![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > resttop | GIF version |
Description: A subspace topology is a topology. Definition of subspace topology in [Munkres] p. 89. 𝐴 is normally a subset of the base set of 𝐽. (Contributed by FL, 15-Apr-2007.) (Revised by Mario Carneiro, 1-May-2015.) |
Ref | Expression |
---|---|
resttop | ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉) → (𝐽 ↾t 𝐴) ∈ Top) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tgrest 13965 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉) → (topGen‘(𝐽 ↾t 𝐴)) = ((topGen‘𝐽) ↾t 𝐴)) | |
2 | tgtop 13864 | . . . . 5 ⊢ (𝐽 ∈ Top → (topGen‘𝐽) = 𝐽) | |
3 | 2 | adantr 276 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉) → (topGen‘𝐽) = 𝐽) |
4 | 3 | oveq1d 5903 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉) → ((topGen‘𝐽) ↾t 𝐴) = (𝐽 ↾t 𝐴)) |
5 | 1, 4 | eqtrd 2220 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉) → (topGen‘(𝐽 ↾t 𝐴)) = (𝐽 ↾t 𝐴)) |
6 | topbas 13863 | . . . 4 ⊢ (𝐽 ∈ Top → 𝐽 ∈ TopBases) | |
7 | restbasg 13964 | . . . 4 ⊢ ((𝐽 ∈ TopBases ∧ 𝐴 ∈ 𝑉) → (𝐽 ↾t 𝐴) ∈ TopBases) | |
8 | 6, 7 | sylan 283 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉) → (𝐽 ↾t 𝐴) ∈ TopBases) |
9 | tgcl 13860 | . . 3 ⊢ ((𝐽 ↾t 𝐴) ∈ TopBases → (topGen‘(𝐽 ↾t 𝐴)) ∈ Top) | |
10 | 8, 9 | syl 14 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉) → (topGen‘(𝐽 ↾t 𝐴)) ∈ Top) |
11 | 5, 10 | eqeltrrd 2265 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉) → (𝐽 ↾t 𝐴) ∈ Top) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1363 ∈ wcel 2158 ‘cfv 5228 (class class class)co 5888 ↾t crest 12706 topGenctg 12721 Topctop 13793 TopBasesctb 13838 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-13 2160 ax-14 2161 ax-ext 2169 ax-coll 4130 ax-sep 4133 ax-pow 4186 ax-pr 4221 ax-un 4445 ax-setind 4548 |
This theorem depends on definitions: df-bi 117 df-3an 981 df-tru 1366 df-fal 1369 df-nf 1471 df-sb 1773 df-eu 2039 df-mo 2040 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-ne 2358 df-ral 2470 df-rex 2471 df-reu 2472 df-rab 2474 df-v 2751 df-sbc 2975 df-csb 3070 df-dif 3143 df-un 3145 df-in 3147 df-ss 3154 df-pw 3589 df-sn 3610 df-pr 3611 df-op 3613 df-uni 3822 df-iun 3900 df-br 4016 df-opab 4077 df-mpt 4078 df-id 4305 df-xp 4644 df-rel 4645 df-cnv 4646 df-co 4647 df-dm 4648 df-rn 4649 df-res 4650 df-ima 4651 df-iota 5190 df-fun 5230 df-fn 5231 df-f 5232 df-f1 5233 df-fo 5234 df-f1o 5235 df-fv 5236 df-ov 5891 df-oprab 5892 df-mpo 5893 df-1st 6155 df-2nd 6156 df-rest 12708 df-topgen 12727 df-top 13794 df-bases 13839 |
This theorem is referenced by: resttopon 13967 resttopon2 13974 rest0 13975 cnptoprest2 14036 limccnp2lem 14441 limccnp2cntop 14442 reldvg 14444 dvbss 14450 dvcnp2cntop 14459 |
Copyright terms: Public domain | W3C validator |