| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0oval | Structured version Visualization version GIF version | ||
| Description: Value of the zero operator. (Contributed by NM, 28-Nov-2007.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| 0oval.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
| 0oval.6 | ⊢ 𝑍 = (0vec‘𝑊) |
| 0oval.0 | ⊢ 𝑂 = (𝑈 0op 𝑊) |
| Ref | Expression |
|---|---|
| 0oval | ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (𝑂‘𝐴) = 𝑍) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0oval.1 | . . . . 5 ⊢ 𝑋 = (BaseSet‘𝑈) | |
| 2 | 0oval.6 | . . . . 5 ⊢ 𝑍 = (0vec‘𝑊) | |
| 3 | 0oval.0 | . . . . 5 ⊢ 𝑂 = (𝑈 0op 𝑊) | |
| 4 | 1, 2, 3 | 0ofval 30753 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → 𝑂 = (𝑋 × {𝑍})) |
| 5 | 4 | fveq1d 6889 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → (𝑂‘𝐴) = ((𝑋 × {𝑍})‘𝐴)) |
| 6 | 5 | 3adant3 1132 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (𝑂‘𝐴) = ((𝑋 × {𝑍})‘𝐴)) |
| 7 | 2 | fvexi 6901 | . . . 4 ⊢ 𝑍 ∈ V |
| 8 | 7 | fvconst2 7207 | . . 3 ⊢ (𝐴 ∈ 𝑋 → ((𝑋 × {𝑍})‘𝐴) = 𝑍) |
| 9 | 8 | 3ad2ant3 1135 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → ((𝑋 × {𝑍})‘𝐴) = 𝑍) |
| 10 | 6, 9 | eqtrd 2769 | 1 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (𝑂‘𝐴) = 𝑍) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 {csn 4608 × cxp 5665 ‘cfv 6542 (class class class)co 7414 NrmCVeccnv 30550 BaseSetcba 30552 0veccn0v 30554 0op c0o 30709 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5278 ax-nul 5288 ax-pow 5347 ax-pr 5414 ax-un 7738 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3421 df-v 3466 df-sbc 3773 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-br 5126 df-opab 5188 df-mpt 5208 df-id 5560 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-iota 6495 df-fun 6544 df-fn 6545 df-f 6546 df-fv 6550 df-ov 7417 df-oprab 7418 df-mpo 7419 df-0o 30713 |
| This theorem is referenced by: 0lno 30756 nmoo0 30757 nmlno0lem 30759 |
| Copyright terms: Public domain | W3C validator |