Step | Hyp | Ref
| Expression |
1 | | inss1 4159 |
. . . 4
⊢ (𝐹 ∩ 𝐺) ⊆ 𝐹 |
2 | | filsspw 22910 |
. . . . 5
⊢ (𝐹 ∈ (Fil‘𝑋) → 𝐹 ⊆ 𝒫 𝑋) |
3 | 2 | adantr 480 |
. . . 4
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋)) → 𝐹 ⊆ 𝒫 𝑋) |
4 | 1, 3 | sstrid 3928 |
. . 3
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋)) → (𝐹 ∩ 𝐺) ⊆ 𝒫 𝑋) |
5 | | 0nelfil 22908 |
. . . . 5
⊢ (𝐹 ∈ (Fil‘𝑋) → ¬ ∅ ∈
𝐹) |
6 | 5 | adantr 480 |
. . . 4
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋)) → ¬ ∅ ∈ 𝐹) |
7 | | elinel1 4125 |
. . . 4
⊢ (∅
∈ (𝐹 ∩ 𝐺) → ∅ ∈ 𝐹) |
8 | 6, 7 | nsyl 140 |
. . 3
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋)) → ¬ ∅ ∈ (𝐹 ∩ 𝐺)) |
9 | | filtop 22914 |
. . . . 5
⊢ (𝐹 ∈ (Fil‘𝑋) → 𝑋 ∈ 𝐹) |
10 | 9 | adantr 480 |
. . . 4
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋)) → 𝑋 ∈ 𝐹) |
11 | | filtop 22914 |
. . . . 5
⊢ (𝐺 ∈ (Fil‘𝑋) → 𝑋 ∈ 𝐺) |
12 | 11 | adantl 481 |
. . . 4
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋)) → 𝑋 ∈ 𝐺) |
13 | 10, 12 | elind 4124 |
. . 3
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋)) → 𝑋 ∈ (𝐹 ∩ 𝐺)) |
14 | 4, 8, 13 | 3jca 1126 |
. 2
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋)) → ((𝐹 ∩ 𝐺) ⊆ 𝒫 𝑋 ∧ ¬ ∅ ∈ (𝐹 ∩ 𝐺) ∧ 𝑋 ∈ (𝐹 ∩ 𝐺))) |
15 | | simpll 763 |
. . . . . . . 8
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋)) ∧ (𝑥 ∈ 𝒫 𝑋 ∧ 𝑦 ∈ (𝐹 ∩ 𝐺) ∧ 𝑦 ⊆ 𝑥)) → 𝐹 ∈ (Fil‘𝑋)) |
16 | | simpr2 1193 |
. . . . . . . . 9
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋)) ∧ (𝑥 ∈ 𝒫 𝑋 ∧ 𝑦 ∈ (𝐹 ∩ 𝐺) ∧ 𝑦 ⊆ 𝑥)) → 𝑦 ∈ (𝐹 ∩ 𝐺)) |
17 | | elinel1 4125 |
. . . . . . . . 9
⊢ (𝑦 ∈ (𝐹 ∩ 𝐺) → 𝑦 ∈ 𝐹) |
18 | 16, 17 | syl 17 |
. . . . . . . 8
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋)) ∧ (𝑥 ∈ 𝒫 𝑋 ∧ 𝑦 ∈ (𝐹 ∩ 𝐺) ∧ 𝑦 ⊆ 𝑥)) → 𝑦 ∈ 𝐹) |
19 | | simpr1 1192 |
. . . . . . . . 9
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋)) ∧ (𝑥 ∈ 𝒫 𝑋 ∧ 𝑦 ∈ (𝐹 ∩ 𝐺) ∧ 𝑦 ⊆ 𝑥)) → 𝑥 ∈ 𝒫 𝑋) |
