ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resttop GIF version

Theorem resttop 12369
Description: A subspace topology is a topology. Definition of subspace topology in [Munkres] p. 89. 𝐴 is normally a subset of the base set of 𝐽. (Contributed by FL, 15-Apr-2007.) (Revised by Mario Carneiro, 1-May-2015.)
Assertion
Ref Expression
resttop ((𝐽 ∈ Top ∧ 𝐴𝑉) → (𝐽t 𝐴) ∈ Top)

Proof of Theorem resttop
StepHypRef Expression
1 tgrest 12368 . . 3 ((𝐽 ∈ Top ∧ 𝐴𝑉) → (topGen‘(𝐽t 𝐴)) = ((topGen‘𝐽) ↾t 𝐴))
2 tgtop 12267 . . . . 5 (𝐽 ∈ Top → (topGen‘𝐽) = 𝐽)
32adantr 274 . . . 4 ((𝐽 ∈ Top ∧ 𝐴𝑉) → (topGen‘𝐽) = 𝐽)
43oveq1d 5793 . . 3 ((𝐽 ∈ Top ∧ 𝐴𝑉) → ((topGen‘𝐽) ↾t 𝐴) = (𝐽t 𝐴))
51, 4eqtrd 2173 . 2 ((𝐽 ∈ Top ∧ 𝐴𝑉) → (topGen‘(𝐽t 𝐴)) = (𝐽t 𝐴))
6 topbas 12266 . . . 4 (𝐽 ∈ Top → 𝐽 ∈ TopBases)
7 restbasg 12367 . . . 4 ((𝐽 ∈ TopBases ∧ 𝐴𝑉) → (𝐽t 𝐴) ∈ TopBases)
86, 7sylan 281 . . 3 ((𝐽 ∈ Top ∧ 𝐴𝑉) → (𝐽t 𝐴) ∈ TopBases)
9 tgcl 12263 . . 3 ((𝐽t 𝐴) ∈ TopBases → (topGen‘(𝐽t 𝐴)) ∈ Top)
108, 9syl 14 . 2 ((𝐽 ∈ Top ∧ 𝐴𝑉) → (topGen‘(𝐽t 𝐴)) ∈ Top)
115, 10eqeltrrd 2218 1 ((𝐽 ∈ Top ∧ 𝐴𝑉) → (𝐽t 𝐴) ∈ Top)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1332  wcel 1481  cfv 5127  (class class class)co 5778  t crest 12150  topGenctg 12165  Topctop 12194  TopBasesctb 12239
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4047  ax-sep 4050  ax-pow 4102  ax-pr 4135  ax-un 4359  ax-setind 4456
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2689  df-sbc 2911  df-csb 3005  df-dif 3074  df-un 3076  df-in 3078  df-ss 3085  df-pw 3513  df-sn 3534  df-pr 3535  df-op 3537  df-uni 3741  df-iun 3819  df-br 3934  df-opab 3994  df-mpt 3995  df-id 4219  df-xp 4549  df-rel 4550  df-cnv 4551  df-co 4552  df-dm 4553  df-rn 4554  df-res 4555  df-ima 4556  df-iota 5092  df-fun 5129  df-fn 5130  df-f 5131  df-f1 5132  df-fo 5133  df-f1o 5134  df-fv 5135  df-ov 5781  df-oprab 5782  df-mpo 5783  df-1st 6042  df-2nd 6043  df-rest 12152  df-topgen 12171  df-top 12195  df-bases 12240
This theorem is referenced by:  resttopon  12370  resttopon2  12377  rest0  12378  cnptoprest2  12439  limccnp2lem  12844  limccnp2cntop  12845  reldvg  12847  dvbss  12853  dvcnp2cntop  12862
  Copyright terms: Public domain W3C validator