MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0oval Structured version   Visualization version   GIF version

Theorem 0oval 30767
Description: Value of the zero operator. (Contributed by NM, 28-Nov-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
0oval.1 𝑋 = (BaseSet‘𝑈)
0oval.6 𝑍 = (0vec𝑊)
0oval.0 𝑂 = (𝑈 0op 𝑊)
Assertion
Ref Expression
0oval ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝐴𝑋) → (𝑂𝐴) = 𝑍)

Proof of Theorem 0oval
StepHypRef Expression
1 0oval.1 . . . . 5 𝑋 = (BaseSet‘𝑈)
2 0oval.6 . . . . 5 𝑍 = (0vec𝑊)
3 0oval.0 . . . . 5 𝑂 = (𝑈 0op 𝑊)
41, 2, 30ofval 30766 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → 𝑂 = (𝑋 × {𝑍}))
54fveq1d 6842 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → (𝑂𝐴) = ((𝑋 × {𝑍})‘𝐴))
653adant3 1132 . 2 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝐴𝑋) → (𝑂𝐴) = ((𝑋 × {𝑍})‘𝐴))
72fvexi 6854 . . . 4 𝑍 ∈ V
87fvconst2 7160 . . 3 (𝐴𝑋 → ((𝑋 × {𝑍})‘𝐴) = 𝑍)
983ad2ant3 1135 . 2 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝐴𝑋) → ((𝑋 × {𝑍})‘𝐴) = 𝑍)
106, 9eqtrd 2764 1 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝐴𝑋) → (𝑂𝐴) = 𝑍)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  {csn 4585   × cxp 5629  cfv 6499  (class class class)co 7369  NrmCVeccnv 30563  BaseSetcba 30565  0veccn0v 30567   0op c0o 30722
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-sbc 3751  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-0o 30726
This theorem is referenced by:  0lno  30769  nmoo0  30770  nmlno0lem  30772
  Copyright terms: Public domain W3C validator