20 | 19 | elpwid 4541 |
. . . . . . . 8
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋)) ∧ (𝑥 ∈ 𝒫 𝑋 ∧ 𝑦 ∈ (𝐹 ∩ 𝐺) ∧ 𝑦 ⊆ 𝑥)) → 𝑥 ⊆ 𝑋) |
21 | | simpr3 1194 |
. . . . . . . 8
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋)) ∧ (𝑥 ∈ 𝒫 𝑋 ∧ 𝑦 ∈ (𝐹 ∩ 𝐺) ∧ 𝑦 ⊆ 𝑥)) → 𝑦 ⊆ 𝑥) |
22 | | filss 22912 |
. . . . . . . 8
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑦 ∈ 𝐹 ∧ 𝑥 ⊆ 𝑋 ∧ 𝑦 ⊆ 𝑥)) → 𝑥 ∈ 𝐹) |
23 | 15, 18, 20, 21, 22 | syl13anc 1370 |
. . . . . . 7
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋)) ∧ (𝑥 ∈ 𝒫 𝑋 ∧ 𝑦 ∈ (𝐹 ∩ 𝐺) ∧ 𝑦 ⊆ 𝑥)) → 𝑥 ∈ 𝐹) |
24 | | simplr 765 |
. . . . . . . 8
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋)) ∧ (𝑥 ∈ 𝒫 𝑋 ∧ 𝑦 ∈ (𝐹 ∩ 𝐺) ∧ 𝑦 ⊆ 𝑥)) → 𝐺 ∈ (Fil‘𝑋)) |
25 | | elinel2 4126 |
. . . . . . . . 9
⊢ (𝑦 ∈ (𝐹 ∩ 𝐺) → 𝑦 ∈ 𝐺) |
26 | 16, 25 | syl 17 |
. . . . . . . 8
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋)) ∧ (𝑥 ∈ 𝒫 𝑋 ∧ 𝑦 ∈ (𝐹 ∩ 𝐺) ∧ 𝑦 ⊆ 𝑥)) → 𝑦 ∈ 𝐺) |
27 | | filss 22912 |
. . . . . . . 8
⊢ ((𝐺 ∈ (Fil‘𝑋) ∧ (𝑦 ∈ 𝐺 ∧ 𝑥 ⊆ 𝑋 ∧ 𝑦 ⊆ 𝑥)) → 𝑥 ∈ 𝐺) |
28 | 24, 26, 20, 21, 27 | syl13anc 1370 |
. . . . . . 7
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋)) ∧ (𝑥 ∈ 𝒫 𝑋 ∧ 𝑦 ∈ (𝐹 ∩ 𝐺) ∧ 𝑦 ⊆ 𝑥)) → 𝑥 ∈ 𝐺) |
29 | 23, 28 | elind 4124 |
. . . . . 6
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋)) ∧ (𝑥 ∈ 𝒫 𝑋 ∧ 𝑦 ∈ (𝐹 ∩ 𝐺) ∧ 𝑦 ⊆ 𝑥)) → 𝑥 ∈ (𝐹 ∩ 𝐺)) |
30 | 29 | 3exp2 1352 |
. . . . 5
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋)) → (𝑥 ∈ 𝒫 𝑋 → (𝑦 ∈ (𝐹 ∩ 𝐺) → (𝑦 ⊆ 𝑥 → 𝑥 ∈ (𝐹 ∩ 𝐺))))) |
31 | 30 | imp 406 |
. . . 4
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋)) ∧ 𝑥 ∈ 𝒫 𝑋) → (𝑦 ∈ (𝐹 ∩ 𝐺) → (𝑦 ⊆ 𝑥 → 𝑥 ∈ (𝐹 ∩ 𝐺)))) |
32 | 31 | rexlimdv 3211 |
. . 3
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋)) ∧ 𝑥 ∈ 𝒫 𝑋) → (∃𝑦 ∈ (𝐹 ∩ 𝐺)𝑦 ⊆ 𝑥 → 𝑥 ∈ (𝐹 ∩ 𝐺))) |
33 | 32 | ralrimiva 3107 |
. 2
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋)) → ∀𝑥 ∈ 𝒫 𝑋(∃𝑦 ∈ (𝐹 ∩ 𝐺)𝑦 ⊆ 𝑥 → 𝑥 ∈ (𝐹 ∩ 𝐺))) |
