MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fmfnfm Structured version   Visualization version   GIF version

Theorem fmfnfm 23953
Description: A filter finer than an image filter is an image filter of the same function. (Contributed by Jeff Hankins, 13-Nov-2009.) (Revised by Stefan O'Rear, 8-Aug-2015.)
Hypotheses
Ref Expression
fmfnfm.b (𝜑𝐵 ∈ (fBas‘𝑌))
fmfnfm.l (𝜑𝐿 ∈ (Fil‘𝑋))
fmfnfm.f (𝜑𝐹:𝑌𝑋)
fmfnfm.fm (𝜑 → ((𝑋 FilMap 𝐹)‘𝐵) ⊆ 𝐿)
Assertion
Ref Expression
fmfnfm (𝜑 → ∃𝑓 ∈ (Fil‘𝑌)(𝐵𝑓𝐿 = ((𝑋 FilMap 𝐹)‘𝑓)))
Distinct variable groups:   𝐵,𝑓   𝑓,𝐹   𝑓,𝐿   𝑓,𝑋   𝑓,𝑌
Allowed substitution hint:   𝜑(𝑓)

Proof of Theorem fmfnfm
Dummy variables 𝑠 𝑡 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fmfnfm.b . . . . . 6 (𝜑𝐵 ∈ (fBas‘𝑌))
2 fbsspw 23827 . . . . . 6 (𝐵 ∈ (fBas‘𝑌) → 𝐵 ⊆ 𝒫 𝑌)
31, 2syl 17 . . . . 5 (𝜑𝐵 ⊆ 𝒫 𝑌)
4 elfvdm 6938 . . . . . . . 8 (𝐵 ∈ (fBas‘𝑌) → 𝑌 ∈ dom fBas)
51, 4syl 17 . . . . . . 7 (𝜑𝑌 ∈ dom fBas)
6 fmfnfm.l . . . . . . 7 (𝜑𝐿 ∈ (Fil‘𝑋))
7 fmfnfm.f . . . . . . 7 (𝜑𝐹:𝑌𝑋)
8 fmfnfm.fm . . . . . . . 8 (𝜑 → ((𝑋 FilMap 𝐹)‘𝐵) ⊆ 𝐿)
9 ffn 6728 . . . . . . . . . . 11 (𝐹:𝑌𝑋𝐹 Fn 𝑌)
10 dffn4 6821 . . . . . . . . . . 11 (𝐹 Fn 𝑌𝐹:𝑌onto→ran 𝐹)
119, 10sylib 217 . . . . . . . . . 10 (𝐹:𝑌𝑋𝐹:𝑌onto→ran 𝐹)
12 foima 6820 . . . . . . . . . 10 (𝐹:𝑌onto→ran 𝐹 → (𝐹𝑌) = ran 𝐹)
137, 11, 123syl 18 . . . . . . . . 9 (𝜑 → (𝐹𝑌) = ran 𝐹)
14 filtop 23850 . . . . . . . . . . 11 (𝐿 ∈ (Fil‘𝑋) → 𝑋𝐿)
156, 14syl 17 . . . . . . . . . 10 (𝜑𝑋𝐿)
16 fgcl 23873 . . . . . . . . . . 11 (𝐵 ∈ (fBas‘𝑌) → (𝑌filGen𝐵) ∈ (Fil‘𝑌))
17 filtop 23850 . . . . . . . . . . 11 ((𝑌filGen𝐵) ∈ (Fil‘𝑌) → 𝑌 ∈ (𝑌filGen𝐵))
181, 16, 173syl 18 . . . . . . . . . 10 (𝜑𝑌 ∈ (𝑌filGen𝐵))
19 eqid 2726 . . . . . . . . . . 11 (𝑌filGen𝐵) = (𝑌filGen𝐵)
2019imaelfm 23946 . . . . . . . . . 10 (((𝑋𝐿𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑌 ∈ (𝑌filGen𝐵)) → (𝐹𝑌) ∈ ((𝑋 FilMap 𝐹)‘𝐵))
2115, 1, 7, 18, 20syl31anc 1370 . . . . . . . . 9 (𝜑 → (𝐹𝑌) ∈ ((𝑋 FilMap 𝐹)‘𝐵))
2213, 21eqeltrrd 2827 . . . . . . . 8 (𝜑 → ran 𝐹 ∈ ((𝑋 FilMap 𝐹)‘𝐵))
238, 22sseldd 3980 . . . . . . 7 (𝜑 → ran 𝐹𝐿)
24 rnelfmlem 23947 . . . . . . 7 (((𝑌 ∈ dom fBas ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) → ran (𝑥𝐿 ↦ (𝐹𝑥)) ∈ (fBas‘𝑌))
255, 6, 7, 23, 24syl31anc 1370 . . . . . 6 (𝜑 → ran (𝑥𝐿 ↦ (𝐹𝑥)) ∈ (fBas‘𝑌))
26 fbsspw 23827 . . . . . 6 (ran (𝑥𝐿 ↦ (𝐹𝑥)) ∈ (fBas‘𝑌) → ran (𝑥𝐿 ↦ (𝐹𝑥)) ⊆ 𝒫 𝑌)
2725, 26syl 17 . . . . 5 (𝜑 → ran (𝑥𝐿 ↦ (𝐹𝑥)) ⊆ 𝒫 𝑌)
283, 27unssd 4187 . . . 4 (𝜑 → (𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))) ⊆ 𝒫 𝑌)
29 ssun1 4173 . . . . 5 𝐵 ⊆ (𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥)))
30 fbasne0 23825 . . . . . 6 (𝐵 ∈ (fBas‘𝑌) → 𝐵 ≠ ∅)
311, 30syl 17 . . . . 5 (𝜑𝐵 ≠ ∅)
32 ssn0 4405 . . . . 5 ((𝐵 ⊆ (𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))) ∧ 𝐵 ≠ ∅) → (𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))) ≠ ∅)
3329, 31, 32sylancr 585 . . . 4 (𝜑 → (𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))) ≠ ∅)
34 eqid 2726 . . . . . . . . . 10 (𝑥𝐿 ↦ (𝐹𝑥)) = (𝑥𝐿 ↦ (𝐹𝑥))
3534elrnmpt 5962 . . . . . . . . 9 (𝑡 ∈ V → (𝑡 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) ↔ ∃𝑥𝐿 𝑡 = (𝐹𝑥)))
3635elv 3468 . . . . . . . 8 (𝑡 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) ↔ ∃𝑥𝐿 𝑡 = (𝐹𝑥))
37 0nelfil 23844 . . . . . . . . . . . . . 14 (𝐿 ∈ (Fil‘𝑋) → ¬ ∅ ∈ 𝐿)
386, 37syl 17 . . . . . . . . . . . . 13 (𝜑 → ¬ ∅ ∈ 𝐿)
3938ad2antrr 724 . . . . . . . . . . . 12 (((𝜑𝑠𝐵) ∧ 𝑥𝐿) → ¬ ∅ ∈ 𝐿)
406adantr 479 . . . . . . . . . . . . . . 15 ((𝜑𝑠𝐵) → 𝐿 ∈ (Fil‘𝑋))
418adantr 479 . . . . . . . . . . . . . . . 16 ((𝜑𝑠𝐵) → ((𝑋 FilMap 𝐹)‘𝐵) ⊆ 𝐿)
4215, 1, 73jca 1125 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑋𝐿𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋))
4342adantr 479 . . . . . . . . . . . . . . . . 17 ((𝜑𝑠𝐵) → (𝑋𝐿𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋))
44 ssfg 23867 . . . . . . . . . . . . . . . . . . 19 (𝐵 ∈ (fBas‘𝑌) → 𝐵 ⊆ (𝑌filGen𝐵))
451, 44syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑𝐵 ⊆ (𝑌filGen𝐵))
4645sselda 3979 . . . . . . . . . . . . . . . . 17 ((𝜑𝑠𝐵) → 𝑠 ∈ (𝑌filGen𝐵))
4719imaelfm 23946 . . . . . . . . . . . . . . . . 17 (((𝑋𝐿𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑠 ∈ (𝑌filGen𝐵)) → (𝐹𝑠) ∈ ((𝑋 FilMap 𝐹)‘𝐵))
4843, 46, 47syl2anc 582 . . . . . . . . . . . . . . . 16 ((𝜑𝑠𝐵) → (𝐹𝑠) ∈ ((𝑋 FilMap 𝐹)‘𝐵))
4941, 48sseldd 3980 . . . . . . . . . . . . . . 15 ((𝜑𝑠𝐵) → (𝐹𝑠) ∈ 𝐿)
5040, 49jca 510 . . . . . . . . . . . . . 14 ((𝜑𝑠𝐵) → (𝐿 ∈ (Fil‘𝑋) ∧ (𝐹𝑠) ∈ 𝐿))
51 filin 23849 . . . . . . . . . . . . . . 15 ((𝐿 ∈ (Fil‘𝑋) ∧ (𝐹𝑠) ∈ 𝐿𝑥𝐿) → ((𝐹𝑠) ∩ 𝑥) ∈ 𝐿)
52513expa 1115 . . . . . . . . . . . . . 14 (((𝐿 ∈ (Fil‘𝑋) ∧ (𝐹𝑠) ∈ 𝐿) ∧ 𝑥𝐿) → ((𝐹𝑠) ∩ 𝑥) ∈ 𝐿)
5350, 52sylan 578 . . . . . . . . . . . . 13 (((𝜑𝑠𝐵) ∧ 𝑥𝐿) → ((𝐹𝑠) ∩ 𝑥) ∈ 𝐿)
54 eleq1 2814 . . . . . . . . . . . . 13 (((𝐹𝑠) ∩ 𝑥) = ∅ → (((𝐹𝑠) ∩ 𝑥) ∈ 𝐿 ↔ ∅ ∈ 𝐿))
5553, 54syl5ibcom 244 . . . . . . . . . . . 12 (((𝜑𝑠𝐵) ∧ 𝑥𝐿) → (((𝐹𝑠) ∩ 𝑥) = ∅ → ∅ ∈ 𝐿))
5639, 55mtod 197 . . . . . . . . . . 11 (((𝜑𝑠𝐵) ∧ 𝑥𝐿) → ¬ ((𝐹𝑠) ∩ 𝑥) = ∅)
57 neq0 4348 . . . . . . . . . . . 12 (¬ ((𝐹𝑠) ∩ 𝑥) = ∅ ↔ ∃𝑡 𝑡 ∈ ((𝐹𝑠) ∩ 𝑥))
58 elin 3963 . . . . . . . . . . . . . 14 (𝑡 ∈ ((𝐹𝑠) ∩ 𝑥) ↔ (𝑡 ∈ (𝐹𝑠) ∧ 𝑡𝑥))
59 ffun 6731 . . . . . . . . . . . . . . . . . 18 (𝐹:𝑌𝑋 → Fun 𝐹)
60 fvelima 6968 . . . . . . . . . . . . . . . . . . 19 ((Fun 𝐹𝑡 ∈ (𝐹𝑠)) → ∃𝑦𝑠 (𝐹𝑦) = 𝑡)
6160ex 411 . . . . . . . . . . . . . . . . . 18 (Fun 𝐹 → (𝑡 ∈ (𝐹𝑠) → ∃𝑦𝑠 (𝐹𝑦) = 𝑡))
627, 59, 613syl 18 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑡 ∈ (𝐹𝑠) → ∃𝑦𝑠 (𝐹𝑦) = 𝑡))
6362ad2antrr 724 . . . . . . . . . . . . . . . 16 (((𝜑𝑠𝐵) ∧ 𝑥𝐿) → (𝑡 ∈ (𝐹𝑠) → ∃𝑦𝑠 (𝐹𝑦) = 𝑡))
647, 59syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → Fun 𝐹)
6564ad3antrrr 728 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑠𝐵) ∧ 𝑥𝐿) ∧ 𝑦𝑠) → Fun 𝐹)
66 fbelss 23828 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐵 ∈ (fBas‘𝑌) ∧ 𝑠𝐵) → 𝑠𝑌)
671, 66sylan 578 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑠𝐵) → 𝑠𝑌)
687fdmd 6738 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → dom 𝐹 = 𝑌)
6968adantr 479 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑠𝐵) → dom 𝐹 = 𝑌)
7067, 69sseqtrrd 4021 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑠𝐵) → 𝑠 ⊆ dom 𝐹)
7170adantr 479 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑠𝐵) ∧ 𝑥𝐿) → 𝑠 ⊆ dom 𝐹)
7271sselda 3979 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑠𝐵) ∧ 𝑥𝐿) ∧ 𝑦𝑠) → 𝑦 ∈ dom 𝐹)
73 fvimacnv 7066 . . . . . . . . . . . . . . . . . . . 20 ((Fun 𝐹𝑦 ∈ dom 𝐹) → ((𝐹𝑦) ∈ 𝑥𝑦 ∈ (𝐹𝑥)))
7465, 72, 73syl2anc 582 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑠𝐵) ∧ 𝑥𝐿) ∧ 𝑦𝑠) → ((𝐹𝑦) ∈ 𝑥𝑦 ∈ (𝐹𝑥)))
75 inelcm 4469 . . . . . . . . . . . . . . . . . . . . 21 ((𝑦𝑠𝑦 ∈ (𝐹𝑥)) → (𝑠 ∩ (𝐹𝑥)) ≠ ∅)
7675ex 411 . . . . . . . . . . . . . . . . . . . 20 (𝑦𝑠 → (𝑦 ∈ (𝐹𝑥) → (𝑠 ∩ (𝐹𝑥)) ≠ ∅))
7776adantl 480 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑠𝐵) ∧ 𝑥𝐿) ∧ 𝑦𝑠) → (𝑦 ∈ (𝐹𝑥) → (𝑠 ∩ (𝐹𝑥)) ≠ ∅))
7874, 77sylbid 239 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑠𝐵) ∧ 𝑥𝐿) ∧ 𝑦𝑠) → ((𝐹𝑦) ∈ 𝑥 → (𝑠 ∩ (𝐹𝑥)) ≠ ∅))
79 eleq1 2814 . . . . . . . . . . . . . . . . . . 19 ((𝐹𝑦) = 𝑡 → ((𝐹𝑦) ∈ 𝑥𝑡𝑥))
8079imbi1d 340 . . . . . . . . . . . . . . . . . 18 ((𝐹𝑦) = 𝑡 → (((𝐹𝑦) ∈ 𝑥 → (𝑠 ∩ (𝐹𝑥)) ≠ ∅) ↔ (𝑡𝑥 → (𝑠 ∩ (𝐹𝑥)) ≠ ∅)))
8178, 80syl5ibcom 244 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑠𝐵) ∧ 𝑥𝐿) ∧ 𝑦𝑠) → ((𝐹𝑦) = 𝑡 → (𝑡𝑥 → (𝑠 ∩ (𝐹𝑥)) ≠ ∅)))
8281rexlimdva 3145 . . . . . . . . . . . . . . . 16 (((𝜑𝑠𝐵) ∧ 𝑥𝐿) → (∃𝑦𝑠 (𝐹𝑦) = 𝑡 → (𝑡𝑥 → (𝑠 ∩ (𝐹𝑥)) ≠ ∅)))
8363, 82syld 47 . . . . . . . . . . . . . . 15 (((𝜑𝑠𝐵) ∧ 𝑥𝐿) → (𝑡 ∈ (𝐹𝑠) → (𝑡𝑥 → (𝑠 ∩ (𝐹𝑥)) ≠ ∅)))
8483impd 409 . . . . . . . . . . . . . 14 (((𝜑𝑠𝐵) ∧ 𝑥𝐿) → ((𝑡 ∈ (𝐹𝑠) ∧ 𝑡𝑥) → (𝑠 ∩ (𝐹𝑥)) ≠ ∅))
8558, 84biimtrid 241 . . . . . . . . . . . . 13 (((𝜑𝑠𝐵) ∧ 𝑥𝐿) → (𝑡 ∈ ((𝐹𝑠) ∩ 𝑥) → (𝑠 ∩ (𝐹𝑥)) ≠ ∅))
8685exlimdv 1929 . . . . . . . . . . . 12 (((𝜑𝑠𝐵) ∧ 𝑥𝐿) → (∃𝑡 𝑡 ∈ ((𝐹𝑠) ∩ 𝑥) → (𝑠 ∩ (𝐹𝑥)) ≠ ∅))
8757, 86biimtrid 241 . . . . . . . . . . 11 (((𝜑𝑠𝐵) ∧ 𝑥𝐿) → (¬ ((𝐹𝑠) ∩ 𝑥) = ∅ → (𝑠 ∩ (𝐹𝑥)) ≠ ∅))
8856, 87mpd 15 . . . . . . . . . 10 (((𝜑𝑠𝐵) ∧ 𝑥𝐿) → (𝑠 ∩ (𝐹𝑥)) ≠ ∅)
89 ineq2 4207 . . . . . . . . . . 11 (𝑡 = (𝐹𝑥) → (𝑠𝑡) = (𝑠 ∩ (𝐹𝑥)))
9089neeq1d 2990 . . . . . . . . . 10 (𝑡 = (𝐹𝑥) → ((𝑠𝑡) ≠ ∅ ↔ (𝑠 ∩ (𝐹𝑥)) ≠ ∅))
9188, 90syl5ibrcom 246 . . . . . . . . 9 (((𝜑𝑠𝐵) ∧ 𝑥𝐿) → (𝑡 = (𝐹𝑥) → (𝑠𝑡) ≠ ∅))
9291rexlimdva 3145 . . . . . . . 8 ((𝜑𝑠𝐵) → (∃𝑥𝐿 𝑡 = (𝐹𝑥) → (𝑠𝑡) ≠ ∅))
9336, 92biimtrid 241 . . . . . . 7 ((𝜑𝑠𝐵) → (𝑡 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) → (𝑠𝑡) ≠ ∅))
9493expimpd 452 . . . . . 6 (𝜑 → ((𝑠𝐵𝑡 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥))) → (𝑠𝑡) ≠ ∅))
9594ralrimivv 3189 . . . . 5 (𝜑 → ∀𝑠𝐵𝑡 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥))(𝑠𝑡) ≠ ∅)
96 fbunfip 23864 . . . . . 6 ((𝐵 ∈ (fBas‘𝑌) ∧ ran (𝑥𝐿 ↦ (𝐹𝑥)) ∈ (fBas‘𝑌)) → (¬ ∅ ∈ (fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥)))) ↔ ∀𝑠𝐵𝑡 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥))(𝑠𝑡) ≠ ∅))
971, 25, 96syl2anc 582 . . . . 5 (𝜑 → (¬ ∅ ∈ (fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥)))) ↔ ∀𝑠𝐵𝑡 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥))(𝑠𝑡) ≠ ∅))
9895, 97mpbird 256 . . . 4 (𝜑 → ¬ ∅ ∈ (fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥)))))
99 fsubbas 23862 . . . . 5 (𝑌 ∈ dom fBas → ((fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥)))) ∈ (fBas‘𝑌) ↔ ((𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))) ⊆ 𝒫 𝑌 ∧ (𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))) ≠ ∅ ∧ ¬ ∅ ∈ (fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥)))))))
1001, 4, 993syl 18 . . . 4 (𝜑 → ((fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥)))) ∈ (fBas‘𝑌) ↔ ((𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))) ⊆ 𝒫 𝑌 ∧ (𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))) ≠ ∅ ∧ ¬ ∅ ∈ (fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥)))))))
10128, 33, 98, 100mpbir3and 1339 . . 3 (𝜑 → (fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥)))) ∈ (fBas‘𝑌))
102 fgcl 23873 . . 3 ((fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥)))) ∈ (fBas‘𝑌) → (𝑌filGen(fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))))) ∈ (Fil‘𝑌))
103101, 102syl 17 . 2 (𝜑 → (𝑌filGen(fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))))) ∈ (Fil‘𝑌))
104 unexg 7757 . . . . . 6 ((𝐵 ∈ (fBas‘𝑌) ∧ ran (𝑥𝐿 ↦ (𝐹𝑥)) ∈ (fBas‘𝑌)) → (𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))) ∈ V)
