MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0nelfb Structured version   Visualization version   GIF version

Theorem 0nelfb 23769
Description: No filter base contains the empty set. (Contributed by Jeff Hankins, 1-Sep-2009.) (Revised by Mario Carneiro, 28-Jul-2015.)
Assertion
Ref Expression
0nelfb (𝐹 ∈ (fBas‘𝐵) → ¬ ∅ ∈ 𝐹)

Proof of Theorem 0nelfb
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfvdm 6913 . . . . 5 (𝐹 ∈ (fBas‘𝐵) → 𝐵 ∈ dom fBas)
2 isfbas 23767 . . . . 5 (𝐵 ∈ dom fBas → (𝐹 ∈ (fBas‘𝐵) ↔ (𝐹 ⊆ 𝒫 𝐵 ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥𝐹𝑦𝐹 (𝐹 ∩ 𝒫 (𝑥𝑦)) ≠ ∅))))
31, 2syl 17 . . . 4 (𝐹 ∈ (fBas‘𝐵) → (𝐹 ∈ (fBas‘𝐵) ↔ (𝐹 ⊆ 𝒫 𝐵 ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥𝐹𝑦𝐹 (𝐹 ∩ 𝒫 (𝑥𝑦)) ≠ ∅))))
43ibi 267 . . 3 (𝐹 ∈ (fBas‘𝐵) → (𝐹 ⊆ 𝒫 𝐵 ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥𝐹𝑦𝐹 (𝐹 ∩ 𝒫 (𝑥𝑦)) ≠ ∅)))
5 simpr2 1196 . . 3 ((𝐹 ⊆ 𝒫 𝐵 ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥𝐹𝑦𝐹 (𝐹 ∩ 𝒫 (𝑥𝑦)) ≠ ∅)) → ∅ ∉ 𝐹)
64, 5syl 17 . 2 (𝐹 ∈ (fBas‘𝐵) → ∅ ∉ 𝐹)
7 df-nel 3037 . 2 (∅ ∉ 𝐹 ↔ ¬ ∅ ∈ 𝐹)
86, 7sylib 218 1 (𝐹 ∈ (fBas‘𝐵) → ¬ ∅ ∈ 𝐹)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086  wcel 2108  wne 2932  wnel 3036  wral 3051  cin 3925  wss 3926  c0 4308  𝒫 cpw 4575  dom cdm 5654  cfv 6531  fBascfbas 21303
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fv 6539  df-fbas 21312
This theorem is referenced by:  fbdmn0  23772  fbncp  23777  fbun  23778  fbfinnfr  23779  0nelfil  23787  fsubbas  23805  fbasfip  23806  fgcl  23816  fbasrn  23822  uzfbas  23836  ucnextcn  24242
  Copyright terms: Public domain W3C validator