34 | | simpl 482 |
. . . . 5
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋)) → 𝐹 ∈ (Fil‘𝑋)) |
35 | | elinel1 4125 |
. . . . . 6
⊢ (𝑥 ∈ (𝐹 ∩ 𝐺) → 𝑥 ∈ 𝐹) |
36 | 35, 17 | anim12i 612 |
. . . . 5
⊢ ((𝑥 ∈ (𝐹 ∩ 𝐺) ∧ 𝑦 ∈ (𝐹 ∩ 𝐺)) → (𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝐹)) |
37 | | filin 22913 |
. . . . . 6
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝐹) → (𝑥 ∩ 𝑦) ∈ 𝐹) |
38 | 37 | 3expb 1118 |
. . . . 5
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝐹)) → (𝑥 ∩ 𝑦) ∈ 𝐹) |
39 | 34, 36, 38 | syl2an 595 |
. . . 4
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋)) ∧ (𝑥 ∈ (𝐹 ∩ 𝐺) ∧ 𝑦 ∈ (𝐹 ∩ 𝐺))) → (𝑥 ∩ 𝑦) ∈ 𝐹) |
40 | | simpr 484 |
. . . . 5
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋)) → 𝐺 ∈ (Fil‘𝑋)) |
41 | | elinel2 4126 |
. . . . . 6
⊢ (𝑥 ∈ (𝐹 ∩ 𝐺) → 𝑥 ∈ 𝐺) |
42 | 41, 25 | anim12i 612 |
. . . . 5
⊢ ((𝑥 ∈ (𝐹 ∩ 𝐺) ∧ 𝑦 ∈ (𝐹 ∩ 𝐺)) → (𝑥 ∈ 𝐺 ∧ 𝑦 ∈ 𝐺)) |
43 | | filin 22913 |
. . . . . 6
⊢ ((𝐺 ∈ (Fil‘𝑋) ∧ 𝑥 ∈ 𝐺 ∧ 𝑦 ∈ 𝐺) → (𝑥 ∩ 𝑦) ∈ 𝐺) |
44 | 43 | 3expb 1118 |
. . . . 5
⊢ ((𝐺 ∈ (Fil‘𝑋) ∧ (𝑥 ∈ 𝐺 ∧ 𝑦 ∈ 𝐺)) → (𝑥 ∩ 𝑦) ∈ 𝐺) |
45 | 40, 42, 44 | syl2an 595 |
. . . 4
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋)) ∧ (𝑥 ∈ (𝐹 ∩ 𝐺) ∧ 𝑦 ∈ (𝐹 ∩ 𝐺))) → (𝑥 ∩ 𝑦) ∈ 𝐺) |
46 | 39, 45 | elind 4124 |
. . 3
⊢ (((𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋)) ∧ (𝑥 ∈ (𝐹 ∩ 𝐺) ∧ 𝑦 ∈ (𝐹 ∩ 𝐺))) → (𝑥 ∩ 𝑦) ∈ (𝐹 ∩ 𝐺)) |
47 | 46 | ralrimivva 3114 |
. 2
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋)) → ∀𝑥 ∈ (𝐹 ∩ 𝐺)∀𝑦 ∈ (𝐹 ∩ 𝐺)(𝑥 ∩ 𝑦) ∈ (𝐹 ∩ 𝐺)) |
48 | | isfil2 22915 |
. 2
⊢ ((𝐹 ∩ 𝐺) ∈ (Fil‘𝑋) ↔ (((𝐹 ∩ 𝐺) ⊆ 𝒫 𝑋 ∧ ¬ ∅ ∈ (𝐹 ∩ 𝐺) ∧ 𝑋 ∈ (𝐹 ∩ 𝐺)) ∧ ∀𝑥 ∈ 𝒫 𝑋(∃𝑦 ∈ (𝐹 ∩ 𝐺)𝑦 ⊆ 𝑥 → 𝑥 ∈ (𝐹 ∩ 𝐺)) ∧ ∀𝑥 ∈ (𝐹 ∩ 𝐺)∀𝑦 ∈ (𝐹 ∩ 𝐺)(𝑥 ∩ 𝑦) ∈ (𝐹 ∩ 𝐺))) |
49 | 14, 33, 47, 48 | syl3anbrc 1341 |
1
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋)) → (𝐹 ∩ 𝐺) ∈ (Fil‘𝑋)) |