Step | Hyp | Ref
| Expression |
1 | | fmfnfm.b |
. . . . . 6
⊢ (𝜑 → 𝐵 ∈ (fBas‘𝑌)) |
2 | | fbsspw 22891 |
. . . . . 6
⊢ (𝐵 ∈ (fBas‘𝑌) → 𝐵 ⊆ 𝒫 𝑌) |
3 | 1, 2 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝐵 ⊆ 𝒫 𝑌) |
4 | | elfvdm 6788 |
. . . . . . . 8
⊢ (𝐵 ∈ (fBas‘𝑌) → 𝑌 ∈ dom fBas) |
5 | 1, 4 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝑌 ∈ dom fBas) |
6 | | fmfnfm.l |
. . . . . . 7
⊢ (𝜑 → 𝐿 ∈ (Fil‘𝑋)) |
7 | | fmfnfm.f |
. . . . . . 7
⊢ (𝜑 → 𝐹:𝑌⟶𝑋) |
8 | | fmfnfm.fm |
. . . . . . . 8
⊢ (𝜑 → ((𝑋 FilMap 𝐹)‘𝐵) ⊆ 𝐿) |
9 | | ffn 6584 |
. . . . . . . . . . 11
⊢ (𝐹:𝑌⟶𝑋 → 𝐹 Fn 𝑌) |
10 | | dffn4 6678 |
. . . . . . . . . . 11
⊢ (𝐹 Fn 𝑌 ↔ 𝐹:𝑌–onto→ran 𝐹) |
11 | 9, 10 | sylib 217 |
. . . . . . . . . 10
⊢ (𝐹:𝑌⟶𝑋 → 𝐹:𝑌–onto→ran 𝐹) |
12 | | foima 6677 |
. . . . . . . . . 10
⊢ (𝐹:𝑌–onto→ran 𝐹 → (𝐹 “ 𝑌) = ran 𝐹) |
13 | 7, 11, 12 | 3syl 18 |
. . . . . . . . 9
⊢ (𝜑 → (𝐹 “ 𝑌) = ran 𝐹) |
14 | | filtop 22914 |
. . . . . . . . . . 11
⊢ (𝐿 ∈ (Fil‘𝑋) → 𝑋 ∈ 𝐿) |
15 | 6, 14 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑋 ∈ 𝐿) |
16 | | fgcl 22937 |
. . . . . . . . . . 11
⊢ (𝐵 ∈ (fBas‘𝑌) → (𝑌filGen𝐵) ∈ (Fil‘𝑌)) |
17 | | filtop 22914 |
. . . . . . . . . . 11
⊢ ((𝑌filGen𝐵) ∈ (Fil‘𝑌) → 𝑌 ∈ (𝑌filGen𝐵)) |
18 | 1, 16, 17 | 3syl 18 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑌 ∈ (𝑌filGen𝐵)) |
19 | | eqid 2738 |
. . . . . . . . . . 11
⊢ (𝑌filGen𝐵) = (𝑌filGen𝐵) |
20 | 19 | imaelfm 23010 |
. . . . . . . . . 10
⊢ (((𝑋 ∈ 𝐿 ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ 𝑌 ∈ (𝑌filGen𝐵)) → (𝐹 “ 𝑌) ∈ ((𝑋 FilMap 𝐹)‘𝐵)) |
21 | 15, 1, 7, 18, 20 | syl31anc 1371 |
. . . . . . . . 9
⊢ (𝜑 → (𝐹 “ 𝑌) ∈ ((𝑋 FilMap 𝐹)‘𝐵)) |
22 | 13, 21 | eqeltrrd 2840 |
. . . . . . . 8
⊢ (𝜑 → ran 𝐹 ∈ ((𝑋 FilMap 𝐹)‘𝐵)) |
23 | 8, 22 | sseldd 3918 |
. . . . . . 7
⊢ (𝜑 → ran 𝐹 ∈ 𝐿) |
24 | | rnelfmlem 23011 |
. . . . . . 7
⊢ (((𝑌 ∈ dom fBas ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) → ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) ∈ (fBas‘𝑌)) |
25 | 5, 6, 7, 23, 24 | syl31anc 1371 |
. . . . . 6
⊢ (𝜑 → ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) ∈ (fBas‘𝑌)) |
26 | | fbsspw 22891 |
. . . . . 6
⊢ (ran
(𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) ∈ (fBas‘𝑌) → ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) ⊆ 𝒫 𝑌) |
27 | 25, 26 | syl 17 |
. . . . 5
⊢ (𝜑 → ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) ⊆ 𝒫 𝑌) |
28 | 3, 27 | unssd 4116 |
. . . 4
