![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0nelfb | Structured version Visualization version GIF version |
Description: No filter base contains the empty set. (Contributed by Jeff Hankins, 1-Sep-2009.) (Revised by Mario Carneiro, 28-Jul-2015.) |
Ref | Expression |
---|---|
0nelfb | ⊢ (𝐹 ∈ (fBas‘𝐵) → ¬ ∅ ∈ 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfvdm 6925 | . . . . 5 ⊢ (𝐹 ∈ (fBas‘𝐵) → 𝐵 ∈ dom fBas) | |
2 | isfbas 23324 | . . . . 5 ⊢ (𝐵 ∈ dom fBas → (𝐹 ∈ (fBas‘𝐵) ↔ (𝐹 ⊆ 𝒫 𝐵 ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥 ∈ 𝐹 ∀𝑦 ∈ 𝐹 (𝐹 ∩ 𝒫 (𝑥 ∩ 𝑦)) ≠ ∅)))) | |
3 | 1, 2 | syl 17 | . . . 4 ⊢ (𝐹 ∈ (fBas‘𝐵) → (𝐹 ∈ (fBas‘𝐵) ↔ (𝐹 ⊆ 𝒫 𝐵 ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥 ∈ 𝐹 ∀𝑦 ∈ 𝐹 (𝐹 ∩ 𝒫 (𝑥 ∩ 𝑦)) ≠ ∅)))) |
4 | 3 | ibi 266 | . . 3 ⊢ (𝐹 ∈ (fBas‘𝐵) → (𝐹 ⊆ 𝒫 𝐵 ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥 ∈ 𝐹 ∀𝑦 ∈ 𝐹 (𝐹 ∩ 𝒫 (𝑥 ∩ 𝑦)) ≠ ∅))) |
5 | simpr2 1195 | . . 3 ⊢ ((𝐹 ⊆ 𝒫 𝐵 ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥 ∈ 𝐹 ∀𝑦 ∈ 𝐹 (𝐹 ∩ 𝒫 (𝑥 ∩ 𝑦)) ≠ ∅)) → ∅ ∉ 𝐹) | |
6 | 4, 5 | syl 17 | . 2 ⊢ (𝐹 ∈ (fBas‘𝐵) → ∅ ∉ 𝐹) |
7 | df-nel 3047 | . 2 ⊢ (∅ ∉ 𝐹 ↔ ¬ ∅ ∈ 𝐹) | |
8 | 6, 7 | sylib 217 | 1 ⊢ (𝐹 ∈ (fBas‘𝐵) → ¬ ∅ ∈ 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1087 ∈ wcel 2106 ≠ wne 2940 ∉ wnel 3046 ∀wral 3061 ∩ cin 3946 ⊆ wss 3947 ∅c0 4321 𝒫 cpw 4601 dom cdm 5675 ‘cfv 6540 fBascfbas 20924 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fv 6548 df-fbas 20933 |
This theorem is referenced by: fbdmn0 23329 fbncp 23334 fbun 23335 fbfinnfr 23336 0nelfil 23344 fsubbas 23362 fbasfip 23363 fgcl 23373 fbasrn 23379 uzfbas 23393 ucnextcn 23800 |
Copyright terms: Public domain | W3C validator |