Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 0nelfb | Structured version Visualization version GIF version |
Description: No filter base contains the empty set. (Contributed by Jeff Hankins, 1-Sep-2009.) (Revised by Mario Carneiro, 28-Jul-2015.) |
Ref | Expression |
---|---|
0nelfb | ⊢ (𝐹 ∈ (fBas‘𝐵) → ¬ ∅ ∈ 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfvdm 6806 | . . . . 5 ⊢ (𝐹 ∈ (fBas‘𝐵) → 𝐵 ∈ dom fBas) | |
2 | isfbas 22980 | . . . . 5 ⊢ (𝐵 ∈ dom fBas → (𝐹 ∈ (fBas‘𝐵) ↔ (𝐹 ⊆ 𝒫 𝐵 ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥 ∈ 𝐹 ∀𝑦 ∈ 𝐹 (𝐹 ∩ 𝒫 (𝑥 ∩ 𝑦)) ≠ ∅)))) | |
3 | 1, 2 | syl 17 | . . . 4 ⊢ (𝐹 ∈ (fBas‘𝐵) → (𝐹 ∈ (fBas‘𝐵) ↔ (𝐹 ⊆ 𝒫 𝐵 ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥 ∈ 𝐹 ∀𝑦 ∈ 𝐹 (𝐹 ∩ 𝒫 (𝑥 ∩ 𝑦)) ≠ ∅)))) |
4 | 3 | ibi 266 | . . 3 ⊢ (𝐹 ∈ (fBas‘𝐵) → (𝐹 ⊆ 𝒫 𝐵 ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥 ∈ 𝐹 ∀𝑦 ∈ 𝐹 (𝐹 ∩ 𝒫 (𝑥 ∩ 𝑦)) ≠ ∅))) |
5 | simpr2 1194 | . . 3 ⊢ ((𝐹 ⊆ 𝒫 𝐵 ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥 ∈ 𝐹 ∀𝑦 ∈ 𝐹 (𝐹 ∩ 𝒫 (𝑥 ∩ 𝑦)) ≠ ∅)) → ∅ ∉ 𝐹) | |
6 | 4, 5 | syl 17 | . 2 ⊢ (𝐹 ∈ (fBas‘𝐵) → ∅ ∉ 𝐹) |
7 | df-nel 3050 | . 2 ⊢ (∅ ∉ 𝐹 ↔ ¬ ∅ ∈ 𝐹) | |
8 | 6, 7 | sylib 217 | 1 ⊢ (𝐹 ∈ (fBas‘𝐵) → ¬ ∅ ∈ 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1086 ∈ wcel 2106 ≠ wne 2943 ∉ wnel 3049 ∀wral 3064 ∩ cin 3886 ⊆ wss 3887 ∅c0 4256 𝒫 cpw 4533 dom cdm 5589 ‘cfv 6433 fBascfbas 20585 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fv 6441 df-fbas 20594 |
This theorem is referenced by: fbdmn0 22985 fbncp 22990 fbun 22991 fbfinnfr 22992 0nelfil 23000 fsubbas 23018 fbasfip 23019 fgcl 23029 fbasrn 23035 uzfbas 23049 ucnextcn 23456 |
Copyright terms: Public domain | W3C validator |