⊢ (𝜑 → (𝐵 ∪ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))) ⊆ 𝒫 𝑌) |
29 | | ssun1 4102 |
. . . . 5
⊢ 𝐵 ⊆ (𝐵 ∪ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))) |
30 | | fbasne0 22889 |
. . . . . 6
⊢ (𝐵 ∈ (fBas‘𝑌) → 𝐵 ≠ ∅) |
31 | 1, 30 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝐵 ≠ ∅) |
32 | | ssn0 4331 |
. . . . 5
⊢ ((𝐵 ⊆ (𝐵 ∪ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))) ∧ 𝐵 ≠ ∅) → (𝐵 ∪ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))) ≠ ∅) |
33 | 29, 31, 32 | sylancr 586 |
. . . 4
⊢ (𝜑 → (𝐵 ∪ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))) ≠ ∅) |
34 | | eqid 2738 |
. . . . . . . . . 10
⊢ (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) = (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) |
35 | 34 | elrnmpt 5854 |
. . . . . . . . 9
⊢ (𝑡 ∈ V → (𝑡 ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) ↔ ∃𝑥 ∈ 𝐿 𝑡 = (◡𝐹 “ 𝑥))) |
36 | 35 | elv 3428 |
. . . . . . . 8
⊢ (𝑡 ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) ↔ ∃𝑥 ∈ 𝐿 𝑡 = (◡𝐹 “ 𝑥)) |
37 | | 0nelfil 22908 |
. . . . . . . . . . . . . 14
⊢ (𝐿 ∈ (Fil‘𝑋) → ¬ ∅ ∈
𝐿) |
38 | 6, 37 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ¬ ∅ ∈ 𝐿) |
39 | 38 | ad2antrr 722 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑠 ∈ 𝐵) ∧ 𝑥 ∈ 𝐿) → ¬ ∅ ∈ 𝐿) |
40 | 6 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑠 ∈ 𝐵) → 𝐿 ∈ (Fil‘𝑋)) |
41 | 8 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑠 ∈ 𝐵) → ((𝑋 FilMap 𝐹)‘𝐵) ⊆ 𝐿) |
42 | 15, 1, 7 | 3jca 1126 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (𝑋 ∈ 𝐿 ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋)) |
43 | 42 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑠 ∈ 𝐵) → (𝑋 ∈ 𝐿 ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋)) |
44 | | ssfg 22931 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝐵 ∈ (fBas‘𝑌) → 𝐵 ⊆ (𝑌filGen𝐵)) |
45 | 1, 44 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝐵 ⊆ (𝑌filGen𝐵)) |
46 | 45 | sselda 3917 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑠 ∈ 𝐵) → 𝑠 ∈ (𝑌filGen𝐵)) |
47 | 19 | imaelfm 23010 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑋 ∈ 𝐿 ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ 𝑠 ∈ (𝑌filGen𝐵)) → (𝐹 “ 𝑠) ∈ ((𝑋 FilMap 𝐹)‘𝐵)) |
48 | 43, 46, 47 | syl2anc 583 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑠 ∈ 𝐵) → (𝐹 “ 𝑠) ∈ ((𝑋 FilMap 𝐹)‘𝐵)) |
49 | 41, 48 | sseldd 3918 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑠 ∈ 𝐵) → (𝐹 “ 𝑠) ∈ 𝐿) |
50 | 40, 49 | jca 511 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑠 ∈ 𝐵) → (𝐿 ∈ (Fil‘𝑋) ∧ (𝐹 “ 𝑠) ∈ 𝐿)) |
51 | | filin 22913 |
. . . . . . . . . . . . . . 15
⊢ ((𝐿 ∈ (Fil‘𝑋) ∧ (𝐹 “ 𝑠) ∈ 𝐿 ∧ 𝑥 ∈ 𝐿) → ((𝐹 “ 𝑠) ∩ 𝑥) ∈ 𝐿) |
52 | 51 | 3expa 1116 |
. . . . . . . . . . . . . 14
⊢ (((𝐿 ∈ (Fil‘𝑋) ∧ (𝐹 “ 𝑠) ∈ 𝐿) ∧ 𝑥 ∈ 𝐿) → ((𝐹 “ 𝑠) ∩ 𝑥) ∈ 𝐿) |
53 | 50, 52 | sylan 579 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑠 ∈ 𝐵) ∧ 𝑥 ∈ 𝐿) → ((𝐹 “ 𝑠) ∩ 𝑥) ∈ 𝐿) |
54 | | eleq1 2826 |
. . . . . . . . . . . . 13
⊢ (((𝐹 “ 𝑠) ∩ 𝑥) = ∅ → (((𝐹 “ 𝑠) ∩ 𝑥) ∈ 𝐿 ↔ ∅ ∈ 𝐿)) |
55 | 53, 54 | syl5ibcom 244 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑠 ∈ 𝐵) ∧ 𝑥 ∈ 𝐿) → (((𝐹 “ 𝑠) ∩ 𝑥) = ∅ → ∅ ∈ 𝐿)) |
56 | 39, 55 | mtod 197 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑠 ∈ 𝐵) ∧ 𝑥 ∈ 𝐿) → ¬ ((𝐹 “ 𝑠) ∩ 𝑥) = ∅) |
57 | | neq0 4276 |
. . . . . . . . . . . 12
⊢ (¬
((𝐹 “ 𝑠) ∩ 𝑥) = ∅ ↔ ∃𝑡 𝑡 ∈ ((𝐹 “ 𝑠) ∩ 𝑥)) |
58 | | elin 3899 |
. . . . . . . . . . . . . 14
⊢ (𝑡 ∈ ((𝐹 “ 𝑠) ∩ 𝑥) ↔ (𝑡 ∈ (𝐹 “ 𝑠) ∧ 𝑡 ∈ 𝑥)) |
59 | | ffun 6587 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐹:𝑌⟶𝑋 → Fun 𝐹) |
60 | | fvelima 6817 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((Fun
𝐹 ∧ 𝑡 ∈ (𝐹 “ 𝑠)) → ∃𝑦 ∈ 𝑠 (𝐹‘𝑦) = 𝑡) |
61 | 60 | ex 412 |
. . . . . . . . . . . . . . . . . 18
⊢ (Fun
𝐹 → (𝑡 ∈ (𝐹 “ 𝑠) → ∃𝑦 ∈ 𝑠 (𝐹‘𝑦) = 𝑡)) |
62 | 7, 59, 61 | 3syl 18 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝑡 ∈ (𝐹 “ 𝑠) → ∃𝑦 ∈ 𝑠 (𝐹‘𝑦) = 𝑡)) |
63 | 62 | ad2antrr 722 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑠 ∈ 𝐵) ∧ 𝑥 ∈ 𝐿) → (𝑡 ∈ (𝐹 “ 𝑠) → ∃𝑦 ∈ 𝑠 (𝐹‘𝑦) = 𝑡)) |
64 | 7, 59 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → Fun 𝐹) |
65 | 64 | ad3antrrr 726 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑠 ∈ 𝐵) ∧ 𝑥 ∈ 𝐿) ∧ 𝑦 ∈ 𝑠) → Fun 𝐹) |
66 | | fbelss 22892 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝐵 ∈ (fBas‘𝑌) ∧ 𝑠 ∈ 𝐵) → 𝑠 ⊆ 𝑌) |
67 | 1, 66 | sylan 579 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑠 ∈ 𝐵) → 𝑠 ⊆ 𝑌) |
68 | 7 | fdmd 6595 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 → dom 𝐹 = 𝑌) |
69 | 68 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑠 ∈ 𝐵) → dom 𝐹 = 𝑌) |
70 | 67, 69 | sseqtrrd 3958 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑠 ∈ 𝐵) → 𝑠 ⊆ dom 𝐹) |
71 | 70 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑠 ∈ 𝐵) ∧ 𝑥 ∈ 𝐿) → 𝑠 ⊆ dom 𝐹) |
72 | 71 | sselda 3917 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑠 ∈ 𝐵) ∧ 𝑥 ∈ 𝐿) ∧ 𝑦 ∈ 𝑠) → 𝑦 ∈ dom 𝐹) |
73 | | fvimacnv 6912 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((Fun
𝐹 ∧ 𝑦 ∈ dom 𝐹) → ((𝐹‘𝑦) ∈ 𝑥 ↔ 𝑦 ∈ (◡𝐹 “ 𝑥))) |
74 | 65, 72, 73 | syl2anc 583 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑠 ∈ 𝐵) ∧ 𝑥 ∈ 𝐿) ∧ 𝑦 ∈ 𝑠) → ((𝐹‘𝑦) ∈ 𝑥 ↔ 𝑦 ∈ (◡𝐹 “ 𝑥))) |
75 | | inelcm 4395 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑦 ∈ 𝑠 ∧ 𝑦 ∈ (◡𝐹 “ 𝑥)) → (𝑠 ∩ (◡𝐹 “ 𝑥)) ≠ ∅) |
76 | 75 | ex 412 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 ∈ 𝑠 → (𝑦 ∈ (◡𝐹 “ 𝑥) → (𝑠 ∩ (◡𝐹 “ 𝑥)) ≠ ∅)) |
77 | 76 | adantl 481 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑠 ∈ 𝐵) ∧ 𝑥 ∈ 𝐿) ∧ 𝑦 ∈ 𝑠) → (𝑦 ∈ (◡𝐹 “ 𝑥) → (𝑠 ∩ (◡𝐹 “ 𝑥)) ≠ ∅)) |
78 | 74, 77 | sylbid 239 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑠 ∈ 𝐵) ∧ 𝑥 ∈ 𝐿) ∧ 𝑦 ∈ 𝑠) → ((𝐹‘𝑦) ∈ 𝑥 → (𝑠 ∩ (◡𝐹 “ 𝑥)) ≠ ∅)) |
79 | | eleq1 2826 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐹‘𝑦) = 𝑡 → ((𝐹‘𝑦) ∈ 𝑥 ↔ 𝑡 ∈ 𝑥)) |
80 | 79 | imbi1d 341 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐹‘𝑦) = 𝑡 → (((𝐹‘𝑦) ∈ 𝑥 → (𝑠 ∩ (◡𝐹 “ 𝑥)) ≠ ∅) ↔ (𝑡 ∈ 𝑥 → (𝑠 ∩ (◡𝐹 “ 𝑥)) ≠ ∅))) |
81 | 78, 80 | syl5ibcom 244 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑠 ∈ 𝐵) ∧ 𝑥 ∈ 𝐿) ∧ 𝑦 ∈ 𝑠) → ((𝐹‘𝑦) = 𝑡 → (𝑡 ∈ 𝑥 → (𝑠 ∩ (◡𝐹 “ 𝑥)) ≠ ∅))) |
82 | 81 | rexlimdva 3212 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑠 ∈ 𝐵) ∧ 𝑥 ∈ 𝐿) → (∃𝑦 ∈ 𝑠 (𝐹‘𝑦) = 𝑡 → (𝑡 ∈ 𝑥 → (𝑠 ∩ (◡𝐹 “ 𝑥)) ≠ ∅))) |
83 | 63, 82 | syld 47 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑠 ∈ 𝐵) ∧ 𝑥 ∈ 𝐿) → (𝑡 ∈ (𝐹 “ 𝑠) → (𝑡 ∈ 𝑥 → (𝑠 ∩ (◡𝐹 “ 𝑥)) ≠ ∅))) |
84 | 83 | impd 410 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑠 ∈ 𝐵) ∧ 𝑥 ∈ 𝐿) → ((𝑡 ∈ (𝐹 “ 𝑠) ∧ 𝑡 ∈ 𝑥) → (𝑠 ∩ (◡𝐹 “ 𝑥)) ≠ ∅)) |
85 | 58, 84 | syl5bi 241 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑠 ∈ 𝐵) ∧ 𝑥 ∈ 𝐿) → (𝑡 ∈ ((𝐹 “ 𝑠) ∩ 𝑥) → (𝑠 ∩ (◡𝐹 “ 𝑥)) ≠ ∅)) |
86 | 85 | exlimdv 1937 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑠 ∈ 𝐵) ∧ 𝑥 ∈ 𝐿) → (∃𝑡 𝑡 ∈ ((𝐹 “ 𝑠) ∩ 𝑥) → (𝑠 ∩ (◡𝐹 “ 𝑥)) ≠ ∅)) |
87 | 57, 86 | syl5bi 241 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑠 ∈ 𝐵) ∧ 𝑥 ∈ 𝐿) → (¬ ((𝐹 “ 𝑠) ∩ 𝑥) = ∅ → (𝑠 ∩ (◡𝐹 “ 𝑥)) ≠ ∅)) |
88 | 56, 87 | mpd 15 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑠 ∈ 𝐵) ∧ 𝑥 ∈ 𝐿) → (𝑠 ∩ (◡𝐹 “ 𝑥)) ≠ ∅) |
89 | | ineq2 4137 |
. . . . . . . . . . 11
⊢ (𝑡 = (◡𝐹 “ 𝑥) → (𝑠 ∩ 𝑡) = (𝑠 ∩ (◡𝐹 “ 𝑥))) |
90 | 89 | neeq1d 3002 |
. . . . . . . . . 10
⊢ (𝑡 = (◡𝐹 “ 𝑥) → ((𝑠 ∩ 𝑡) ≠ ∅ ↔ (𝑠 ∩ (◡𝐹 “ 𝑥)) ≠ ∅)) |
91 | 88, 90 | syl5ibrcom 246 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑠 ∈ 𝐵) ∧ 𝑥 ∈ 𝐿) → (𝑡 = (◡𝐹 “ 𝑥) → (𝑠 ∩ 𝑡) ≠ ∅)) |
92 | 91 | rexlimdva 3212 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑠 ∈ 𝐵) → (∃𝑥 ∈ 𝐿 𝑡 = (◡𝐹 “ 𝑥) → (𝑠 ∩ 𝑡) ≠ ∅)) |
93 | 36, 92 | syl5bi 241 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑠 ∈ 𝐵) → (𝑡 ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) → (𝑠 ∩ 𝑡) ≠ ∅)) |
94 | 93 | expimpd 453 |
. . . . . 6
⊢ (𝜑 → ((𝑠 ∈ 𝐵 ∧ 𝑡 ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))) → (𝑠 ∩ 𝑡) ≠ ∅)) |
95 | 94 | ralrimivv 3113 |
. . . . 5
⊢ (𝜑 → ∀𝑠 ∈ 𝐵 ∀𝑡 ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))(𝑠 ∩ 𝑡) ≠ ∅) |
96 | | fbunfip 22928 |
. . . . . 6
⊢ ((𝐵 ∈ (fBas‘𝑌) ∧ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) ∈ (fBas‘𝑌)) → (¬ ∅ ∈
(fi‘(𝐵 ∪ ran
(𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)))) ↔ ∀𝑠 ∈ 𝐵 ∀𝑡 ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))(𝑠 ∩ 𝑡) ≠ ∅)) |
97 | 1, 25, 96 | syl2anc 583 |
. . . . 5
⊢ (𝜑 → (¬ ∅ ∈
(fi‘(𝐵 ∪ ran
(𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)))) ↔ ∀𝑠 ∈ 𝐵 ∀𝑡 ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))(𝑠 ∩ 𝑡) ≠ ∅)) |
98 | 95, 97 | mpbird 256 |
. . . 4
⊢ (𝜑 → ¬ ∅ ∈
(fi‘(𝐵 ∪ ran
(𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))))) |
99 | | fsubbas 22926 |
. . . . 5
⊢ (𝑌 ∈ dom fBas →
((fi‘(𝐵 ∪ ran
(𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)))) ∈ (fBas‘𝑌) ↔ ((𝐵 ∪ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))) ⊆ 𝒫 𝑌 ∧ (𝐵 ∪ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))) ≠ ∅ ∧ ¬ ∅ ∈
(fi‘(𝐵 ∪ ran
(𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))))))) |
100 | 1, 4, 99 | 3syl 18 |
. . . 4
⊢ (𝜑 → ((fi‘(𝐵 ∪ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)))) ∈ (fBas‘𝑌) ↔ ((𝐵 ∪ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))) ⊆ 𝒫 𝑌 ∧ (𝐵 ∪ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))) ≠ ∅ ∧ ¬ ∅ ∈
(fi‘(𝐵 ∪ ran
(𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))))))) |
101 | 28, 33, 98, 100 | mpbir3and 1340 |
. . 3
⊢ (𝜑 → (fi‘(𝐵 ∪ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)))) ∈ (fBas‘𝑌)) |
102 | | fgcl 22937 |
. . 3
⊢
((fi‘(𝐵 ∪
ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)))) ∈ (fBas‘𝑌) → (𝑌filGen(fi‘(𝐵 ∪ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))))) ∈ (Fil‘𝑌)) |
103 | 101, 102 | syl 17 |
. 2
⊢ (𝜑 → (𝑌filGen(fi‘(𝐵 ∪ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))))) ∈ (Fil‘𝑌)) |
104 | | unexg 7577 |
. . . . . 6
⊢ ((𝐵 ∈ (fBas‘𝑌) ∧ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) ∈ (fBas‘𝑌)) → (𝐵 ∪ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))) ∈ V) |
105 | 1, 25, 104 | syl2anc 583 |
. . . . 5
⊢ (𝜑 → (𝐵 ∪ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))) ∈ V) |
106 | | ssfii 9108 |
. . . . 5
⊢ ((𝐵 ∪ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))) ∈ V → (𝐵 ∪ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))) ⊆ (fi‘(𝐵 ∪ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))))) |
107 | 105, 106 | syl 17 |
. . . 4
⊢ (𝜑 → (𝐵 ∪ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))) ⊆ (fi‘(𝐵 ∪ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))))) |
108 | 107 | unssad 4117 |
. . 3
⊢ (𝜑 → 𝐵 ⊆ (fi‘(𝐵 ∪ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))))) |
109 | | ssfg 22931 |
. . . 4
⊢
((fi‘(𝐵 ∪
ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)))) ∈ (fBas‘𝑌) → (fi‘(𝐵 ∪ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)))) ⊆ (𝑌filGen(fi‘(𝐵 ∪ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)))))) |
110 | 101, 109 | syl 17 |
. . 3
⊢ (𝜑 → (fi‘(𝐵 ∪ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)))) ⊆ (𝑌filGen(fi‘(𝐵 ∪ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)))))) |
111 | 108, 110 | sstrd 3927 |
. 2
⊢ (𝜑 → 𝐵 ⊆ (𝑌filGen(fi‘(𝐵 ∪ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)))))) |
112 | 1, 6, 7, 8 | fmfnfmlem4 23016 |
. . . . 5
⊢ (𝜑 → (𝑡 ∈ 𝐿 ↔ (𝑡 ⊆ 𝑋 ∧ ∃𝑠 ∈ (fi‘(𝐵 ∪ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))))(𝐹 “ 𝑠) ⊆ 𝑡))) |
113 | | elfm 23006 |
. . . . . 6
⊢ ((𝑋 ∈ 𝐿 ∧ (fi‘(𝐵 ∪ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)))) ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → (𝑡 ∈ ((𝑋 FilMap 𝐹)‘(fi‘(𝐵 ∪ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))))) ↔ (𝑡 ⊆ 𝑋 ∧ ∃𝑠 ∈ (fi‘(𝐵 ∪ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))))(𝐹 “ 𝑠) ⊆ 𝑡))) |
114 | 15, 101, 7, 113 | syl3anc 1369 |
. . . . 5
⊢ (𝜑 → (𝑡 ∈ ((𝑋 FilMap 𝐹)‘(fi‘(𝐵 ∪ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))))) ↔ (𝑡 ⊆ 𝑋 ∧ ∃𝑠 ∈ (fi‘(𝐵 ∪ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))))(𝐹 “ 𝑠) ⊆ 𝑡))) |
115 | 112, 114 | bitr4d 281 |
. . . 4
⊢ (𝜑 → (𝑡 ∈ 𝐿 ↔ 𝑡 ∈ ((𝑋 FilMap 𝐹)‘(fi‘(𝐵 ∪ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))))))) |
116 | 115 | eqrdv 2736 |
. . 3
⊢ (𝜑 → 𝐿 = ((𝑋 FilMap 𝐹)‘(fi‘(𝐵 ∪ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)))))) |
117 | | eqid 2738 |
. . . . 5
⊢ (𝑌filGen(fi‘(𝐵 ∪ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))))) = (𝑌filGen(fi‘(𝐵 ∪ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))))) |
118 | 117 | fmfg 23008 |
. . . 4
⊢ ((𝑋 ∈ 𝐿 ∧ (fi‘(𝐵 ∪ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)))) ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → ((𝑋 FilMap 𝐹)‘(fi‘(𝐵 ∪ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))))) = ((𝑋 FilMap 𝐹)‘(𝑌filGen(fi‘(𝐵 ∪ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))))))) |
119 | 15, 101, 7, 118 | syl3anc 1369 |
. . 3
⊢ (𝜑 → ((𝑋 FilMap 𝐹)‘(fi‘(𝐵 ∪ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))))) = ((𝑋 FilMap 𝐹)‘(𝑌filGen(fi‘(𝐵 ∪ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))))))) |
120 | 116, 119 | eqtrd 2778 |
. 2
⊢ (𝜑 → 𝐿 = ((𝑋 FilMap 𝐹)‘(𝑌filGen(fi‘(𝐵 ∪ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))))))) |
121 | | sseq2 3943 |
. . . 4
⊢ (𝑓 = (𝑌filGen(fi‘(𝐵 ∪ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))))) → (𝐵 ⊆ 𝑓 ↔ 𝐵 ⊆ (𝑌filGen(fi‘(𝐵 ∪ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))))))) |
122 | | fveq2 6756 |
. . . . 5
⊢ (𝑓 = (𝑌filGen(fi‘(𝐵 ∪ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))))) → ((𝑋 FilMap 𝐹)‘𝑓) = ((𝑋 FilMap 𝐹)‘(𝑌filGen(fi‘(𝐵 ∪ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))))))) |
123 | 122 | eqeq2d 2749 |
. . . 4
⊢ (𝑓 = (𝑌filGen(fi‘(𝐵 ∪ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))))) → (𝐿 = ((𝑋 FilMap 𝐹)‘𝑓) ↔ 𝐿 = ((𝑋 FilMap 𝐹)‘(𝑌filGen(fi‘(𝐵 ∪ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)))))))) |
124 | 121, 123 | anbi12d 630 |
. . 3
⊢ (𝑓 = (𝑌filGen(fi‘(𝐵 ∪ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))))) → ((𝐵 ⊆ 𝑓 ∧ 𝐿 = ((𝑋 FilMap 𝐹)‘𝑓)) ↔ (𝐵 ⊆ (𝑌filGen(fi‘(𝐵 ∪ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))))) ∧ 𝐿 = ((𝑋 FilMap 𝐹)‘(𝑌filGen(fi‘(𝐵 ∪ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))))))))) |
125 | 124 | rspcev 3552 |
. 2
⊢ (((𝑌filGen(fi‘(𝐵 ∪ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))))) ∈ (Fil‘𝑌) ∧ (𝐵 ⊆ (𝑌filGen(fi‘(𝐵 ∪ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))))) ∧ 𝐿 = ((𝑋 FilMap 𝐹)‘(𝑌filGen(fi‘(𝐵 ∪ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)))))))) → ∃𝑓 ∈ (Fil‘𝑌)(𝐵 ⊆ 𝑓 ∧ 𝐿 = ((𝑋 FilMap 𝐹)‘𝑓))) |
126 | 103, 111,
120, 125 | syl12anc 833 |
1
⊢ (𝜑 → ∃𝑓 ∈ (Fil‘𝑌)(𝐵 ⊆ 𝑓 ∧ 𝐿 = ((𝑋 FilMap 𝐹)‘𝑓))) |