| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0oo | Structured version Visualization version GIF version | ||
| Description: The zero operator is an operator. (Contributed by NM, 28-Nov-2007.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| 0oo.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
| 0oo.2 | ⊢ 𝑌 = (BaseSet‘𝑊) |
| 0oo.0 | ⊢ 𝑍 = (𝑈 0op 𝑊) |
| Ref | Expression |
|---|---|
| 0oo | ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → 𝑍:𝑋⟶𝑌) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvex 6839 | . . . . 5 ⊢ (0vec‘𝑊) ∈ V | |
| 2 | 1 | fconst 6714 | . . . 4 ⊢ (𝑋 × {(0vec‘𝑊)}):𝑋⟶{(0vec‘𝑊)} |
| 3 | 0oo.2 | . . . . . 6 ⊢ 𝑌 = (BaseSet‘𝑊) | |
| 4 | eqid 2729 | . . . . . 6 ⊢ (0vec‘𝑊) = (0vec‘𝑊) | |
| 5 | 3, 4 | nvzcl 30596 | . . . . 5 ⊢ (𝑊 ∈ NrmCVec → (0vec‘𝑊) ∈ 𝑌) |
| 6 | 5 | snssd 4763 | . . . 4 ⊢ (𝑊 ∈ NrmCVec → {(0vec‘𝑊)} ⊆ 𝑌) |
| 7 | fss 6672 | . . . 4 ⊢ (((𝑋 × {(0vec‘𝑊)}):𝑋⟶{(0vec‘𝑊)} ∧ {(0vec‘𝑊)} ⊆ 𝑌) → (𝑋 × {(0vec‘𝑊)}):𝑋⟶𝑌) | |
| 8 | 2, 6, 7 | sylancr 587 | . . 3 ⊢ (𝑊 ∈ NrmCVec → (𝑋 × {(0vec‘𝑊)}):𝑋⟶𝑌) |
| 9 | 8 | adantl 481 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → (𝑋 × {(0vec‘𝑊)}):𝑋⟶𝑌) |
| 10 | 0oo.1 | . . . 4 ⊢ 𝑋 = (BaseSet‘𝑈) | |
| 11 | 0oo.0 | . . . 4 ⊢ 𝑍 = (𝑈 0op 𝑊) | |
| 12 | 10, 4, 11 | 0ofval 30749 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → 𝑍 = (𝑋 × {(0vec‘𝑊)})) |
| 13 | 12 | feq1d 6638 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → (𝑍:𝑋⟶𝑌 ↔ (𝑋 × {(0vec‘𝑊)}):𝑋⟶𝑌)) |
| 14 | 9, 13 | mpbird 257 | 1 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → 𝑍:𝑋⟶𝑌) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ⊆ wss 3905 {csn 4579 × cxp 5621 ⟶wf 6482 ‘cfv 6486 (class class class)co 7353 NrmCVeccnv 30546 BaseSetcba 30548 0veccn0v 30550 0op c0o 30705 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-1st 7931 df-2nd 7932 df-grpo 30455 df-gid 30456 df-ablo 30507 df-vc 30521 df-nv 30554 df-va 30557 df-ba 30558 df-sm 30559 df-0v 30560 df-nmcv 30562 df-0o 30709 |
| This theorem is referenced by: 0lno 30752 nmoo0 30753 nmlno0lem 30755 |
| Copyright terms: Public domain | W3C validator |