Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 0oval | Structured version Visualization version GIF version |
Description: Value of the zero operator. (Contributed by NM, 28-Nov-2007.) (New usage is discouraged.) |
Ref | Expression |
---|---|
0oval.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
0oval.6 | ⊢ 𝑍 = (0vec‘𝑊) |
0oval.0 | ⊢ 𝑂 = (𝑈 0op 𝑊) |
Ref | Expression |
---|---|
0oval | ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (𝑂‘𝐴) = 𝑍) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0oval.1 | . . . . 5 ⊢ 𝑋 = (BaseSet‘𝑈) | |
2 | 0oval.6 | . . . . 5 ⊢ 𝑍 = (0vec‘𝑊) | |
3 | 0oval.0 | . . . . 5 ⊢ 𝑂 = (𝑈 0op 𝑊) | |
4 | 1, 2, 3 | 0ofval 29149 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → 𝑂 = (𝑋 × {𝑍})) |
5 | 4 | fveq1d 6776 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → (𝑂‘𝐴) = ((𝑋 × {𝑍})‘𝐴)) |
6 | 5 | 3adant3 1131 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (𝑂‘𝐴) = ((𝑋 × {𝑍})‘𝐴)) |
7 | 2 | fvexi 6788 | . . . 4 ⊢ 𝑍 ∈ V |
8 | 7 | fvconst2 7079 | . . 3 ⊢ (𝐴 ∈ 𝑋 → ((𝑋 × {𝑍})‘𝐴) = 𝑍) |
9 | 8 | 3ad2ant3 1134 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → ((𝑋 × {𝑍})‘𝐴) = 𝑍) |
10 | 6, 9 | eqtrd 2778 | 1 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (𝑂‘𝐴) = 𝑍) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 {csn 4561 × cxp 5587 ‘cfv 6433 (class class class)co 7275 NrmCVeccnv 28946 BaseSetcba 28948 0veccn0v 28950 0op c0o 29105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-0o 29109 |
This theorem is referenced by: 0lno 29152 nmoo0 29153 nmlno0lem 29155 |
Copyright terms: Public domain | W3C validator |