MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0oo Structured version   Visualization version   GIF version

Theorem 0oo 28664
Description: The zero operator is an operator. (Contributed by NM, 28-Nov-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
0oo.1 𝑋 = (BaseSet‘𝑈)
0oo.2 𝑌 = (BaseSet‘𝑊)
0oo.0 𝑍 = (𝑈 0op 𝑊)
Assertion
Ref Expression
0oo ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → 𝑍:𝑋𝑌)

Proof of Theorem 0oo
StepHypRef Expression
1 fvex 6672 . . . . 5 (0vec𝑊) ∈ V
21fconst 6551 . . . 4 (𝑋 × {(0vec𝑊)}):𝑋⟶{(0vec𝑊)}
3 0oo.2 . . . . . 6 𝑌 = (BaseSet‘𝑊)
4 eqid 2759 . . . . . 6 (0vec𝑊) = (0vec𝑊)
53, 4nvzcl 28509 . . . . 5 (𝑊 ∈ NrmCVec → (0vec𝑊) ∈ 𝑌)
65snssd 4700 . . . 4 (𝑊 ∈ NrmCVec → {(0vec𝑊)} ⊆ 𝑌)
7 fss 6513 . . . 4 (((𝑋 × {(0vec𝑊)}):𝑋⟶{(0vec𝑊)} ∧ {(0vec𝑊)} ⊆ 𝑌) → (𝑋 × {(0vec𝑊)}):𝑋𝑌)
82, 6, 7sylancr 591 . . 3 (𝑊 ∈ NrmCVec → (𝑋 × {(0vec𝑊)}):𝑋𝑌)
98adantl 486 . 2 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → (𝑋 × {(0vec𝑊)}):𝑋𝑌)
10 0oo.1 . . . 4 𝑋 = (BaseSet‘𝑈)
11 0oo.0 . . . 4 𝑍 = (𝑈 0op 𝑊)
1210, 4, 110ofval 28662 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → 𝑍 = (𝑋 × {(0vec𝑊)}))
1312feq1d 6484 . 2 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → (𝑍:𝑋𝑌 ↔ (𝑋 × {(0vec𝑊)}):𝑋𝑌))
149, 13mpbird 260 1 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → 𝑍:𝑋𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 400   = wceq 1539  wcel 2112  wss 3859  {csn 4523   × cxp 5523  wf 6332  cfv 6336  (class class class)co 7151  NrmCVeccnv 28459  BaseSetcba 28461  0veccn0v 28463   0op c0o 28618
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5235  ax-pr 5299  ax-un 7460
This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ne 2953  df-ral 3076  df-rex 3077  df-reu 3078  df-rab 3080  df-v 3412  df-sbc 3698  df-csb 3807  df-dif 3862  df-un 3864  df-in 3866  df-ss 3876  df-nul 4227  df-if 4422  df-pw 4497  df-sn 4524  df-pr 4526  df-op 4530  df-uni 4800  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-id 5431  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-iota 6295  df-fun 6338  df-fn 6339  df-f 6340  df-f1 6341  df-fo 6342  df-f1o 6343  df-fv 6344  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-1st 7694  df-2nd 7695  df-grpo 28368  df-gid 28369  df-ablo 28420  df-vc 28434  df-nv 28467  df-va 28470  df-ba 28471  df-sm 28472  df-0v 28473  df-nmcv 28475  df-0o 28622
This theorem is referenced by:  0lno  28665  nmoo0  28666  nmlno0lem  28668
  Copyright terms: Public domain W3C validator