MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fmfnfm Structured version   Visualization version   GIF version

Theorem fmfnfm 23987
Description: A filter finer than an image filter is an image filter of the same function. (Contributed by Jeff Hankins, 13-Nov-2009.) (Revised by Stefan O'Rear, 8-Aug-2015.)
Hypotheses
Ref Expression
fmfnfm.b (𝜑𝐵 ∈ (fBas‘𝑌))
fmfnfm.l (𝜑𝐿 ∈ (Fil‘𝑋))
fmfnfm.f (𝜑𝐹:𝑌𝑋)
fmfnfm.fm (𝜑 → ((𝑋 FilMap 𝐹)‘𝐵) ⊆ 𝐿)
Assertion
Ref Expression
fmfnfm (𝜑 → ∃𝑓 ∈ (Fil‘𝑌)(𝐵𝑓𝐿 = ((𝑋 FilMap 𝐹)‘𝑓)))
Distinct variable groups:   𝐵,𝑓   𝑓,𝐹   𝑓,𝐿   𝑓,𝑋   𝑓,𝑌
Allowed substitution hint:   𝜑(𝑓)

Proof of Theorem fmfnfm
Dummy variables 𝑠 𝑡 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fmfnfm.b . . . . . 6 (𝜑𝐵 ∈ (fBas‘𝑌))
2 fbsspw 23861 . . . . . 6 (𝐵 ∈ (fBas‘𝑌) → 𝐵 ⊆ 𝒫 𝑌)
31, 2syl 17 . . . . 5 (𝜑𝐵 ⊆ 𝒫 𝑌)
4 elfvdm 6957 . . . . . . . 8 (𝐵 ∈ (fBas‘𝑌) → 𝑌 ∈ dom fBas)
51, 4syl 17 . . . . . . 7 (𝜑𝑌 ∈ dom fBas)
6 fmfnfm.l . . . . . . 7 (𝜑𝐿 ∈ (Fil‘𝑋))
7 fmfnfm.f . . . . . . 7 (𝜑𝐹:𝑌𝑋)
8 fmfnfm.fm . . . . . . . 8 (𝜑 → ((𝑋 FilMap 𝐹)‘𝐵) ⊆ 𝐿)
9 ffn 6747 . . . . . . . . . . 11 (𝐹:𝑌𝑋𝐹 Fn 𝑌)
10 dffn4 6840 . . . . . . . . . . 11 (𝐹 Fn 𝑌𝐹:𝑌onto→ran 𝐹)
119, 10sylib 218 . . . . . . . . . 10 (𝐹:𝑌𝑋𝐹:𝑌onto→ran 𝐹)
12 foima 6839 . . . . . . . . . 10 (𝐹:𝑌onto→ran 𝐹 → (𝐹𝑌) = ran 𝐹)
137, 11, 123syl 18 . . . . . . . . 9 (𝜑 → (𝐹𝑌) = ran 𝐹)
14 filtop 23884 . . . . . . . . . . 11 (𝐿 ∈ (Fil‘𝑋) → 𝑋𝐿)
156, 14syl 17 . . . . . . . . . 10 (𝜑𝑋𝐿)
16 fgcl 23907 . . . . . . . . . . 11 (𝐵 ∈ (fBas‘𝑌) → (𝑌filGen𝐵) ∈ (Fil‘𝑌))
17 filtop 23884 . . . . . . . . . . 11 ((𝑌filGen𝐵) ∈ (Fil‘𝑌) → 𝑌 ∈ (𝑌filGen𝐵))
181, 16, 173syl 18 . . . . . . . . . 10 (𝜑𝑌 ∈ (𝑌filGen𝐵))
19 eqid 2740 . . . . . . . . . . 11 (𝑌filGen𝐵) = (𝑌filGen𝐵)
2019imaelfm 23980 . . . . . . . . . 10 (((𝑋𝐿𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑌 ∈ (𝑌filGen𝐵)) → (𝐹𝑌) ∈ ((𝑋 FilMap 𝐹)‘𝐵))
2115, 1, 7, 18, 20syl31anc 1373 . . . . . . . . 9 (𝜑 → (𝐹𝑌) ∈ ((𝑋 FilMap 𝐹)‘𝐵))
2213, 21eqeltrrd 2845 . . . . . . . 8 (𝜑 → ran 𝐹 ∈ ((𝑋 FilMap 𝐹)‘𝐵))
238, 22sseldd 4009 . . . . . . 7 (𝜑 → ran 𝐹𝐿)
24 rnelfmlem 23981 . . . . . . 7 (((𝑌 ∈ dom fBas ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) → ran (𝑥𝐿 ↦ (𝐹𝑥)) ∈ (fBas‘𝑌))
255, 6, 7, 23, 24syl31anc 1373 . . . . . 6 (𝜑 → ran (𝑥𝐿 ↦ (𝐹𝑥)) ∈ (fBas‘𝑌))
26 fbsspw 23861 . . . . . 6 (ran (𝑥𝐿 ↦ (𝐹𝑥)) ∈ (fBas‘𝑌) → ran (𝑥𝐿 ↦ (𝐹𝑥)) ⊆ 𝒫 𝑌)
2725, 26syl 17 . . . . 5 (𝜑 → ran (𝑥𝐿 ↦ (𝐹𝑥)) ⊆ 𝒫 𝑌)
283, 27unssd 4215 . . . 4 (𝜑 → (𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))) ⊆ 𝒫 𝑌)
29 ssun1 4201 . . . . 5 𝐵 ⊆ (𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥)))
30 fbasne0 23859 . . . . . 6 (𝐵 ∈ (fBas‘𝑌) → 𝐵 ≠ ∅)
311, 30syl 17 . . . . 5 (𝜑𝐵 ≠ ∅)
32 ssn0 4427 . . . . 5 ((𝐵 ⊆ (𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))) ∧ 𝐵 ≠ ∅) → (𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))) ≠ ∅)
3329, 31, 32sylancr 586 . . . 4 (𝜑 → (𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))) ≠ ∅)
34 eqid 2740 . . . . . . . . . 10 (𝑥𝐿 ↦ (𝐹𝑥)) = (𝑥𝐿 ↦ (𝐹𝑥))
3534elrnmpt 5981 . . . . . . . . 9 (𝑡 ∈ V → (𝑡 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) ↔ ∃𝑥𝐿 𝑡 = (𝐹𝑥)))
3635elv 3493 . . . . . . . 8 (𝑡 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) ↔ ∃𝑥𝐿 𝑡 = (𝐹𝑥))
37 0nelfil 23878 . . . . . . . . . . . . . 14 (𝐿 ∈ (Fil‘𝑋) → ¬ ∅ ∈ 𝐿)
386, 37syl 17 . . . . . . . . . . . . 13 (𝜑 → ¬ ∅ ∈ 𝐿)
3938ad2antrr 725 . . . . . . . . . . . 12 (((𝜑𝑠𝐵) ∧ 𝑥𝐿) → ¬ ∅ ∈ 𝐿)
406adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑠𝐵) → 𝐿 ∈ (Fil‘𝑋))
418adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑠𝐵) → ((𝑋 FilMap 𝐹)‘𝐵) ⊆ 𝐿)
4215, 1, 73jca 1128 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑋𝐿𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋))
4342adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑠𝐵) → (𝑋𝐿𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋))
44 ssfg 23901 . . . . . . . . . . . . . . . . . . 19 (𝐵 ∈ (fBas‘𝑌) → 𝐵 ⊆ (𝑌filGen𝐵))
451, 44syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑𝐵 ⊆ (𝑌filGen𝐵))
4645sselda 4008 . . . . . . . . . . . . . . . . 17 ((𝜑𝑠𝐵) → 𝑠 ∈ (𝑌filGen𝐵))
4719imaelfm 23980 . . . . . . . . . . . . . . . . 17 (((𝑋𝐿𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑠 ∈ (𝑌filGen𝐵)) → (𝐹𝑠) ∈ ((𝑋 FilMap 𝐹)‘𝐵))
4843, 46, 47syl2anc 583 . . . . . . . . . . . . . . . 16 ((𝜑𝑠𝐵) → (𝐹𝑠) ∈ ((𝑋 FilMap 𝐹)‘𝐵))
4941, 48sseldd 4009 . . . . . . . . . . . . . . 15 ((𝜑𝑠𝐵) → (𝐹𝑠) ∈ 𝐿)
5040, 49jca 511 . . . . . . . . . . . . . 14 ((𝜑𝑠𝐵) → (𝐿 ∈ (Fil‘𝑋) ∧ (𝐹𝑠) ∈ 𝐿))
51 filin 23883 . . . . . . . . . . . . . . 15 ((𝐿 ∈ (Fil‘𝑋) ∧ (𝐹𝑠) ∈ 𝐿𝑥𝐿) → ((𝐹𝑠) ∩ 𝑥) ∈ 𝐿)
52513expa 1118 . . . . . . . . . . . . . 14 (((𝐿 ∈ (Fil‘𝑋) ∧ (𝐹𝑠) ∈ 𝐿) ∧ 𝑥𝐿) → ((𝐹𝑠) ∩ 𝑥) ∈ 𝐿)
5350, 52sylan 579 . . . . . . . . . . . . 13 (((𝜑𝑠𝐵) ∧ 𝑥𝐿) → ((𝐹𝑠) ∩ 𝑥) ∈ 𝐿)
54 eleq1 2832 . . . . . . . . . . . . 13 (((𝐹𝑠) ∩ 𝑥) = ∅ → (((𝐹𝑠) ∩ 𝑥) ∈ 𝐿 ↔ ∅ ∈ 𝐿))
5553, 54syl5ibcom 245 . . . . . . . . . . . 12 (((𝜑𝑠𝐵) ∧ 𝑥𝐿) → (((𝐹𝑠) ∩ 𝑥) = ∅ → ∅ ∈ 𝐿))
5639, 55mtod 198 . . . . . . . . . . 11 (((𝜑𝑠𝐵) ∧ 𝑥𝐿) → ¬ ((𝐹𝑠) ∩ 𝑥) = ∅)
57 neq0 4375 . . . . . . . . . . . 12 (¬ ((𝐹𝑠) ∩ 𝑥) = ∅ ↔ ∃𝑡 𝑡 ∈ ((𝐹𝑠) ∩ 𝑥))
58 elin 3992 . . . . . . . . . . . . . 14 (𝑡 ∈ ((𝐹𝑠) ∩ 𝑥) ↔ (𝑡 ∈ (𝐹𝑠) ∧ 𝑡𝑥))
59 ffun 6750 . . . . . . . . . . . . . . . . . 18 (𝐹:𝑌𝑋 → Fun 𝐹)
60 fvelima 6987 . . . . . . . . . . . . . . . . . . 19 ((Fun 𝐹𝑡 ∈ (𝐹𝑠)) → ∃𝑦𝑠 (𝐹𝑦) = 𝑡)
6160ex 412 . . . . . . . . . . . . . . . . . 18 (Fun 𝐹 → (𝑡 ∈ (𝐹𝑠) → ∃𝑦𝑠 (𝐹𝑦) = 𝑡))
627, 59, 613syl 18 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑡 ∈ (𝐹𝑠) → ∃𝑦𝑠 (𝐹𝑦) = 𝑡))
6362ad2antrr 725 . . . . . . . . . . . . . . . 16 (((𝜑𝑠𝐵) ∧ 𝑥𝐿) → (𝑡 ∈ (𝐹𝑠) → ∃𝑦𝑠 (𝐹𝑦) = 𝑡))
647, 59syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → Fun 𝐹)
6564ad3antrrr 729 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑠𝐵) ∧ 𝑥𝐿) ∧ 𝑦𝑠) → Fun 𝐹)
66 fbelss 23862 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐵 ∈ (fBas‘𝑌) ∧ 𝑠𝐵) → 𝑠𝑌)
671, 66sylan 579 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑠𝐵) → 𝑠𝑌)
687fdmd 6757 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → dom 𝐹 = 𝑌)
6968adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑠𝐵) → dom 𝐹 = 𝑌)
7067, 69sseqtrrd 4050 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑠𝐵) → 𝑠 ⊆ dom 𝐹)
7170adantr 480 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑠𝐵) ∧ 𝑥𝐿) → 𝑠 ⊆ dom 𝐹)
7271sselda 4008 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑠𝐵) ∧ 𝑥𝐿) ∧ 𝑦𝑠) → 𝑦 ∈ dom 𝐹)
73 fvimacnv 7086 . . . . . . . . . . . . . . . . . . . 20 ((Fun 𝐹𝑦 ∈ dom 𝐹) → ((𝐹𝑦) ∈ 𝑥𝑦 ∈ (𝐹𝑥)))
7465, 72, 73syl2anc 583 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑠𝐵) ∧ 𝑥𝐿) ∧ 𝑦𝑠) → ((𝐹𝑦) ∈ 𝑥𝑦 ∈ (𝐹𝑥)))
75 inelcm 4488 . . . . . . . . . . . . . . . . . . . . 21 ((𝑦𝑠𝑦 ∈ (𝐹𝑥)) → (𝑠 ∩ (𝐹𝑥)) ≠ ∅)
7675ex 412 . . . . . . . . . . . . . . . . . . . 20 (𝑦𝑠 → (𝑦 ∈ (𝐹𝑥) → (𝑠 ∩ (𝐹𝑥)) ≠ ∅))
7776adantl 481 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑠𝐵) ∧ 𝑥𝐿) ∧ 𝑦𝑠) → (𝑦 ∈ (𝐹𝑥) → (𝑠 ∩ (𝐹𝑥)) ≠ ∅))
7874, 77sylbid 240 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑠𝐵) ∧ 𝑥𝐿) ∧ 𝑦𝑠) → ((𝐹𝑦) ∈ 𝑥 → (𝑠 ∩ (𝐹𝑥)) ≠ ∅))
79 eleq1 2832 . . . . . . . . . . . . . . . . . . 19 ((𝐹𝑦) = 𝑡 → ((𝐹𝑦) ∈ 𝑥𝑡𝑥))
8079imbi1d 341 . . . . . . . . . . . . . . . . . 18 ((𝐹𝑦) = 𝑡 → (((𝐹𝑦) ∈ 𝑥 → (𝑠 ∩ (𝐹𝑥)) ≠ ∅) ↔ (𝑡𝑥 → (𝑠 ∩ (𝐹𝑥)) ≠ ∅)))
8178, 80syl5ibcom 245 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑠𝐵) ∧ 𝑥𝐿) ∧ 𝑦𝑠) → ((𝐹𝑦) = 𝑡 → (𝑡𝑥 → (𝑠 ∩ (𝐹𝑥)) ≠ ∅)))
8281rexlimdva 3161 . . . . . . . . . . . . . . . 16 (((𝜑𝑠𝐵) ∧ 𝑥𝐿) → (∃𝑦𝑠 (𝐹𝑦) = 𝑡 → (𝑡𝑥 → (𝑠 ∩ (𝐹𝑥)) ≠ ∅)))
8363, 82syld 47 . . . . . . . . . . . . . . 15 (((𝜑𝑠𝐵) ∧ 𝑥𝐿) → (𝑡 ∈ (𝐹𝑠) → (𝑡𝑥 → (𝑠 ∩ (𝐹𝑥)) ≠ ∅)))
8483impd 410 . . . . . . . . . . . . . 14 (((𝜑𝑠𝐵) ∧ 𝑥𝐿) → ((𝑡 ∈ (𝐹𝑠) ∧ 𝑡𝑥) → (𝑠 ∩ (𝐹𝑥)) ≠ ∅))
8558, 84biimtrid 242 . . . . . . . . . . . . 13 (((𝜑𝑠𝐵) ∧ 𝑥𝐿) → (𝑡 ∈ ((𝐹𝑠) ∩ 𝑥) → (𝑠 ∩ (𝐹𝑥)) ≠ ∅))
8685exlimdv 1932 . . . . . . . . . . . 12 (((𝜑𝑠𝐵) ∧ 𝑥𝐿) → (∃𝑡 𝑡 ∈ ((𝐹𝑠) ∩ 𝑥) → (𝑠 ∩ (𝐹𝑥)) ≠ ∅))
8757, 86biimtrid 242 . . . . . . . . . . 11 (((𝜑𝑠𝐵) ∧ 𝑥𝐿) → (¬ ((𝐹𝑠) ∩ 𝑥) = ∅ → (𝑠 ∩ (𝐹𝑥)) ≠ ∅))
8856, 87mpd 15 . . . . . . . . . 10 (((𝜑𝑠𝐵) ∧ 𝑥𝐿) → (𝑠 ∩ (𝐹𝑥)) ≠ ∅)
89 ineq2 4235 . . . . . . . . . . 11 (𝑡 = (𝐹𝑥) → (𝑠𝑡) = (𝑠 ∩ (𝐹𝑥)))
9089neeq1d 3006 . . . . . . . . . 10 (𝑡 = (𝐹𝑥) → ((𝑠𝑡) ≠ ∅ ↔ (𝑠 ∩ (𝐹𝑥)) ≠ ∅))
9188, 90syl5ibrcom 247 . . . . . . . . 9 (((𝜑𝑠𝐵) ∧ 𝑥𝐿) → (𝑡 = (𝐹𝑥) → (𝑠𝑡) ≠ ∅))
9291rexlimdva 3161 . . . . . . . 8 ((𝜑𝑠𝐵) → (∃𝑥𝐿 𝑡 = (𝐹𝑥) → (𝑠𝑡) ≠ ∅))
9336, 92biimtrid 242 . . . . . . 7 ((𝜑𝑠𝐵) → (𝑡 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) → (𝑠𝑡) ≠ ∅))
9493expimpd 453 . . . . . 6 (𝜑 → ((𝑠𝐵𝑡 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥))) → (𝑠𝑡) ≠ ∅))
9594ralrimivv 3206 . . . . 5 (𝜑 → ∀𝑠𝐵𝑡 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥))(𝑠𝑡) ≠ ∅)
96 fbunfip 23898 . . . . . 6 ((𝐵 ∈ (fBas‘𝑌) ∧ ran (𝑥𝐿 ↦ (𝐹𝑥)) ∈ (fBas‘𝑌)) → (¬ ∅ ∈ (fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥)))) ↔ ∀𝑠𝐵𝑡 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥))(𝑠𝑡) ≠ ∅))
971, 25, 96syl2anc 583 . . . . 5 (𝜑 → (¬ ∅ ∈ (fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥)))) ↔ ∀𝑠𝐵𝑡 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥))(𝑠𝑡) ≠ ∅))
9895, 97mpbird 257 . . . 4 (𝜑 → ¬ ∅ ∈ (fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥)))))
99 fsubbas 23896 . . . . 5 (𝑌 ∈ dom fBas → ((fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥)))) ∈ (fBas‘𝑌) ↔ ((𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))) ⊆ 𝒫 𝑌 ∧ (𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))) ≠ ∅ ∧ ¬ ∅ ∈ (fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥)))))))
1001, 4, 993syl 18 . . . 4 (𝜑 → ((fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥)))) ∈ (fBas‘𝑌) ↔ ((𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))) ⊆ 𝒫 𝑌 ∧ (𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))) ≠ ∅ ∧ ¬ ∅ ∈ (fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥)))))))
10128, 33, 98, 100mpbir3and 1342 . . 3 (𝜑 → (fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥)))) ∈ (fBas‘𝑌))
102 fgcl 23907 . . 3 ((fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥)))) ∈ (fBas‘𝑌) → (𝑌filGen(fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))))) ∈ (Fil‘𝑌))
