MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fmfnfm Structured version   Visualization version   GIF version

Theorem fmfnfm 22566
Description: A filter finer than an image filter is an image filter of the same function. (Contributed by Jeff Hankins, 13-Nov-2009.) (Revised by Stefan O'Rear, 8-Aug-2015.)
Hypotheses
Ref Expression
fmfnfm.b (𝜑𝐵 ∈ (fBas‘𝑌))
fmfnfm.l (𝜑𝐿 ∈ (Fil‘𝑋))
fmfnfm.f (𝜑𝐹:𝑌𝑋)
fmfnfm.fm (𝜑 → ((𝑋 FilMap 𝐹)‘𝐵) ⊆ 𝐿)
Assertion
Ref Expression
fmfnfm (𝜑 → ∃𝑓 ∈ (Fil‘𝑌)(𝐵𝑓𝐿 = ((𝑋 FilMap 𝐹)‘𝑓)))
Distinct variable groups:   𝐵,𝑓   𝑓,𝐹   𝑓,𝐿   𝑓,𝑋   𝑓,𝑌
Allowed substitution hint:   𝜑(𝑓)

Proof of Theorem fmfnfm
Dummy variables 𝑠 𝑡 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fmfnfm.b . . . . . 6 (𝜑𝐵 ∈ (fBas‘𝑌))
2 fbsspw 22440 . . . . . 6 (𝐵 ∈ (fBas‘𝑌) → 𝐵 ⊆ 𝒫 𝑌)
31, 2syl 17 . . . . 5 (𝜑𝐵 ⊆ 𝒫 𝑌)
4 elfvdm 6681 . . . . . . . 8 (𝐵 ∈ (fBas‘𝑌) → 𝑌 ∈ dom fBas)
51, 4syl 17 . . . . . . 7 (𝜑𝑌 ∈ dom fBas)
6 fmfnfm.l . . . . . . 7 (𝜑𝐿 ∈ (Fil‘𝑋))
7 fmfnfm.f . . . . . . 7 (𝜑𝐹:𝑌𝑋)
8 fmfnfm.fm . . . . . . . 8 (𝜑 → ((𝑋 FilMap 𝐹)‘𝐵) ⊆ 𝐿)
9 ffn 6491 . . . . . . . . . . 11 (𝐹:𝑌𝑋𝐹 Fn 𝑌)
10 dffn4 6575 . . . . . . . . . . 11 (𝐹 Fn 𝑌𝐹:𝑌onto→ran 𝐹)
119, 10sylib 221 . . . . . . . . . 10 (𝐹:𝑌𝑋𝐹:𝑌onto→ran 𝐹)
12 foima 6574 . . . . . . . . . 10 (𝐹:𝑌onto→ran 𝐹 → (𝐹𝑌) = ran 𝐹)
137, 11, 123syl 18 . . . . . . . . 9 (𝜑 → (𝐹𝑌) = ran 𝐹)
14 filtop 22463 . . . . . . . . . . 11 (𝐿 ∈ (Fil‘𝑋) → 𝑋𝐿)
156, 14syl 17 . . . . . . . . . 10 (𝜑𝑋𝐿)
16 fgcl 22486 . . . . . . . . . . 11 (𝐵 ∈ (fBas‘𝑌) → (𝑌filGen𝐵) ∈ (Fil‘𝑌))
17 filtop 22463 . . . . . . . . . . 11 ((𝑌filGen𝐵) ∈ (Fil‘𝑌) → 𝑌 ∈ (𝑌filGen𝐵))
181, 16, 173syl 18 . . . . . . . . . 10 (𝜑𝑌 ∈ (𝑌filGen𝐵))
19 eqid 2801 . . . . . . . . . . 11 (𝑌filGen𝐵) = (𝑌filGen𝐵)
2019imaelfm 22559 . . . . . . . . . 10 (((𝑋𝐿𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑌 ∈ (𝑌filGen𝐵)) → (𝐹𝑌) ∈ ((𝑋 FilMap 𝐹)‘𝐵))
2115, 1, 7, 18, 20syl31anc 1370 . . . . . . . . 9 (𝜑 → (𝐹𝑌) ∈ ((𝑋 FilMap 𝐹)‘𝐵))
2213, 21eqeltrrd 2894 . . . . . . . 8 (𝜑 → ran 𝐹 ∈ ((𝑋 FilMap 𝐹)‘𝐵))
238, 22sseldd 3919 . . . . . . 7 (𝜑 → ran 𝐹𝐿)
24 rnelfmlem 22560 . . . . . . 7 (((𝑌 ∈ dom fBas ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) → ran (𝑥𝐿 ↦ (𝐹𝑥)) ∈ (fBas‘𝑌))
255, 6, 7, 23, 24syl31anc 1370 . . . . . 6 (𝜑 → ran (𝑥𝐿 ↦ (𝐹𝑥)) ∈ (fBas‘𝑌))
26 fbsspw 22440 . . . . . 6 (ran (𝑥𝐿 ↦ (𝐹𝑥)) ∈ (fBas‘𝑌) → ran (𝑥𝐿 ↦ (𝐹𝑥)) ⊆ 𝒫 𝑌)
2725, 26syl 17 . . . . 5 (𝜑 → ran (𝑥𝐿 ↦ (𝐹𝑥)) ⊆ 𝒫 𝑌)
283, 27unssd 4116 . . . 4 (𝜑 → (𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))) ⊆ 𝒫 𝑌)
29 ssun1 4102 . . . . 5 𝐵 ⊆ (𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥)))
30 fbasne0 22438 . . . . . 6 (𝐵 ∈ (fBas‘𝑌) → 𝐵 ≠ ∅)
311, 30syl 17 . . . . 5 (𝜑𝐵 ≠ ∅)
32 ssn0 4311 . . . . 5 ((𝐵 ⊆ (𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))) ∧ 𝐵 ≠ ∅) → (𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))) ≠ ∅)
3329, 31, 32sylancr 590 . . . 4 (𝜑 → (𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))) ≠ ∅)
34 eqid 2801 . . . . . . . . . 10 (𝑥𝐿 ↦ (𝐹𝑥)) = (𝑥𝐿 ↦ (𝐹𝑥))
3534elrnmpt 5796 . . . . . . . . 9 (𝑡 ∈ V → (𝑡 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) ↔ ∃𝑥𝐿 𝑡 = (𝐹𝑥)))
3635elv 3449 . . . . . . . 8 (𝑡 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) ↔ ∃𝑥𝐿 𝑡 = (𝐹𝑥))
37 0nelfil 22457 . . . . . . . . . . . . . 14 (𝐿 ∈ (Fil‘𝑋) → ¬ ∅ ∈ 𝐿)
386, 37syl 17 . . . . . . . . . . . . 13 (𝜑 → ¬ ∅ ∈ 𝐿)
3938ad2antrr 725 . . . . . . . . . . . 12 (((𝜑𝑠𝐵) ∧ 𝑥𝐿) → ¬ ∅ ∈ 𝐿)
406adantr 484 . . . . . . . . . . . . . . 15 ((𝜑𝑠𝐵) → 𝐿 ∈ (Fil‘𝑋))
418adantr 484 . . . . . . . . . . . . . . . 16 ((𝜑𝑠𝐵) → ((𝑋 FilMap 𝐹)‘𝐵) ⊆ 𝐿)
4215, 1, 73jca 1125 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑋𝐿𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋))
4342adantr 484 . . . . . . . . . . . . . . . . 17 ((𝜑𝑠𝐵) → (𝑋𝐿𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋))
44 ssfg 22480 . . . . . . . . . . . . . . . . . . 19 (𝐵 ∈ (fBas‘𝑌) → 𝐵 ⊆ (𝑌filGen𝐵))
451, 44syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑𝐵 ⊆ (𝑌filGen𝐵))
4645sselda 3918 . . . . . . . . . . . . . . . . 17 ((𝜑𝑠𝐵) → 𝑠 ∈ (𝑌filGen𝐵))
4719imaelfm 22559 . . . . . . . . . . . . . . . . 17 (((𝑋𝐿𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑠 ∈ (𝑌filGen𝐵)) → (𝐹𝑠) ∈ ((𝑋 FilMap 𝐹)‘𝐵))
4843, 46, 47syl2anc 587 . . . . . . . . . . . . . . . 16 ((𝜑𝑠𝐵) → (𝐹𝑠) ∈ ((𝑋 FilMap 𝐹)‘𝐵))
4941, 48sseldd 3919 . . . . . . . . . . . . . . 15 ((𝜑𝑠𝐵) → (𝐹𝑠) ∈ 𝐿)
5040, 49jca 515 . . . . . . . . . . . . . 14 ((𝜑𝑠𝐵) → (𝐿 ∈ (Fil‘𝑋) ∧ (𝐹𝑠) ∈ 𝐿))
51 filin 22462 . . . . . . . . . . . . . . 15 ((𝐿 ∈ (Fil‘𝑋) ∧ (𝐹𝑠) ∈ 𝐿𝑥𝐿) → ((𝐹𝑠) ∩ 𝑥) ∈ 𝐿)
52513expa 1115 . . . . . . . . . . . . . 14 (((𝐿 ∈ (Fil‘𝑋) ∧ (𝐹𝑠) ∈ 𝐿) ∧ 𝑥𝐿) → ((𝐹𝑠) ∩ 𝑥) ∈ 𝐿)
5350, 52sylan 583 . . . . . . . . . . . . 13 (((𝜑𝑠𝐵) ∧ 𝑥𝐿) → ((𝐹𝑠) ∩ 𝑥) ∈ 𝐿)
54 eleq1 2880 . . . . . . . . . . . . 13 (((𝐹𝑠) ∩ 𝑥) = ∅ → (((𝐹𝑠) ∩ 𝑥) ∈ 𝐿 ↔ ∅ ∈ 𝐿))
5553, 54syl5ibcom 248 . . . . . . . . . . . 12 (((𝜑𝑠𝐵) ∧ 𝑥𝐿) → (((𝐹𝑠) ∩ 𝑥) = ∅ → ∅ ∈ 𝐿))
5639, 55mtod 201 . . . . . . . . . . 11 (((𝜑𝑠𝐵) ∧ 𝑥𝐿) → ¬ ((𝐹𝑠) ∩ 𝑥) = ∅)
57 neq0 4262 . . . . . . . . . . . 12 (¬ ((𝐹𝑠) ∩ 𝑥) = ∅ ↔ ∃𝑡 𝑡 ∈ ((𝐹𝑠) ∩ 𝑥))
58 elin 3900 . . . . . . . . . . . . . 14 (𝑡 ∈ ((𝐹𝑠) ∩ 𝑥) ↔ (𝑡 ∈ (𝐹𝑠) ∧ 𝑡𝑥))
59 ffun 6494 . . . . . . . . . . . . . . . . . 18 (𝐹:𝑌𝑋 → Fun 𝐹)
60 fvelima 6710 . . . . . . . . . . . . . . . . . . 19 ((Fun 𝐹𝑡 ∈ (𝐹𝑠)) → ∃𝑦𝑠 (𝐹𝑦) = 𝑡)
6160ex 416 . . . . . . . . . . . . . . . . . 18 (Fun 𝐹 → (𝑡 ∈ (𝐹𝑠) → ∃𝑦𝑠 (𝐹𝑦) = 𝑡))
627, 59, 613syl 18 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑡 ∈ (𝐹𝑠) → ∃𝑦𝑠 (𝐹𝑦) = 𝑡))
6362ad2antrr 725 . . . . . . . . . . . . . . . 16 (((𝜑𝑠𝐵) ∧ 𝑥𝐿) → (𝑡 ∈ (𝐹𝑠) → ∃𝑦𝑠 (𝐹𝑦) = 𝑡))
647, 59syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → Fun 𝐹)
6564ad3antrrr 729 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑠𝐵) ∧ 𝑥𝐿) ∧ 𝑦𝑠) → Fun 𝐹)
66 fbelss 22441 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐵 ∈ (fBas‘𝑌) ∧ 𝑠𝐵) → 𝑠𝑌)
671, 66sylan 583 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑠𝐵) → 𝑠𝑌)
687fdmd 6501 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → dom 𝐹 = 𝑌)
6968adantr 484 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑠𝐵) → dom 𝐹 = 𝑌)
7067, 69sseqtrrd 3959 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑠𝐵) → 𝑠 ⊆ dom 𝐹)
7170adantr 484 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑠𝐵) ∧ 𝑥𝐿) → 𝑠 ⊆ dom 𝐹)
7271sselda 3918 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑠𝐵) ∧ 𝑥𝐿) ∧ 𝑦𝑠) → 𝑦 ∈ dom 𝐹)
73 fvimacnv 6804 . . . . . . . . . . . . . . . . . . . 20 ((Fun 𝐹𝑦 ∈ dom 𝐹) → ((𝐹𝑦) ∈ 𝑥𝑦 ∈ (𝐹𝑥)))
7465, 72, 73syl2anc 587 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑠𝐵) ∧ 𝑥𝐿) ∧ 𝑦𝑠) → ((𝐹𝑦) ∈ 𝑥𝑦 ∈ (𝐹𝑥)))
75 inelcm 4375 . . . . . . . . . . . . . . . . . . . . 21 ((𝑦𝑠𝑦 ∈ (𝐹𝑥)) → (𝑠 ∩ (𝐹𝑥)) ≠ ∅)
7675ex 416 . . . . . . . . . . . . . . . . . . . 20 (𝑦𝑠 → (𝑦 ∈ (𝐹𝑥) → (𝑠 ∩ (𝐹𝑥)) ≠ ∅))
7776adantl 485 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑠𝐵) ∧ 𝑥𝐿) ∧ 𝑦𝑠) → (𝑦 ∈ (𝐹𝑥) → (𝑠 ∩ (𝐹𝑥)) ≠ ∅))
7874, 77sylbid 243 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑠𝐵) ∧ 𝑥𝐿) ∧ 𝑦𝑠) → ((𝐹𝑦) ∈ 𝑥 → (𝑠 ∩ (𝐹𝑥)) ≠ ∅))
79 eleq1 2880 . . . . . . . . . . . . . . . . . . 19 ((𝐹𝑦) = 𝑡 → ((𝐹𝑦) ∈ 𝑥𝑡𝑥))
8079imbi1d 345 . . . . . . . . . . . . . . . . . 18 ((𝐹𝑦) = 𝑡 → (((𝐹𝑦) ∈ 𝑥 → (𝑠 ∩ (𝐹𝑥)) ≠ ∅) ↔ (𝑡𝑥 → (𝑠 ∩ (𝐹𝑥)) ≠ ∅)))
8178, 80syl5ibcom 248 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑠𝐵) ∧ 𝑥𝐿) ∧ 𝑦𝑠) → ((𝐹𝑦) = 𝑡 → (𝑡𝑥 → (𝑠 ∩ (𝐹𝑥)) ≠ ∅)))
8281rexlimdva 3246 . . . . . . . . . . . . . . . 16 (((𝜑𝑠𝐵) ∧ 𝑥𝐿) → (∃𝑦𝑠 (𝐹𝑦) = 𝑡 → (𝑡𝑥 → (𝑠 ∩ (𝐹𝑥)) ≠ ∅)))
8363, 82syld 47 . . . . . . . . . . . . . . 15 (((𝜑𝑠𝐵) ∧ 𝑥𝐿) → (𝑡 ∈ (𝐹𝑠) → (𝑡𝑥 → (𝑠 ∩ (𝐹𝑥)) ≠ ∅)))
8483impd 414 . . . . . . . . . . . . . 14 (((𝜑𝑠𝐵) ∧ 𝑥𝐿) → ((𝑡 ∈ (𝐹𝑠) ∧ 𝑡𝑥) → (𝑠 ∩ (𝐹𝑥)) ≠ ∅))
8558, 84syl5bi 245 . . . . . . . . . . . . 13 (((𝜑𝑠𝐵) ∧ 𝑥𝐿) → (𝑡 ∈ ((𝐹𝑠) ∩ 𝑥) → (𝑠 ∩ (𝐹𝑥)) ≠ ∅))
8685exlimdv 1934 . . . . . . . . . . . 12 (((𝜑𝑠𝐵) ∧ 𝑥𝐿) → (∃𝑡 𝑡 ∈ ((𝐹𝑠) ∩ 𝑥) → (𝑠 ∩ (𝐹𝑥)) ≠ ∅))
8757, 86syl5bi 245 . . . . . . . . . . 11 (((𝜑𝑠𝐵) ∧ 𝑥𝐿) → (¬ ((𝐹𝑠) ∩ 𝑥) = ∅ → (𝑠 ∩ (𝐹𝑥)) ≠ ∅))
8856, 87mpd 15 . . . . . . . . . 10 (((𝜑𝑠𝐵) ∧ 𝑥𝐿) → (𝑠 ∩ (𝐹𝑥)) ≠ ∅)
89 ineq2 4136 . . . . . . . . . . 11 (𝑡 = (𝐹𝑥) → (𝑠𝑡) = (𝑠 ∩ (𝐹𝑥)))
9089neeq1d 3049 . . . . . . . . . 10 (𝑡 = (𝐹𝑥) → ((𝑠𝑡) ≠ ∅ ↔ (𝑠 ∩ (𝐹𝑥)) ≠ ∅))
9188, 90syl5ibrcom 250 . . . . . . . . 9 (((𝜑𝑠𝐵) ∧ 𝑥𝐿) → (𝑡 = (𝐹𝑥) → (𝑠𝑡) ≠ ∅))
9291rexlimdva 3246 . . . . . . . 8 ((𝜑𝑠𝐵) → (∃𝑥𝐿 𝑡 = (𝐹𝑥) → (𝑠𝑡) ≠ ∅))
9336, 92syl5bi 245 . . . . . . 7 ((𝜑𝑠𝐵) → (𝑡 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) → (𝑠𝑡) ≠ ∅))
9493expimpd 457 . . . . . 6 (𝜑 → ((𝑠𝐵𝑡 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥))) → (𝑠𝑡) ≠ ∅))
9594ralrimivv 3158 . . . . 5 (𝜑 → ∀𝑠𝐵𝑡 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥))(𝑠𝑡) ≠ ∅)
96 fbunfip 22477 . . . . . 6 ((𝐵 ∈ (fBas‘𝑌) ∧ ran (𝑥𝐿 ↦ (𝐹𝑥)) ∈ (fBas‘𝑌)) → (¬ ∅ ∈ (fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥)))) ↔ ∀𝑠𝐵𝑡 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥))(𝑠𝑡) ≠ ∅))
971, 25, 96syl2anc 587 . . . . 5 (𝜑 → (¬ ∅ ∈ (fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥)))) ↔ ∀𝑠𝐵𝑡 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥))(𝑠𝑡) ≠ ∅))
9895, 97mpbird 260 . . . 4 (𝜑 → ¬ ∅ ∈ (fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥)))))
99 fsubbas 22475 . . . . 5 (𝑌 ∈ dom fBas → ((fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥)))) ∈ (fBas‘𝑌) ↔ ((𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))) ⊆ 𝒫 𝑌 ∧ (𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))) ≠ ∅ ∧ ¬ ∅ ∈ (fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥)))))))
1001, 4, 993syl 18 . . . 4 (𝜑 → ((fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥)))) ∈ (fBas‘𝑌) ↔ ((𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))) ⊆ 𝒫 𝑌 ∧ (𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))) ≠ ∅ ∧ ¬ ∅ ∈ (fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥)))))))
10128, 33, 98, 100mpbir3and 1339 . . 3 (𝜑 → (fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥)))) ∈ (fBas‘𝑌))
102 fgcl 22486 . . 3 ((fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥)))) ∈ (fBas‘𝑌) → (𝑌filGen(fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))))) ∈ (Fil‘𝑌))
103101, 102syl 17 . 2 (𝜑 → (𝑌filGen(fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))))) ∈ (Fil‘𝑌))
104 unexg 7456 . . . . . 6 ((𝐵 ∈ (fBas‘𝑌) ∧ ran (𝑥𝐿 ↦ (𝐹𝑥)) ∈ (fBas‘𝑌)) → (𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))) ∈ V)
1051, 25, 104syl2anc 587 . . . . 5 (𝜑 → (𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))) ∈ V)
106 ssfii 8871 . . . . 5 ((𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))) ∈ V → (𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))) ⊆ (fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥)))))
107105, 106syl 17 . . . 4 (𝜑 → (𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))) ⊆ (fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥)))))
108107unssad 4117 . . 3 (𝜑𝐵 ⊆ (fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥)))))
109 ssfg 22480 . . . 4 ((fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥)))) ∈ (fBas‘𝑌) → (fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥)))) ⊆ (𝑌filGen(fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))))))
110101, 109syl 17 . . 3 (𝜑 → (fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥)))) ⊆ (𝑌filGen(fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))))))
111108, 110sstrd 3928 . 2 (𝜑𝐵 ⊆ (𝑌filGen(fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))))))
1121, 6, 7, 8fmfnfmlem4 22565 . . . . 5 (𝜑 → (𝑡𝐿 ↔ (𝑡𝑋 ∧ ∃𝑠 ∈ (fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))))(𝐹𝑠) ⊆ 𝑡)))
113 elfm 22555 . . . . . 6 ((𝑋𝐿 ∧ (fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥)))) ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝑡 ∈ ((𝑋 FilMap 𝐹)‘(fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))))) ↔ (𝑡𝑋 ∧ ∃𝑠 ∈ (fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))))(𝐹𝑠) ⊆ 𝑡)))
11415, 101, 7, 113syl3anc 1368 . . . . 5 (𝜑 → (𝑡 ∈ ((𝑋 FilMap 𝐹)‘(fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))))) ↔ (𝑡𝑋 ∧ ∃𝑠 ∈ (fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))))(𝐹𝑠) ⊆ 𝑡)))
115112, 114bitr4d 285 . . . 4 (𝜑 → (𝑡𝐿𝑡 ∈ ((𝑋 FilMap 𝐹)‘(fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥)))))))
116115eqrdv 2799 . . 3 (𝜑𝐿 = ((𝑋 FilMap 𝐹)‘(fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))))))
117 eqid 2801 . . . . 5 (𝑌filGen(fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))))) = (𝑌filGen(fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥)))))
118117fmfg 22557 . . . 4 ((𝑋𝐿 ∧ (fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥)))) ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → ((𝑋 FilMap 𝐹)‘(fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))))) = ((𝑋 FilMap 𝐹)‘(𝑌filGen(fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥)))))))
11915, 101, 7, 118syl3anc 1368 . . 3 (𝜑 → ((𝑋 FilMap 𝐹)‘(fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))))) = ((𝑋 FilMap 𝐹)‘(𝑌filGen(fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥)))))))
120116, 119eqtrd 2836 . 2 (𝜑𝐿 = ((𝑋 FilMap 𝐹)‘(𝑌filGen(fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥)))))))
121 sseq2 3944 . . . 4 (𝑓 = (𝑌filGen(fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))))) → (𝐵𝑓𝐵 ⊆ (𝑌filGen(fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥)))))))
122 fveq2 6649 . . . . 5 (𝑓 = (𝑌filGen(fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))))) → ((𝑋 FilMap 𝐹)‘𝑓) = ((𝑋 FilMap 𝐹)‘(𝑌filGen(fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥)))))))
123122eqeq2d 2812 . . . 4 (𝑓 = (𝑌filGen(fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))))) → (𝐿 = ((𝑋 FilMap 𝐹)‘𝑓) ↔ 𝐿 = ((𝑋 FilMap 𝐹)‘(𝑌filGen(fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))))))))
124121, 123anbi12d 633 . . 3 (𝑓 = (𝑌filGen(fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))))) → ((𝐵𝑓𝐿 = ((𝑋 FilMap 𝐹)‘𝑓)) ↔ (𝐵 ⊆ (𝑌filGen(fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))))) ∧ 𝐿 = ((𝑋 FilMap 𝐹)‘(𝑌filGen(fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥)))))))))
125124rspcev 3574 . 2 (((𝑌filGen(fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))))) ∈ (Fil‘𝑌) ∧ (𝐵 ⊆ (𝑌filGen(fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))))) ∧ 𝐿 = ((𝑋 FilMap 𝐹)‘(𝑌filGen(fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥)))))))) → ∃𝑓 ∈ (Fil‘𝑌)(𝐵𝑓𝐿 = ((𝑋 FilMap 𝐹)‘𝑓)))
126103, 111, 120, 125syl12anc 835 1 (𝜑 → ∃𝑓 ∈ (Fil‘𝑌)(𝐵𝑓𝐿 = ((𝑋 FilMap 𝐹)‘𝑓)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wex 1781  wcel 2112  wne 2990  wral 3109  wrex 3110  Vcvv 3444  cun 3882  cin 3883  wss 3884  c0 4246  𝒫 cpw 4500  cmpt 5113  ccnv 5522  dom cdm 5523  ran crn 5524  cima 5526  Fun wfun 6322   Fn wfn 6323  wf 6324  ontowfo 6326  cfv 6328  (class class class)co 7139  ficfi 8862  fBascfbas 20082  filGencfg 20083  Filcfil 22453   FilMap cfm 22541
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-int 4842  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-oadd 8093  df-er 8276  df-en 8497  df-fin 8500  df-fi 8863  df-fbas 20091  df-fg 20092  df-fil 22454  df-fm 22546
This theorem is referenced by:  fmufil  22567  cnpfcf  22649
  Copyright terms: Public domain W3C validator