𝐴) → (𝐴 ∖ {𝑥}) ∈ Fin)
102, 9eqeltrid 2280 . . 3 ((𝜑𝑥𝐴) → 𝐵 ∈ Fin)
11 hash2iun1dif1.c . . 3 ((𝜑𝑥𝐴𝑦𝐵) → 𝐶 ∈ Fin)
12 hash2iun1dif1.da . . 3 (𝜑Disj 𝑥𝐴 𝑦𝐵 𝐶)
13 hash2iun1dif1.db . . 3 ((𝜑𝑥𝐴) → Disj 𝑦𝐵 𝐶)
141, 10, 11, 12, 13hash2iun 11625 . 2 (𝜑 → (♯‘ 𝑥𝐴 𝑦𝐵 𝐶) = Σ𝑥𝐴 Σ𝑦𝐵 (♯‘𝐶))
15 hash2iun1dif1.1 . . 3 ((𝜑𝑥𝐴𝑦𝐵) → (♯‘𝐶) = 1)
16152sumeq2dv 11517 . 2 (𝜑 → Σ𝑥𝐴 Σ𝑦𝐵 (♯‘𝐶) = Σ𝑥𝐴 Σ𝑦𝐵 1)
17 1cnd 8037 . . . . 5 ((𝜑𝑥𝐴) → 1 ∈ ℂ)
18 fsumconst 11600 . . . . 5 ((𝐵 ∈ Fin ∧ 1 ∈ ℂ) → Σ𝑦𝐵 1 = ((♯‘𝐵) · 1))
1910, 17, 18syl2anc 411 . . . 4 ((𝜑𝑥𝐴) → Σ𝑦𝐵 1 = ((♯‘𝐵) · 1))
2019sumeq2dv 11514 . . 3 (𝜑 → Σ𝑥𝐴 Σ𝑦𝐵 1 = Σ𝑥𝐴 ((♯‘𝐵) · 1))
212a1i 9 . . . . . . 7 ((𝜑𝑥𝐴) → 𝐵 = (𝐴 ∖ {𝑥}))
2221fveq2d 5559 . . . . . 6 ((𝜑𝑥𝐴) → (♯‘𝐵) = (♯‘(𝐴 ∖ {𝑥})))
23 hashdifsn 10893 . . . . . . 7 ((𝐴 ∈ Fin ∧ 𝑥𝐴) → (♯‘(𝐴 ∖ {𝑥})) = ((♯‘𝐴) − 1))
241, 23sylan 283 . . . . . 6 ((𝜑𝑥𝐴) → (♯‘(𝐴 ∖ {𝑥})) = ((♯‘𝐴) − 1))
2522, 24eqtrd 2226 . . . . 5 ((𝜑𝑥𝐴) → (♯‘𝐵) = ((♯‘𝐴) − 1))
2625oveq1d 5934 . . . 4 ((𝜑𝑥𝐴) → ((♯‘𝐵) · 1) = (((♯‘𝐴) − 1) · 1))
2726sumeq2dv 11514 . . 3 (𝜑 → Σ𝑥𝐴 ((♯‘𝐵) · 1) = Σ𝑥𝐴 (((♯‘𝐴) − 1) · 1))
28 hashcl 10855 . . . . . . . . 9 (𝐴 ∈ Fin → (♯‘𝐴) ∈ ℕ0)
291, 28syl 14 . . . . . . . 8 (𝜑 → (♯‘𝐴) ∈ ℕ0)
3029nn0cnd 9298 . . . . . . 7 (𝜑 → (♯‘𝐴) ∈ ℂ)
31 peano2cnm 8287 . . . . . . 7 ((♯‘𝐴) ∈ ℂ → ((♯‘𝐴) − 1) ∈ ℂ)
3230, 31syl 14 . . . . . 6 (𝜑 → ((♯‘𝐴) − 1) ∈ ℂ)
3332mulridd 8038 . . . . 5 (𝜑 → (((♯‘𝐴) − 1) · 1) = ((♯‘𝐴) − 1))
3433sumeq2ad 11515 . . . 4 (𝜑 → Σ𝑥𝐴 (((♯‘𝐴) − 1) · 1) = Σ𝑥𝐴 ((♯‘𝐴) − 1))
35 fsumconst 11600 . . . . 5 ((𝐴 ∈ Fin ∧ ((♯‘𝐴) − 1) ∈ ℂ) → Σ𝑥𝐴 ((♯‘𝐴) − 1) = ((♯‘𝐴) · ((♯‘𝐴) − 1)))
361, 32, 35syl2anc 411 . . . 4 (𝜑 → Σ𝑥𝐴 ((♯‘𝐴) − 1) = ((♯‘𝐴) · ((♯‘𝐴) − 1)))
3734, 36eqtrd 2226 . . 3 (𝜑 → Σ𝑥𝐴 (((♯‘𝐴) − 1) · 1) = ((♯‘𝐴) · ((♯‘𝐴) − 1)))
3820, 27, 373eqtrd 2230 . 2 (𝜑 → Σ𝑥𝐴 Σ𝑦𝐵 1 = ((♯‘𝐴) · ((♯‘𝐴) − 1)))
3914, 16, 383eqtrd 2230 1 (𝜑 → (♯‘ 𝑥𝐴 𝑦𝐵 𝐶) = ((♯‘𝐴) · ((♯‘𝐴) − 1)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980   = wceq 1364  wcel 2164  cdif 3151  wss 3154  {csn 3619   ciun 3913  Disj wdisj 4007  cfv 5255  (class class class)co 5919  Fincfn 6796  cc 7872  1c1 7875   · cmul 7879  cmin 8192  0cn0 9243  chash 10849  Σcsu 11499
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-mulrcl 7973  ax-addcom 7974  ax-mulcom 7975  ax-addass 7976  ax-mulass 7977  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-1rid 7981  ax-0id 7982  ax-rnegex 7983  ax-precex 7984  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-apti 7989  ax-pre-ltadd 7990  ax-pre-mulgt0 7991  ax-pre-mulext 7992  ax-arch 7993  ax-caucvg 7994
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-if 3559  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-disj 4008  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-po 4328  df-iso 4329  df-iord 4398  df-on 4400  df-ilim 4401  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-irdg 6425  df-frec 6446  df-1o 6471  df-oadd 6475  df-er 6589  df-en 6797  df-dom 6798  df-fin 6799  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-reap 8596  df-ap 8603  df-div 8694  df-inn 8985  df-2 9043  df-3 9044  df-4 9045  df-n0 9244  df-z 9321  df-uz 9596  df-q 9688  df-rp 9723  df-fz 10078  df-fzo 10212  df-seqfrec 10522  df-exp 10613  df-ihash 10850  df-cj 10989  df-re 10990  df-im 10991  df-rsqrt 11145  df-abs 11146  df-clim 11425  df-sumdc 11500
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator