MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infil Structured version   Visualization version   GIF version

Theorem infil 23014
Description: The intersection of two filters is a filter. Use fiint 9091 to extend this property to the intersection of a finite set of filters. Paragraph 3 of [BourbakiTop1] p. I.36. (Contributed by FL, 17-Sep-2007.) (Revised by Stefan O'Rear, 2-Aug-2015.)
Assertion
Ref Expression
infil ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋)) → (𝐹𝐺) ∈ (Fil‘𝑋))

Proof of Theorem infil
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 inss1 4162 . . . 4 (𝐹𝐺) ⊆ 𝐹
2 filsspw 23002 . . . . 5 (𝐹 ∈ (Fil‘𝑋) → 𝐹 ⊆ 𝒫 𝑋)
32adantr 481 . . . 4 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋)) → 𝐹 ⊆ 𝒫 𝑋)
41, 3sstrid 3932 . . 3 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋)) → (𝐹𝐺) ⊆ 𝒫 𝑋)
5 0nelfil 23000 . . . . 5 (𝐹 ∈ (Fil‘𝑋) → ¬ ∅ ∈ 𝐹)
65adantr 481 . . . 4 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋)) → ¬ ∅ ∈ 𝐹)
7 elinel1 4129 . . . 4 (∅ ∈ (𝐹𝐺) → ∅ ∈ 𝐹)
86, 7nsyl 140 . . 3 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋)) → ¬ ∅ ∈ (𝐹𝐺))
9 filtop 23006 . . . . 5 (𝐹 ∈ (Fil‘𝑋) → 𝑋𝐹)
109adantr 481 . . . 4 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋)) → 𝑋𝐹)
11 filtop 23006 . . . . 5 (𝐺 ∈ (Fil‘𝑋) → 𝑋𝐺)
1211adantl 482 . . . 4 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋)) → 𝑋𝐺)
1310, 12elind 4128 . . 3 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋)) → 𝑋 ∈ (𝐹𝐺))
144, 8, 133jca 1127 . 2 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋)) → ((𝐹𝐺) ⊆ 𝒫 𝑋 ∧ ¬ ∅ ∈ (𝐹𝐺) ∧ 𝑋 ∈ (𝐹𝐺)))
15 simpll 764 . . . . . . . 8 (((𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋)) ∧ (𝑥 ∈ 𝒫 𝑋𝑦 ∈ (𝐹𝐺) ∧ 𝑦𝑥)) → 𝐹 ∈ (Fil‘𝑋))
16 simpr2 1194 . . . . . . . . 9 (((𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋)) ∧ (𝑥 ∈ 𝒫 𝑋𝑦 ∈ (𝐹𝐺) ∧ 𝑦𝑥)) → 𝑦 ∈ (𝐹𝐺))
17 elinel1 4129 . . . . . . . . 9 (𝑦 ∈ (𝐹𝐺) → 𝑦𝐹)
1816, 17syl 17 . . . . . . . 8 (((𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋)) ∧ (𝑥 ∈ 𝒫 𝑋𝑦 ∈ (𝐹𝐺) ∧ 𝑦𝑥)) → 𝑦𝐹)
19 simpr1 1193 . . . . . . . . 9 (((𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋)) ∧ (𝑥 ∈ 𝒫 𝑋𝑦 ∈ (𝐹𝐺) ∧ 𝑦𝑥)) → 𝑥 ∈ 𝒫 𝑋)
2019elpwid 4544 . . . . . . . 8 (((𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋)) ∧ (𝑥 ∈ 𝒫 𝑋𝑦 ∈ (𝐹𝐺) ∧ 𝑦𝑥)) → 𝑥𝑋)
21 simpr3 1195 . . . . . . . 8 (((𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋)) ∧ (𝑥 ∈ 𝒫 𝑋𝑦 ∈ (𝐹𝐺) ∧ 𝑦𝑥)) → 𝑦𝑥)
22 filss 23004 . . . . . . . 8 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑦𝐹𝑥𝑋𝑦𝑥)) → 𝑥𝐹)
2315, 18, 20, 21, 22syl13anc 1371 . . . . . . 7 (((𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋)) ∧ (𝑥 ∈ 𝒫 𝑋𝑦 ∈ (𝐹𝐺) ∧ 𝑦𝑥)) → 𝑥𝐹)
24 simplr 766 . . . . . . . 8 (((𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋)) ∧ (𝑥 ∈ 𝒫 𝑋𝑦 ∈ (𝐹𝐺) ∧ 𝑦𝑥)) → 𝐺 ∈ (Fil‘𝑋))
25 elinel2 4130 . . . . . . . . 9 (𝑦 ∈ (𝐹𝐺) → 𝑦𝐺)
2616, 25syl 17 . . . . . . . 8 (((𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋)) ∧ (𝑥 ∈ 𝒫 𝑋𝑦 ∈ (𝐹𝐺) ∧ 𝑦𝑥)) → 𝑦𝐺)
27 filss 23004 . . . . . . . 8 ((𝐺 ∈ (Fil‘𝑋) ∧ (𝑦𝐺𝑥𝑋𝑦𝑥)) → 𝑥𝐺)
2824, 26, 20, 21, 27syl13anc 1371 . . . . . . 7 (((𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋)) ∧ (𝑥 ∈ 𝒫 𝑋𝑦 ∈ (𝐹𝐺) ∧ 𝑦𝑥)) → 𝑥𝐺)
2923, 28elind 4128 . . . . . 6 (((𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋)) ∧ (𝑥 ∈ 𝒫 𝑋𝑦 ∈ (𝐹𝐺) ∧ 𝑦𝑥)) → 𝑥 ∈ (𝐹𝐺))
30293exp2 1353 . . . . 5 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋)) → (𝑥 ∈ 𝒫 𝑋 → (𝑦 ∈ (𝐹𝐺) → (𝑦𝑥𝑥 ∈ (𝐹𝐺)))))
3130imp 407 . . . 4 (((𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋)) ∧ 𝑥 ∈ 𝒫 𝑋) → (𝑦 ∈ (𝐹𝐺) → (𝑦𝑥𝑥 ∈ (𝐹𝐺))))
3231rexlimdv 3212 . . 3 (((𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋)) ∧ 𝑥 ∈ 𝒫 𝑋) → (∃𝑦 ∈ (𝐹𝐺)𝑦𝑥𝑥 ∈ (𝐹𝐺)))
3332ralrimiva 3103 . 2 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋)) → ∀𝑥 ∈ 𝒫 𝑋(∃𝑦 ∈ (𝐹𝐺)𝑦𝑥𝑥 ∈ (𝐹𝐺)))
34 simpl 483 . . . . 5 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋)) → 𝐹 ∈ (Fil‘𝑋))
35 elinel1 4129 . . . . . 6 (𝑥 ∈ (𝐹𝐺) → 𝑥𝐹)
3635, 17anim12i 613 . . . . 5 ((𝑥 ∈ (𝐹𝐺) ∧ 𝑦 ∈ (𝐹𝐺)) → (𝑥𝐹𝑦𝐹))
37 filin 23005 . . . . . 6 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑥𝐹𝑦𝐹) → (𝑥𝑦) ∈ 𝐹)
38373expb 1119 . . . . 5 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑥𝐹𝑦𝐹)) → (𝑥𝑦) ∈ 𝐹)
3934, 36, 38syl2an 596 . . . 4 (((𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋)) ∧ (𝑥 ∈ (𝐹𝐺) ∧ 𝑦 ∈ (𝐹𝐺))) → (𝑥𝑦) ∈ 𝐹)
40 simpr 485 . . . . 5 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋)) → 𝐺 ∈ (Fil‘𝑋))
41 elinel2 4130 . . . . . 6 (𝑥 ∈ (𝐹𝐺) → 𝑥𝐺)
4241, 25anim12i 613 . . . . 5 ((𝑥 ∈ (𝐹𝐺) ∧ 𝑦 ∈ (𝐹𝐺)) → (𝑥𝐺𝑦𝐺))
43 filin 23005 . . . . . 6 ((𝐺 ∈ (Fil‘𝑋) ∧ 𝑥𝐺𝑦𝐺) → (𝑥𝑦) ∈ 𝐺)
44433expb 1119 . . . . 5 ((𝐺 ∈ (Fil‘𝑋) ∧ (𝑥𝐺𝑦𝐺)) → (𝑥𝑦) ∈ 𝐺)
4540, 42, 44syl2an 596 . . . 4 (((𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋)) ∧ (𝑥 ∈ (𝐹𝐺) ∧ 𝑦 ∈ (𝐹𝐺))) → (𝑥𝑦) ∈ 𝐺)
4639, 45elind 4128 . . 3 (((𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋)) ∧ (𝑥 ∈ (𝐹𝐺) ∧ 𝑦 ∈ (𝐹𝐺))) → (𝑥𝑦) ∈ (𝐹𝐺))
4746ralrimivva 3123 . 2 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋)) → ∀𝑥 ∈ (𝐹𝐺)∀𝑦 ∈ (𝐹𝐺)(𝑥𝑦) ∈ (𝐹𝐺))
48 isfil2 23007 . 2 ((𝐹𝐺) ∈ (Fil‘𝑋) ↔ (((𝐹𝐺) ⊆ 𝒫 𝑋 ∧ ¬ ∅ ∈ (𝐹𝐺) ∧ 𝑋 ∈ (𝐹𝐺)) ∧ ∀𝑥 ∈ 𝒫 𝑋(∃𝑦 ∈ (𝐹𝐺)𝑦𝑥𝑥 ∈ (𝐹𝐺)) ∧ ∀𝑥 ∈ (𝐹𝐺)∀𝑦 ∈ (𝐹𝐺)(𝑥𝑦) ∈ (𝐹𝐺)))
4914, 33, 47, 48syl3anbrc 1342 1 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋)) → (𝐹𝐺) ∈ (Fil‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  w3a 1086  wcel 2106  wral 3064  wrex 3065  cin 3886  wss 3887  c0 4256  𝒫 cpw 4533  cfv 6433  Filcfil 22996
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fv 6441  df-fbas 20594  df-fil 22997
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator