MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infil Structured version   Visualization version   GIF version

Theorem infil 22714
Description: The intersection of two filters is a filter. Use fiint 8926 to extend this property to the intersection of a finite set of filters. Paragraph 3 of [BourbakiTop1] p. I.36. (Contributed by FL, 17-Sep-2007.) (Revised by Stefan O'Rear, 2-Aug-2015.)
Assertion
Ref Expression
infil ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋)) → (𝐹𝐺) ∈ (Fil‘𝑋))

Proof of Theorem infil
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 inss1 4129 . . . 4 (𝐹𝐺) ⊆ 𝐹
2 filsspw 22702 . . . . 5 (𝐹 ∈ (Fil‘𝑋) → 𝐹 ⊆ 𝒫 𝑋)
32adantr 484 . . . 4 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋)) → 𝐹 ⊆ 𝒫 𝑋)
41, 3sstrid 3898 . . 3 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋)) → (𝐹𝐺) ⊆ 𝒫 𝑋)
5 0nelfil 22700 . . . . 5 (𝐹 ∈ (Fil‘𝑋) → ¬ ∅ ∈ 𝐹)
65adantr 484 . . . 4 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋)) → ¬ ∅ ∈ 𝐹)
7 elinel1 4095 . . . 4 (∅ ∈ (𝐹𝐺) → ∅ ∈ 𝐹)
86, 7nsyl 142 . . 3 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋)) → ¬ ∅ ∈ (𝐹𝐺))
9 filtop 22706 . . . . 5 (𝐹 ∈ (Fil‘𝑋) → 𝑋𝐹)
109adantr 484 . . . 4 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋)) → 𝑋𝐹)
11 filtop 22706 . . . . 5 (𝐺 ∈ (Fil‘𝑋) → 𝑋𝐺)
1211adantl 485 . . . 4 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋)) → 𝑋𝐺)
1310, 12elind 4094 . . 3 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋)) → 𝑋 ∈ (𝐹𝐺))
144, 8, 133jca 1130 . 2 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋)) → ((𝐹𝐺) ⊆ 𝒫 𝑋 ∧ ¬ ∅ ∈ (𝐹𝐺) ∧ 𝑋 ∈ (𝐹𝐺)))
15 simpll 767 . . . . . . . 8 (((𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋)) ∧ (𝑥 ∈ 𝒫 𝑋𝑦 ∈ (𝐹𝐺) ∧ 𝑦𝑥)) → 𝐹 ∈ (Fil‘𝑋))
16 simpr2 1197 . . . . . . . . 9 (((𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋)) ∧ (𝑥 ∈ 𝒫 𝑋𝑦 ∈ (𝐹𝐺) ∧ 𝑦𝑥)) → 𝑦 ∈ (𝐹𝐺))
17 elinel1 4095 . . . . . . . . 9 (𝑦 ∈ (𝐹𝐺) → 𝑦𝐹)
1816, 17syl 17 . . . . . . . 8 (((𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋)) ∧ (𝑥 ∈ 𝒫 𝑋𝑦 ∈ (𝐹𝐺) ∧ 𝑦𝑥)) → 𝑦𝐹)
19 simpr1 1196 . . . . . . . . 9 (((𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋)) ∧ (𝑥 ∈ 𝒫 𝑋𝑦 ∈ (𝐹𝐺) ∧ 𝑦𝑥)) → 𝑥 ∈ 𝒫 𝑋)
2019elpwid 4510 . . . . . . . 8 (((𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋)) ∧ (𝑥 ∈ 𝒫 𝑋𝑦 ∈ (𝐹𝐺) ∧ 𝑦𝑥)) → 𝑥𝑋)
21 simpr3 1198 . . . . . . . 8 (((𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋)) ∧ (𝑥 ∈ 𝒫 𝑋𝑦 ∈ (𝐹𝐺) ∧ 𝑦𝑥)) → 𝑦𝑥)
22 filss 22704 . . . . . . . 8 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑦𝐹𝑥𝑋𝑦𝑥)) → 𝑥𝐹)
2315, 18, 20, 21, 22syl13anc 1374 . . . . . . 7 (((𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋)) ∧ (𝑥 ∈ 𝒫 𝑋𝑦 ∈ (𝐹𝐺) ∧ 𝑦𝑥)) → 𝑥𝐹)
24 simplr 769 . . . . . . . 8 (((𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋)) ∧ (𝑥 ∈ 𝒫 𝑋𝑦 ∈ (𝐹𝐺) ∧ 𝑦𝑥)) → 𝐺 ∈ (Fil‘𝑋))
25 elinel2 4096 . . . . . . . . 9 (𝑦 ∈ (𝐹𝐺) → 𝑦𝐺)
2616, 25syl 17 . . . . . . . 8 (((𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋)) ∧ (𝑥 ∈ 𝒫 𝑋𝑦 ∈ (𝐹𝐺) ∧ 𝑦𝑥)) → 𝑦𝐺)
27 filss 22704 . . . . . . . 8 ((𝐺 ∈ (Fil‘𝑋) ∧ (𝑦𝐺𝑥𝑋𝑦𝑥)) → 𝑥𝐺)
2824, 26, 20, 21, 27syl13anc 1374 . . . . . . 7 (((𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋)) ∧ (𝑥 ∈ 𝒫 𝑋𝑦 ∈ (𝐹𝐺) ∧ 𝑦𝑥)) → 𝑥𝐺)
2923, 28elind 4094 . . . . . 6 (((𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋)) ∧ (𝑥 ∈ 𝒫 𝑋𝑦 ∈ (𝐹𝐺) ∧ 𝑦𝑥)) → 𝑥 ∈ (𝐹𝐺))
30293exp2 1356 . . . . 5 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋)) → (𝑥 ∈ 𝒫 𝑋 → (𝑦 ∈ (𝐹𝐺) → (𝑦𝑥𝑥 ∈ (𝐹𝐺)))))
3130imp 410 . . . 4 (((𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋)) ∧ 𝑥 ∈ 𝒫 𝑋) → (𝑦 ∈ (𝐹𝐺) → (𝑦𝑥𝑥 ∈ (𝐹𝐺))))
3231rexlimdv 3192 . . 3 (((𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋)) ∧ 𝑥 ∈ 𝒫 𝑋) → (∃𝑦 ∈ (𝐹𝐺)𝑦𝑥𝑥 ∈ (𝐹𝐺)))
3332ralrimiva 3095 . 2 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋)) → ∀𝑥 ∈ 𝒫 𝑋(∃𝑦 ∈ (𝐹𝐺)𝑦𝑥𝑥 ∈ (𝐹𝐺)))
34 simpl 486 . . . . 5 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋)) → 𝐹 ∈ (Fil‘𝑋))
35 elinel1 4095 . . . . . 6 (𝑥 ∈ (𝐹𝐺) → 𝑥𝐹)
3635, 17anim12i 616 . . . . 5 ((𝑥 ∈ (𝐹𝐺) ∧ 𝑦 ∈ (𝐹𝐺)) → (𝑥𝐹𝑦𝐹))
37 filin 22705 . . . . . 6 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑥𝐹𝑦𝐹) → (𝑥𝑦) ∈ 𝐹)
38373expb 1122 . . . . 5 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑥𝐹𝑦𝐹)) → (𝑥𝑦) ∈ 𝐹)
3934, 36, 38syl2an 599 . . . 4 (((𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋)) ∧ (𝑥 ∈ (𝐹𝐺) ∧ 𝑦 ∈ (𝐹𝐺))) → (𝑥𝑦) ∈ 𝐹)
40 simpr 488 . . . . 5 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋)) → 𝐺 ∈ (Fil‘𝑋))
41 elinel2 4096 . . . . . 6 (𝑥 ∈ (𝐹𝐺) → 𝑥𝐺)
4241, 25anim12i 616 . . . . 5 ((𝑥 ∈ (𝐹𝐺) ∧ 𝑦 ∈ (𝐹𝐺)) → (𝑥𝐺𝑦𝐺))
43 filin 22705 . . . . . 6 ((𝐺 ∈ (Fil‘𝑋) ∧ 𝑥𝐺𝑦𝐺) → (𝑥𝑦) ∈ 𝐺)
44433expb 1122 . . . . 5 ((𝐺 ∈ (Fil‘𝑋) ∧ (𝑥𝐺𝑦𝐺)) → (𝑥𝑦) ∈ 𝐺)
4540, 42, 44syl2an 599 . . . 4 (((𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋)) ∧ (𝑥 ∈ (𝐹𝐺) ∧ 𝑦 ∈ (𝐹𝐺))) → (𝑥𝑦) ∈ 𝐺)
4639, 45elind 4094 . . 3 (((𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋)) ∧ (𝑥 ∈ (𝐹𝐺) ∧ 𝑦 ∈ (𝐹𝐺))) → (𝑥𝑦) ∈ (𝐹𝐺))
4746ralrimivva 3102 . 2 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋)) → ∀𝑥 ∈ (𝐹𝐺)∀𝑦 ∈ (𝐹𝐺)(𝑥𝑦) ∈ (𝐹𝐺))
48 isfil2 22707 . 2 ((𝐹𝐺) ∈ (Fil‘𝑋) ↔ (((𝐹𝐺) ⊆ 𝒫 𝑋 ∧ ¬ ∅ ∈ (𝐹𝐺) ∧ 𝑋 ∈ (𝐹𝐺)) ∧ ∀𝑥 ∈ 𝒫 𝑋(∃𝑦 ∈ (𝐹𝐺)𝑦𝑥𝑥 ∈ (𝐹𝐺)) ∧ ∀𝑥 ∈ (𝐹𝐺)∀𝑦 ∈ (𝐹𝐺)(𝑥𝑦) ∈ (𝐹𝐺)))
4914, 33, 47, 48syl3anbrc 1345 1 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋)) → (𝐹𝐺) ∈ (Fil‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399  w3a 1089  wcel 2112  wral 3051  wrex 3052  cin 3852  wss 3853  c0 4223  𝒫 cpw 4499  cfv 6358  Filcfil 22696
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-nel 3037  df-ral 3056  df-rex 3057  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-op 4534  df-uni 4806  df-br 5040  df-opab 5102  df-mpt 5121  df-id 5440  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-iota 6316  df-fun 6360  df-fv 6366  df-fbas 20314  df-fil 22697
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator