MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0oval Structured version   Visualization version   GIF version

Theorem 0oval 29051
Description: Value of the zero operator. (Contributed by NM, 28-Nov-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
0oval.1 𝑋 = (BaseSet‘𝑈)
0oval.6 𝑍 = (0vec𝑊)
0oval.0 𝑂 = (𝑈 0op 𝑊)
Assertion
Ref Expression
0oval ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝐴𝑋) → (𝑂𝐴) = 𝑍)

Proof of Theorem 0oval
StepHypRef Expression
1 0oval.1 . . . . 5 𝑋 = (BaseSet‘𝑈)
2 0oval.6 . . . . 5 𝑍 = (0vec𝑊)
3 0oval.0 . . . . 5 𝑂 = (𝑈 0op 𝑊)
41, 2, 30ofval 29050 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → 𝑂 = (𝑋 × {𝑍}))
54fveq1d 6758 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → (𝑂𝐴) = ((𝑋 × {𝑍})‘𝐴))
653adant3 1130 . 2 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝐴𝑋) → (𝑂𝐴) = ((𝑋 × {𝑍})‘𝐴))
72fvexi 6770 . . . 4 𝑍 ∈ V
87fvconst2 7061 . . 3 (𝐴𝑋 → ((𝑋 × {𝑍})‘𝐴) = 𝑍)
983ad2ant3 1133 . 2 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝐴𝑋) → ((𝑋 × {𝑍})‘𝐴) = 𝑍)
106, 9eqtrd 2778 1 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝐴𝑋) → (𝑂𝐴) = 𝑍)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  {csn 4558   × cxp 5578  cfv 6418  (class class class)co 7255  NrmCVeccnv 28847  BaseSetcba 28849  0veccn0v 28851   0op c0o 29006
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-0o 29010
This theorem is referenced by:  0lno  29053  nmoo0  29054  nmlno0lem  29056
  Copyright terms: Public domain W3C validator