1051, 25, 104syl2anc 582 . . . . 5 (𝜑 → (𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))) ∈ V)
106 ssfii 9462 . . . . 5 ((𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))) ∈ V → (𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))) ⊆ (fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥)))))
107105, 106syl 17 . . . 4 (𝜑 → (𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))) ⊆ (fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥)))))
108107unssad 4188 . . 3 (𝜑𝐵 ⊆ (fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥)))))
109 ssfg 23867 . . . 4 ((fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥)))) ∈ (fBas‘𝑌) → (fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥)))) ⊆ (𝑌filGen(fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))))))
110101, 109syl 17 . . 3 (𝜑 → (fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥)))) ⊆ (𝑌filGen(fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))))))
111108, 110sstrd 3990 . 2 (𝜑𝐵 ⊆ (𝑌filGen(fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))))))
1121, 6, 7, 8fmfnfmlem4 23952 . . . . 5 (𝜑 → (𝑡𝐿 ↔ (𝑡𝑋 ∧ ∃𝑠 ∈ (fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))))(𝐹𝑠) ⊆ 𝑡)))
113 elfm 23942 . . . . . 6 ((𝑋𝐿 ∧ (fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥)))) ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝑡 ∈ ((𝑋 FilMap 𝐹)‘(fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))))) ↔ (𝑡𝑋 ∧ ∃𝑠 ∈ (fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))))(𝐹𝑠) ⊆ 𝑡)))
11415, 101, 7, 113syl3anc 1368 . . . . 5 (𝜑 → (𝑡 ∈ ((𝑋 FilMap 𝐹)‘(fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))))) ↔ (𝑡𝑋 ∧ ∃𝑠 ∈ (fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))))(𝐹𝑠) ⊆ 𝑡)))
115112, 114bitr4d 281 . . . 4 (𝜑 → (𝑡𝐿𝑡 ∈ ((𝑋 FilMap 𝐹)‘(fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥)))))))
116115eqrdv 2724 . . 3 (𝜑𝐿 = ((𝑋 FilMap 𝐹)‘(fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))))))
117 eqid 2726 . . . . 5 (𝑌filGen(fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))))) = (𝑌filGen(fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥)))))
118117fmfg 23944 . . . 4 ((𝑋𝐿 ∧ (fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥)))) ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → ((𝑋 FilMap 𝐹)‘(fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))))) = ((𝑋 FilMap 𝐹)‘(𝑌filGen(fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥)))))))
11915, 101, 7, 118syl3anc 1368 . . 3 (𝜑 → ((𝑋 FilMap 𝐹)‘(fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))))) = ((𝑋 FilMap 𝐹)‘(𝑌filGen(fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥)))))))
120116, 119eqtrd 2766 . 2 (𝜑𝐿 = ((𝑋 FilMap 𝐹)‘(𝑌filGen(fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥)))))))
121 sseq2 4006 . . . 4 (𝑓 = (𝑌filGen(fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))))) → (𝐵𝑓𝐵 ⊆ (𝑌filGen(fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥)))))))
122 fveq2 6901 . . . . 5 (𝑓 = (𝑌filGen(fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))))) → ((𝑋 FilMap 𝐹)‘𝑓) = ((𝑋 FilMap 𝐹)‘(𝑌filGen(fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥)))))))
123122eqeq2d 2737 . . . 4 (𝑓 = (𝑌filGen(fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))))) → (𝐿 = ((𝑋 FilMap 𝐹)‘𝑓) ↔ 𝐿 = ((𝑋 FilMap 𝐹)‘(𝑌filGen(fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))))))))
124121, 123anbi12d 630 . . 3 (𝑓 = (𝑌filGen(fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))))) → ((𝐵𝑓𝐿 = ((𝑋 FilMap 𝐹)‘𝑓)) ↔ (𝐵 ⊆ (𝑌filGen(fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))))) ∧ 𝐿 = ((𝑋 FilMap 𝐹)‘(𝑌filGen(fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥)))))))))
125124rspcev 3608 . 2 (((𝑌filGen(fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))))) ∈ (Fil‘𝑌) ∧ (𝐵 ⊆ (𝑌filGen(fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))))) ∧ 𝐿 = ((𝑋 FilMap 𝐹)‘(𝑌filGen(fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥)))))))) → ∃𝑓 ∈ (Fil‘𝑌)(𝐵𝑓𝐿 = ((𝑋 FilMap 𝐹)‘𝑓)))
126103, 111, 120, 125syl12anc 835 1 (𝜑 → ∃𝑓 ∈ (Fil‘𝑌)(𝐵𝑓𝐿 = ((𝑋 FilMap 𝐹)‘𝑓)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394  w3a 1084   = wceq 1534  wex 1774  wcel 2099  wne 2930  wral 3051  wrex 3060  Vcvv 3462  cun 3945  cin 3946  wss 3947  c0 4325  𝒫 cpw 4607  cmpt 5236  ccnv 5681  dom cdm 5682  ran crn 5683  cima 5685  Fun wfun 6548   Fn wfn 6549  wf 6550  ontowfo 6552  cfv 6554  (class class class)co 7424  ficfi 9453  fBascfbas 21331  filGencfg 21332  Filcfil 23840   FilMap cfm 23928
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5290  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-int 4955  df-iun 5003  df-br 5154  df-opab 5216  df-mpt 5237  df-tr 5271  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-ord 6379  df-on 6380  df-lim 6381  df-suc 6382  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-ov 7427  df-oprab 7428  df-mpo 7429  df-om 7877  df-1o 8496  df-2o 8497  df-en 8975  df-fin 8978  df-fi 9454  df-fbas 21340  df-fg 21341  df-fil 23841  df-fm 23933
This theorem is referenced by:  fmufil  23954  cnpfcf  24036
  Copyright terms: Public domain W3C validator