MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0oval Structured version   Visualization version   GIF version

Theorem 0oval 30774
Description: Value of the zero operator. (Contributed by NM, 28-Nov-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
0oval.1 𝑋 = (BaseSet‘𝑈)
0oval.6 𝑍 = (0vec𝑊)
0oval.0 𝑂 = (𝑈 0op 𝑊)
Assertion
Ref Expression
0oval ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝐴𝑋) → (𝑂𝐴) = 𝑍)

Proof of Theorem 0oval
StepHypRef Expression
1 0oval.1 . . . . 5 𝑋 = (BaseSet‘𝑈)
2 0oval.6 . . . . 5 𝑍 = (0vec𝑊)
3 0oval.0 . . . . 5 𝑂 = (𝑈 0op 𝑊)
41, 2, 30ofval 30773 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → 𝑂 = (𝑋 × {𝑍}))
54fveq1d 6883 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → (𝑂𝐴) = ((𝑋 × {𝑍})‘𝐴))
653adant3 1132 . 2 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝐴𝑋) → (𝑂𝐴) = ((𝑋 × {𝑍})‘𝐴))
72fvexi 6895 . . . 4 𝑍 ∈ V
87fvconst2 7201 . . 3 (𝐴𝑋 → ((𝑋 × {𝑍})‘𝐴) = 𝑍)
983ad2ant3 1135 . 2 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝐴𝑋) → ((𝑋 × {𝑍})‘𝐴) = 𝑍)
106, 9eqtrd 2771 1 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝐴𝑋) → (𝑂𝐴) = 𝑍)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  {csn 4606   × cxp 5657  cfv 6536  (class class class)co 7410  NrmCVeccnv 30570  BaseSetcba 30572  0veccn0v 30574   0op c0o 30729
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-sbc 3771  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-fv 6544  df-ov 7413  df-oprab 7414  df-mpo 7415  df-0o 30733
This theorem is referenced by:  0lno  30776  nmoo0  30777  nmlno0lem  30779
  Copyright terms: Public domain W3C validator