| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | inss1 4236 | . . . 4
⊢ (𝐹 ∩ 𝐺) ⊆ 𝐹 | 
| 2 |  | filsspw 23860 | . . . . 5
⊢ (𝐹 ∈ (Fil‘𝑋) → 𝐹 ⊆ 𝒫 𝑋) | 
| 3 | 2 | adantr 480 | . . . 4
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋)) → 𝐹 ⊆ 𝒫 𝑋) | 
| 4 | 1, 3 | sstrid 3994 | . . 3
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋)) → (𝐹 ∩ 𝐺) ⊆ 𝒫 𝑋) | 
| 5 |  | 0nelfil 23858 | . . . . 5
⊢ (𝐹 ∈ (Fil‘𝑋) → ¬ ∅ ∈
𝐹) | 
| 6 | 5 | adantr 480 | . . . 4
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋)) → ¬ ∅ ∈ 𝐹) | 
| 7 |  | elinel1 4200 | . . . 4
⊢ (∅
∈ (𝐹 ∩ 𝐺) → ∅ ∈ 𝐹) | 
| 8 | 6, 7 | nsyl 140 | . . 3
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋)) → ¬ ∅ ∈ (𝐹 ∩ 𝐺)) | 
| 9 |  | filtop 23864 | . . . . 5
⊢ (𝐹 ∈ (Fil‘𝑋) → 𝑋 ∈ 𝐹) | 
| 10 | 9 | adantr 480 | . . . 4
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋)) → 𝑋 ∈ 𝐹) | 
| 11 |  | filtop 23864 | . . . . 5
⊢ (𝐺 ∈ (Fil‘𝑋) → 𝑋 ∈ 𝐺) | 
| 12 | 11 | adantl 481 | . . . 4
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋)) → 𝑋 ∈ 𝐺) | 
| 13 | 10, 12 | elind 4199 | . . 3
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋)) → 𝑋 ∈ (𝐹 ∩ 𝐺)) | 
| 14 | 4, 8, 13 | 3jca 1128 | . 2
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋)) → ((𝐹 ∩ 𝐺) ⊆ 𝒫 𝑋 ∧ ¬ ∅ ∈ (𝐹 ∩ 𝐺) ∧ 𝑋 ∈ (𝐹 ∩ 𝐺))) | 
| 15 |  | simpll 766 | . . . . . . . 8
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋)) ∧ (𝑥 ∈ 𝒫 𝑋 ∧ 𝑦 ∈ (𝐹 ∩ 𝐺) ∧ 𝑦 ⊆ 𝑥)) → 𝐹 ∈ (Fil‘𝑋)) | 
| 16 |  | simpr2 1195 | . . . . . . . . 9
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋)) ∧ (𝑥 ∈ 𝒫 𝑋 ∧ 𝑦 ∈ (𝐹 ∩ 𝐺) ∧ 𝑦 ⊆ 𝑥)) → 𝑦 ∈ (𝐹 ∩ 𝐺)) | 
| 17 |  | elinel1 4200 | . . . . . . . . 9
⊢ (𝑦 ∈ (𝐹 ∩ 𝐺) → 𝑦 ∈ 𝐹) | 
| 18 | 16, 17 | syl 17 | . . . . . . . 8
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋)) ∧ (𝑥 ∈ 𝒫 𝑋 ∧ 𝑦 ∈ (𝐹 ∩ 𝐺) ∧ 𝑦 ⊆ 𝑥)) → 𝑦 ∈ 𝐹) | 
| 19 |  | simpr1 1194 | . . . . . . . . 9
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋)) ∧ (𝑥 ∈ 𝒫 𝑋 ∧ 𝑦 ∈ (𝐹 ∩ 𝐺) ∧ 𝑦 ⊆ 𝑥)) → 𝑥 ∈ 𝒫 𝑋) | 
| 20 | 19 | elpwid 4608 | . . . . . . . 8
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋)) ∧ (𝑥 ∈ 𝒫 𝑋 ∧ 𝑦 ∈ (𝐹 ∩ 𝐺) ∧ 𝑦 ⊆ 𝑥)) → 𝑥 ⊆ 𝑋) | 
| 21 |  | simpr3 1196 | . . . . . . . 8
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋)) ∧ (𝑥 ∈ 𝒫 𝑋 ∧ 𝑦 ∈ (𝐹 ∩ 𝐺) ∧ 𝑦 ⊆ 𝑥)) → 𝑦 ⊆ 𝑥) | 
| 22 |  | filss 23862 | . . . . . . . 8
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑦 ∈ 𝐹 ∧ 𝑥 ⊆ 𝑋 ∧ 𝑦 ⊆ 𝑥)) → 𝑥 ∈ 𝐹) | 
| 23 | 15, 18, 20, 21, 22 | syl13anc 1373 | . . . . . . 7
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋)) ∧ (𝑥 ∈ 𝒫 𝑋 ∧ 𝑦 ∈ (𝐹 ∩ 𝐺) ∧ 𝑦 ⊆ 𝑥)) → 𝑥 ∈ 𝐹) | 
| 24 |  | simplr 768 | . . . . . . . 8
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋)) ∧ (𝑥 ∈ 𝒫 𝑋 ∧ 𝑦 ∈ (𝐹 ∩ 𝐺) ∧ 𝑦 ⊆ 𝑥)) → 𝐺 ∈ (Fil‘𝑋)) | 
| 25 |  | elinel2 4201 | . . . . . . . . 9
⊢ (𝑦 ∈ (𝐹 ∩ 𝐺) → 𝑦 ∈ 𝐺) | 
| 26 | 16, 25 | syl 17 | . . . . . . . 8
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋)) ∧ (𝑥 ∈ 𝒫 𝑋 ∧ 𝑦 ∈ (𝐹 ∩ 𝐺) ∧ 𝑦 ⊆ 𝑥)) → 𝑦 ∈ 𝐺) | 
| 27 |  | filss 23862 | . . . . . . . 8
⊢ ((𝐺 ∈ (Fil‘𝑋) ∧ (𝑦 ∈ 𝐺 ∧ 𝑥 ⊆ 𝑋 ∧ 𝑦 ⊆ 𝑥)) → 𝑥 ∈ 𝐺) | 
| 28 | 24, 26, 20, 21, 27 | syl13anc 1373 | . . . . . . 7
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋)) ∧ (𝑥 ∈ 𝒫 𝑋 ∧ 𝑦 ∈ (𝐹 ∩ 𝐺) ∧ 𝑦 ⊆ 𝑥)) → 𝑥 ∈ 𝐺) | 
| 29 | 23, 28 | elind 4199 | . . . . . 6
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋)) ∧ (𝑥 ∈ 𝒫 𝑋 ∧ 𝑦 ∈ (𝐹 ∩ 𝐺) ∧ 𝑦 ⊆ 𝑥)) → 𝑥 ∈ (𝐹 ∩ 𝐺)) | 
| 30 | 29 | 3exp2 1354 | . . . . 5
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋)) → (𝑥 ∈ 𝒫 𝑋 → (𝑦 ∈ (𝐹 ∩ 𝐺) → (𝑦 ⊆ 𝑥 → 𝑥 ∈ (𝐹 ∩ 𝐺))))) | 
| 31 | 30 | imp 406 | . . . 4
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋)) ∧ 𝑥 ∈ 𝒫 𝑋) → (𝑦 ∈ (𝐹 ∩ 𝐺) → (𝑦 ⊆ 𝑥 → 𝑥 ∈ (𝐹 ∩ 𝐺)))) | 
| 32 | 31 | rexlimdv 3152 | . . 3
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋)) ∧ 𝑥 ∈ 𝒫 𝑋) → (∃𝑦 ∈ (𝐹 ∩ 𝐺)𝑦 ⊆ 𝑥 → 𝑥 ∈ (𝐹 ∩ 𝐺))) | 
| 33 | 32 | ralrimiva 3145 | . 2
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋)) → ∀𝑥 ∈ 𝒫 𝑋(∃𝑦 ∈ (𝐹 ∩ 𝐺)𝑦 ⊆ 𝑥 → 𝑥 ∈ (𝐹 ∩ 𝐺))) | 
| 34 |  | simpl 482 | . . . . 5
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋)) → 𝐹 ∈ (Fil‘𝑋)) | 
| 35 |  | elinel1 4200 | . . . . . 6
⊢ (𝑥 ∈ (𝐹 ∩ 𝐺) → 𝑥 ∈ 𝐹) | 
| 36 | 35, 17 | anim12i 613 | . . . . 5
⊢ ((𝑥 ∈ (𝐹 ∩ 𝐺) ∧ 𝑦 ∈ (𝐹 ∩ 𝐺)) → (𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝐹)) | 
| 37 |  | filin 23863 | . . . . . 6
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝐹) → (𝑥 ∩ 𝑦) ∈ 𝐹) | 
| 38 | 37 | 3expb 1120 | . . . . 5
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝐹)) → (𝑥 ∩ 𝑦) ∈ 𝐹) | 
| 39 | 34, 36, 38 | syl2an 596 | . . . 4
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋)) ∧ (𝑥 ∈ (𝐹 ∩ 𝐺) ∧ 𝑦 ∈ (𝐹 ∩ 𝐺))) → (𝑥 ∩ 𝑦) ∈ 𝐹) | 
| 40 |  | simpr 484 | . . . . 5
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋)) → 𝐺 ∈ (Fil‘𝑋)) | 
| 41 |  | elinel2 4201 | . . . . . 6
⊢ (𝑥 ∈ (𝐹 ∩ 𝐺) → 𝑥 ∈ 𝐺) | 
| 42 | 41, 25 | anim12i 613 | . . . . 5
⊢ ((𝑥 ∈ (𝐹 ∩ 𝐺) ∧ 𝑦 ∈ (𝐹 ∩ 𝐺)) → (𝑥 ∈ 𝐺 ∧ 𝑦 ∈ 𝐺)) | 
| 43 |  | filin 23863 | . . . . . 6
⊢ ((𝐺 ∈ (Fil‘𝑋) ∧ 𝑥 ∈ 𝐺 ∧ 𝑦 ∈ 𝐺) → (𝑥 ∩ 𝑦) ∈ 𝐺) | 
| 44 | 43 | 3expb 1120 | . . . . 5
⊢ ((𝐺 ∈ (Fil‘𝑋) ∧ (𝑥 ∈ 𝐺 ∧ 𝑦 ∈ 𝐺)) → (𝑥 ∩ 𝑦) ∈ 𝐺) | 
| 45 | 40, 42, 44 | syl2an 596 | . . . 4
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋)) ∧ (𝑥 ∈ (𝐹 ∩ 𝐺) ∧ 𝑦 ∈ (𝐹 ∩ 𝐺))) → (𝑥 ∩ 𝑦) ∈ 𝐺) | 
| 46 | 39, 45 | elind 4199 | . . 3
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋)) ∧ (𝑥 ∈ (𝐹 ∩ 𝐺) ∧ 𝑦 ∈ (𝐹 ∩ 𝐺))) → (𝑥 ∩ 𝑦) ∈ (𝐹 ∩ 𝐺)) | 
| 47 | 46 | ralrimivva 3201 | . 2
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋)) → ∀𝑥 ∈ (𝐹 ∩ 𝐺)∀𝑦 ∈ (𝐹 ∩ 𝐺)(𝑥 ∩ 𝑦) ∈ (𝐹 ∩ 𝐺)) | 
| 48 |  | isfil2 23865 | . 2
⊢ ((𝐹 ∩ 𝐺) ∈ (Fil‘𝑋) ↔ (((𝐹 ∩ 𝐺) ⊆ 𝒫 𝑋 ∧ ¬ ∅ ∈ (𝐹 ∩ 𝐺) ∧ 𝑋 ∈ (𝐹 ∩ 𝐺)) ∧ ∀𝑥 ∈ 𝒫 𝑋(∃𝑦 ∈ (𝐹 ∩ 𝐺)𝑦 ⊆ 𝑥 → 𝑥 ∈ (𝐹 ∩ 𝐺)) ∧ ∀𝑥 ∈ (𝐹 ∩ 𝐺)∀𝑦 ∈ (𝐹 ∩ 𝐺)(𝑥 ∩ 𝑦) ∈ (𝐹 ∩ 𝐺))) | 
| 49 | 14, 33, 47, 48 | syl3anbrc 1343 | 1
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋)) → (𝐹 ∩ 𝐺) ∈ (Fil‘𝑋)) |