MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0oo Structured version   Visualization version   GIF version

Theorem 0oo 30767
Description: The zero operator is an operator. (Contributed by NM, 28-Nov-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
0oo.1 𝑋 = (BaseSet‘𝑈)
0oo.2 𝑌 = (BaseSet‘𝑊)
0oo.0 𝑍 = (𝑈 0op 𝑊)
Assertion
Ref Expression
0oo ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → 𝑍:𝑋𝑌)

Proof of Theorem 0oo
StepHypRef Expression
1 fvex 6835 . . . . 5 (0vec𝑊) ∈ V
21fconst 6709 . . . 4 (𝑋 × {(0vec𝑊)}):𝑋⟶{(0vec𝑊)}
3 0oo.2 . . . . . 6 𝑌 = (BaseSet‘𝑊)
4 eqid 2731 . . . . . 6 (0vec𝑊) = (0vec𝑊)
53, 4nvzcl 30612 . . . . 5 (𝑊 ∈ NrmCVec → (0vec𝑊) ∈ 𝑌)
65snssd 4761 . . . 4 (𝑊 ∈ NrmCVec → {(0vec𝑊)} ⊆ 𝑌)
7 fss 6667 . . . 4 (((𝑋 × {(0vec𝑊)}):𝑋⟶{(0vec𝑊)} ∧ {(0vec𝑊)} ⊆ 𝑌) → (𝑋 × {(0vec𝑊)}):𝑋𝑌)
82, 6, 7sylancr 587 . . 3 (𝑊 ∈ NrmCVec → (𝑋 × {(0vec𝑊)}):𝑋𝑌)
98adantl 481 . 2 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → (𝑋 × {(0vec𝑊)}):𝑋𝑌)
10 0oo.1 . . . 4 𝑋 = (BaseSet‘𝑈)
11 0oo.0 . . . 4 𝑍 = (𝑈 0op 𝑊)
1210, 4, 110ofval 30765 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → 𝑍 = (𝑋 × {(0vec𝑊)}))
1312feq1d 6633 . 2 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → (𝑍:𝑋𝑌 ↔ (𝑋 × {(0vec𝑊)}):𝑋𝑌))
149, 13mpbird 257 1 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → 𝑍:𝑋𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wss 3902  {csn 4576   × cxp 5614  wf 6477  cfv 6481  (class class class)co 7346  NrmCVeccnv 30562  BaseSetcba 30564  0veccn0v 30566   0op c0o 30721
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-grpo 30471  df-gid 30472  df-ablo 30523  df-vc 30537  df-nv 30570  df-va 30573  df-ba 30574  df-sm 30575  df-0v 30576  df-nmcv 30578  df-0o 30725
This theorem is referenced by:  0lno  30768  nmoo0  30769  nmlno0lem  30771
  Copyright terms: Public domain W3C validator