103101, 102syl 17 . 2 (𝜑 → (𝑌filGen(fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))))) ∈ (Fil‘𝑌))
104 unexg 7778 . . . . . 6 ((𝐵 ∈ (fBas‘𝑌) ∧ ran (𝑥𝐿 ↦ (𝐹𝑥)) ∈ (fBas‘𝑌)) → (𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))) ∈ V)
1051, 25, 104syl2anc 583 . . . . 5 (𝜑 → (𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))) ∈ V)
106 ssfii 9488 . . . . 5 ((𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))) ∈ V → (𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))) ⊆ (fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥)))))
107105, 106syl 17 . . . 4 (𝜑 → (𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))) ⊆ (fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥)))))
108107unssad 4216 . . 3 (𝜑𝐵 ⊆ (fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥)))))
109 ssfg 23901 . . . 4 ((fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥)))) ∈ (fBas‘𝑌) → (fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥)))) ⊆ (𝑌filGen(fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))))))
110101, 109syl 17 . . 3 (𝜑 → (fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥)))) ⊆ (𝑌filGen(fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))))))
111108, 110sstrd 4019 . 2 (𝜑𝐵 ⊆ (𝑌filGen(fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))))))
1121, 6, 7, 8fmfnfmlem4 23986 . . . . 5 (𝜑 → (𝑡𝐿 ↔ (𝑡𝑋 ∧ ∃𝑠 ∈ (fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))))(𝐹𝑠) ⊆ 𝑡)))
113 elfm 23976 . . . . . 6 ((𝑋𝐿 ∧ (fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥)))) ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝑡 ∈ ((𝑋 FilMap 𝐹)‘(fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))))) ↔ (𝑡𝑋 ∧ ∃𝑠 ∈ (fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))))(𝐹𝑠) ⊆ 𝑡)))
11415, 101, 7, 113syl3anc 1371 . . . . 5 (𝜑 → (𝑡 ∈ ((𝑋 FilMap 𝐹)‘(fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))))) ↔ (𝑡𝑋 ∧ ∃𝑠 ∈ (fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))))(𝐹𝑠) ⊆ 𝑡)))
115112, 114bitr4d 282 . . . 4 (𝜑 → (𝑡𝐿𝑡 ∈ ((𝑋 FilMap 𝐹)‘(fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥)))))))
116115eqrdv 2738 . . 3 (𝜑𝐿 = ((𝑋 FilMap 𝐹)‘(fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))))))
117 eqid 2740 . . . . 5 (𝑌filGen(fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))))) = (𝑌filGen(fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥)))))
118117fmfg 23978 . . . 4 ((𝑋𝐿 ∧ (fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥)))) ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → ((𝑋 FilMap 𝐹)‘(fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))))) = ((𝑋 FilMap 𝐹)‘(𝑌filGen(fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥)))))))
11915, 101, 7, 118syl3anc 1371 . . 3 (𝜑 → ((𝑋 FilMap 𝐹)‘(fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))))) = ((𝑋 FilMap 𝐹)‘(𝑌filGen(fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥)))))))
120116, 119eqtrd 2780 . 2 (𝜑𝐿 = ((𝑋 FilMap 𝐹)‘(𝑌filGen(fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥)))))))
121 sseq2 4035 . . . 4 (𝑓 = (𝑌filGen(fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))))) → (𝐵𝑓𝐵 ⊆ (𝑌filGen(fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥)))))))
122 fveq2 6920 . . . . 5 (𝑓 = (𝑌filGen(fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))))) → ((𝑋 FilMap 𝐹)‘𝑓) = ((𝑋 FilMap 𝐹)‘(𝑌filGen(fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥)))))))
123122eqeq2d 2751 . . . 4 (𝑓 = (𝑌filGen(fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))))) → (𝐿 = ((𝑋 FilMap 𝐹)‘𝑓) ↔ 𝐿 = ((𝑋 FilMap 𝐹)‘(𝑌filGen(fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))))))))
124121, 123anbi12d 631 . . 3 (𝑓 = (𝑌filGen(fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))))) → ((𝐵𝑓𝐿 = ((𝑋 FilMap 𝐹)‘𝑓)) ↔ (𝐵 ⊆ (𝑌filGen(fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))))) ∧ 𝐿 = ((𝑋 FilMap 𝐹)‘(𝑌filGen(fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥)))))))))
125124rspcev 3635 . 2 (((𝑌filGen(fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))))) ∈ (Fil‘𝑌) ∧ (𝐵 ⊆ (𝑌filGen(fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))))) ∧ 𝐿 = ((𝑋 FilMap 𝐹)‘(𝑌filGen(fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥)))))))) → ∃𝑓 ∈ (Fil‘𝑌)(𝐵𝑓𝐿 = ((𝑋 FilMap 𝐹)‘𝑓)))
126103, 111, 120, 125syl12anc 836 1 (𝜑 → ∃𝑓 ∈ (Fil‘𝑌)(𝐵𝑓𝐿 = ((𝑋 FilMap 𝐹)‘𝑓)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wex 1777  wcel 2108  wne 2946  wral 3067  wrex 3076  Vcvv 3488  cun 3974  cin 3975  wss 3976  c0 4352  𝒫 cpw 4622  cmpt 5249  ccnv 5699  dom cdm 5700  ran crn 5701  cima 5703  Fun wfun 6567   Fn wfn 6568  wf 6569  ontowfo 6571  cfv 6573  (class class class)co 7448  ficfi 9479  fBascfbas 21375  filGencfg 21376  Filcfil 23874   FilMap cfm 23962
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1o 8522  df-2o 8523  df-en 9004  df-fin 9007  df-fi 9480  df-fbas 21384  df-fg 21385  df-fil 23875  df-fm 23967
This theorem is referenced by:  fmufil  23988  cnpfcf  24070
  Copyright terms: Public domain W3C validator