MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infil Structured version   Visualization version   GIF version

Theorem infil 23892
Description: The intersection of two filters is a filter. Use fiint 9394 to extend this property to the intersection of a finite set of filters. Paragraph 3 of [BourbakiTop1] p. I.36. (Contributed by FL, 17-Sep-2007.) (Revised by Stefan O'Rear, 2-Aug-2015.)
Assertion
Ref Expression
infil ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋)) → (𝐹𝐺) ∈ (Fil‘𝑋))

Proof of Theorem infil
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 inss1 4258 . . . 4 (𝐹𝐺) ⊆ 𝐹
2 filsspw 23880 . . . . 5 (𝐹 ∈ (Fil‘𝑋) → 𝐹 ⊆ 𝒫 𝑋)
32adantr 480 . . . 4 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋)) → 𝐹 ⊆ 𝒫 𝑋)
41, 3sstrid 4020 . . 3 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋)) → (𝐹𝐺) ⊆ 𝒫 𝑋)
5 0nelfil 23878 . . . . 5 (𝐹 ∈ (Fil‘𝑋) → ¬ ∅ ∈ 𝐹)
65adantr 480 . . . 4 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋)) → ¬ ∅ ∈ 𝐹)
7 elinel1 4224 . . . 4 (∅ ∈ (𝐹𝐺) → ∅ ∈ 𝐹)
86, 7nsyl 140 . . 3 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋)) → ¬ ∅ ∈ (𝐹𝐺))
9 filtop 23884 . . . . 5 (𝐹 ∈ (Fil‘𝑋) → 𝑋𝐹)
109adantr 480 . . . 4 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋)) → 𝑋𝐹)
11 filtop 23884 . . . . 5 (𝐺 ∈ (Fil‘𝑋) → 𝑋𝐺)
1211adantl 481 . . . 4 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋)) → 𝑋𝐺)
1310, 12elind 4223 . . 3 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋)) → 𝑋 ∈ (𝐹𝐺))
144, 8, 133jca 1128 . 2 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋)) → ((𝐹𝐺) ⊆ 𝒫 𝑋 ∧ ¬ ∅ ∈ (𝐹𝐺) ∧ 𝑋 ∈ (𝐹𝐺)))
15 simpll 766 . . . . . . . 8 (((𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋)) ∧ (𝑥 ∈ 𝒫 𝑋𝑦 ∈ (𝐹𝐺) ∧ 𝑦𝑥)) → 𝐹 ∈ (Fil‘𝑋))
16 simpr2 1195 . . . . . . . . 9 (((𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋)) ∧ (𝑥 ∈ 𝒫 𝑋𝑦 ∈ (𝐹𝐺) ∧ 𝑦𝑥)) → 𝑦 ∈ (𝐹𝐺))
17 elinel1 4224 . . . . . . . . 9 (𝑦 ∈ (𝐹𝐺) → 𝑦𝐹)
1816, 17syl 17 . . . . . . . 8 (((𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋)) ∧ (𝑥 ∈ 𝒫 𝑋𝑦 ∈ (𝐹𝐺) ∧ 𝑦𝑥)) → 𝑦𝐹)
19 simpr1 1194 . . . . . . . . 9 (((𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋)) ∧ (𝑥 ∈ 𝒫 𝑋𝑦 ∈ (𝐹𝐺) ∧ 𝑦𝑥)) → 𝑥 ∈ 𝒫 𝑋)
2019elpwid 4631 . . . . . . . 8 (((𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋)) ∧ (𝑥 ∈ 𝒫 𝑋𝑦 ∈ (𝐹𝐺) ∧ 𝑦𝑥)) → 𝑥𝑋)
21 simpr3 1196 . . . . . . . 8 (((𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋)) ∧ (𝑥 ∈ 𝒫 𝑋𝑦 ∈ (𝐹𝐺) ∧ 𝑦𝑥)) → 𝑦𝑥)
22 filss 23882 . . . . . . . 8 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑦𝐹𝑥𝑋𝑦𝑥)) → 𝑥𝐹)
2315, 18, 20, 21, 22syl13anc 1372 . . . . . . 7 (((𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋)) ∧ (𝑥 ∈ 𝒫 𝑋𝑦 ∈ (𝐹𝐺) ∧ 𝑦𝑥)) → 𝑥𝐹)
24 simplr 768 . . . . . . . 8 (((𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋)) ∧ (𝑥 ∈ 𝒫 𝑋𝑦 ∈ (𝐹𝐺) ∧ 𝑦𝑥)) → 𝐺 ∈ (Fil‘𝑋))
25 elinel2 4225 . . . . . . . . 9 (𝑦 ∈ (𝐹𝐺) → 𝑦𝐺)
2616, 25syl 17 . . . . . . . 8 (((𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋)) ∧ (𝑥 ∈ 𝒫 𝑋𝑦 ∈ (𝐹𝐺) ∧ 𝑦𝑥)) → 𝑦𝐺)
27 filss 23882 . . . . . . . 8 ((𝐺 ∈ (Fil‘𝑋) ∧ (𝑦𝐺𝑥𝑋𝑦𝑥)) → 𝑥𝐺)
2824, 26, 20, 21, 27syl13anc 1372 . . . . . . 7 (((𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋)) ∧ (𝑥 ∈ 𝒫 𝑋𝑦 ∈ (𝐹𝐺) ∧ 𝑦𝑥)) → 𝑥𝐺)
2923, 28elind 4223 . . . . . 6 (((𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋)) ∧ (𝑥 ∈ 𝒫 𝑋𝑦 ∈ (𝐹𝐺) ∧ 𝑦𝑥)) → 𝑥 ∈ (𝐹𝐺))
30293exp2 1354 . . . . 5 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋)) → (𝑥 ∈ 𝒫 𝑋 → (𝑦 ∈ (𝐹𝐺) → (𝑦𝑥𝑥 ∈ (𝐹𝐺)))))
3130imp 406 . . . 4 (((𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋)) ∧ 𝑥 ∈ 𝒫 𝑋) → (𝑦 ∈ (𝐹𝐺) → (𝑦𝑥𝑥 ∈ (𝐹𝐺))))
3231rexlimdv 3159 . . 3 (((𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋)) ∧ 𝑥 ∈ 𝒫 𝑋) → (∃𝑦 ∈ (𝐹𝐺)𝑦𝑥𝑥 ∈ (𝐹𝐺)))
3332ralrimiva 3152 . 2 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋)) → ∀𝑥 ∈ 𝒫 𝑋(∃𝑦 ∈ (𝐹𝐺)𝑦𝑥𝑥 ∈ (𝐹𝐺)))
34 simpl 482 . . . . 5 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋)) → 𝐹 ∈ (Fil‘𝑋))
35 elinel1 4224 . . . . . 6 (𝑥 ∈ (𝐹𝐺) → 𝑥𝐹)
3635, 17anim12i 612 . . . . 5 ((𝑥 ∈ (𝐹𝐺) ∧ 𝑦 ∈ (𝐹𝐺)) → (𝑥𝐹𝑦𝐹))
37 filin 23883 . . . . . 6 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑥𝐹𝑦𝐹) → (𝑥𝑦) ∈ 𝐹)
38373expb 1120 . . . . 5 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑥𝐹𝑦𝐹)) → (𝑥𝑦) ∈ 𝐹)
3934, 36, 38syl2an 595 . . . 4 (((𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋)) ∧ (𝑥 ∈ (𝐹𝐺) ∧ 𝑦 ∈ (𝐹𝐺))) → (𝑥𝑦) ∈ 𝐹)
40 simpr 484 . . . . 5 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋)) → 𝐺 ∈ (Fil‘𝑋))
41 elinel2 4225 . . . . . 6 (𝑥 ∈ (𝐹𝐺) → 𝑥𝐺)
4241, 25anim12i 612 . . . . 5 ((𝑥 ∈ (𝐹𝐺) ∧ 𝑦 ∈ (𝐹𝐺)) → (𝑥𝐺𝑦𝐺))
43 filin 23883 . . . . . 6 ((𝐺 ∈ (Fil‘𝑋) ∧ 𝑥𝐺𝑦𝐺) → (𝑥𝑦) ∈ 𝐺)
44433expb 1120 . . . . 5 ((𝐺 ∈ (Fil‘𝑋) ∧ (𝑥𝐺𝑦𝐺)) → (𝑥𝑦) ∈ 𝐺)
4540, 42, 44syl2an 595 . . . 4 (((𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋)) ∧ (𝑥 ∈ (𝐹𝐺) ∧ 𝑦 ∈ (𝐹𝐺))) → (𝑥𝑦) ∈ 𝐺)
4639, 45elind 4223 . . 3 (((𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋)) ∧ (𝑥 ∈ (𝐹𝐺) ∧ 𝑦 ∈ (𝐹𝐺))) → (𝑥𝑦) ∈ (𝐹𝐺))
4746ralrimivva 3208 . 2 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋)) → ∀𝑥 ∈ (𝐹𝐺)∀𝑦 ∈ (𝐹𝐺)(𝑥𝑦) ∈ (𝐹𝐺))
48 isfil2 23885 . 2 ((𝐹𝐺) ∈ (Fil‘𝑋) ↔ (((𝐹𝐺) ⊆ 𝒫 𝑋 ∧ ¬ ∅ ∈ (𝐹𝐺) ∧ 𝑋 ∈ (𝐹𝐺)) ∧ ∀𝑥 ∈ 𝒫 𝑋(∃𝑦 ∈ (𝐹𝐺)𝑦𝑥𝑥 ∈ (𝐹𝐺)) ∧ ∀𝑥 ∈ (𝐹𝐺)∀𝑦 ∈ (𝐹𝐺)(𝑥𝑦) ∈ (𝐹𝐺)))
4914, 33, 47, 48syl3anbrc 1343 1 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋)) → (𝐹𝐺) ∈ (Fil‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1087  wcel 2108  wral 3067  wrex 3076  cin 3975  wss 3976  c0 4352  𝒫 cpw 4622  cfv 6573  Filcfil 23874
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fv 6581  df-fbas 21384  df-fil 23875
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator