MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0nelfil Structured version   Visualization version   GIF version

Theorem 0nelfil 22061
Description: The empty set doesn't belong to a filter. (Contributed by FL, 20-Jul-2007.) (Revised by Mario Carneiro, 28-Jul-2015.)
Assertion
Ref Expression
0nelfil (𝐹 ∈ (Fil‘𝑋) → ¬ ∅ ∈ 𝐹)

Proof of Theorem 0nelfil
StepHypRef Expression
1 filfbas 22060 . 2 (𝐹 ∈ (Fil‘𝑋) → 𝐹 ∈ (fBas‘𝑋))
2 0nelfb 22043 . 2 (𝐹 ∈ (fBas‘𝑋) → ¬ ∅ ∈ 𝐹)
31, 2syl 17 1 (𝐹 ∈ (Fil‘𝑋) → ¬ ∅ ∈ 𝐹)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wcel 2107  c0 4141  cfv 6135  fBascfbas 20130  Filcfil 22057
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-op 4405  df-uni 4672  df-br 4887  df-opab 4949  df-mpt 4966  df-id 5261  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-iota 6099  df-fun 6137  df-fv 6143  df-fbas 20139  df-fil 22058
This theorem is referenced by:  fileln0  22062  isfil2  22068  infil  22075  filuni  22097  filufint  22132  rnelfmlem  22164  fmfnfm  22170  fclscmpi  22241
  Copyright terms: Public domain W3C validator