| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0oval | Structured version Visualization version GIF version | ||
| Description: Value of the zero operator. (Contributed by NM, 28-Nov-2007.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| 0oval.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
| 0oval.6 | ⊢ 𝑍 = (0vec‘𝑊) |
| 0oval.0 | ⊢ 𝑂 = (𝑈 0op 𝑊) |
| Ref | Expression |
|---|---|
| 0oval | ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (𝑂‘𝐴) = 𝑍) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0oval.1 | . . . . 5 ⊢ 𝑋 = (BaseSet‘𝑈) | |
| 2 | 0oval.6 | . . . . 5 ⊢ 𝑍 = (0vec‘𝑊) | |
| 3 | 0oval.0 | . . . . 5 ⊢ 𝑂 = (𝑈 0op 𝑊) | |
| 4 | 1, 2, 3 | 0ofval 30767 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → 𝑂 = (𝑋 × {𝑍})) |
| 5 | 4 | fveq1d 6824 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → (𝑂‘𝐴) = ((𝑋 × {𝑍})‘𝐴)) |
| 6 | 5 | 3adant3 1132 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (𝑂‘𝐴) = ((𝑋 × {𝑍})‘𝐴)) |
| 7 | 2 | fvexi 6836 | . . . 4 ⊢ 𝑍 ∈ V |
| 8 | 7 | fvconst2 7138 | . . 3 ⊢ (𝐴 ∈ 𝑋 → ((𝑋 × {𝑍})‘𝐴) = 𝑍) |
| 9 | 8 | 3ad2ant3 1135 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → ((𝑋 × {𝑍})‘𝐴) = 𝑍) |
| 10 | 6, 9 | eqtrd 2766 | 1 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (𝑂‘𝐴) = 𝑍) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 {csn 4573 × cxp 5612 ‘cfv 6481 (class class class)co 7346 NrmCVeccnv 30564 BaseSetcba 30566 0veccn0v 30568 0op c0o 30723 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-0o 30727 |
| This theorem is referenced by: 0lno 30770 nmoo0 30771 nmlno0lem 30773 |
| Copyright terms: Public domain | W3C validator |