![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0oo | Structured version Visualization version GIF version |
Description: The zero operator is an operator. (Contributed by NM, 28-Nov-2007.) (New usage is discouraged.) |
Ref | Expression |
---|---|
0oo.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
0oo.2 | ⊢ 𝑌 = (BaseSet‘𝑊) |
0oo.0 | ⊢ 𝑍 = (𝑈 0op 𝑊) |
Ref | Expression |
---|---|
0oo | ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → 𝑍:𝑋⟶𝑌) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvex 6423 | . . . . 5 ⊢ (0vec‘𝑊) ∈ V | |
2 | 1 | fconst 6305 | . . . 4 ⊢ (𝑋 × {(0vec‘𝑊)}):𝑋⟶{(0vec‘𝑊)} |
3 | 0oo.2 | . . . . . 6 ⊢ 𝑌 = (BaseSet‘𝑊) | |
4 | eqid 2798 | . . . . . 6 ⊢ (0vec‘𝑊) = (0vec‘𝑊) | |
5 | 3, 4 | nvzcl 28007 | . . . . 5 ⊢ (𝑊 ∈ NrmCVec → (0vec‘𝑊) ∈ 𝑌) |
6 | 5 | snssd 4527 | . . . 4 ⊢ (𝑊 ∈ NrmCVec → {(0vec‘𝑊)} ⊆ 𝑌) |
7 | fss 6268 | . . . 4 ⊢ (((𝑋 × {(0vec‘𝑊)}):𝑋⟶{(0vec‘𝑊)} ∧ {(0vec‘𝑊)} ⊆ 𝑌) → (𝑋 × {(0vec‘𝑊)}):𝑋⟶𝑌) | |
8 | 2, 6, 7 | sylancr 582 | . . 3 ⊢ (𝑊 ∈ NrmCVec → (𝑋 × {(0vec‘𝑊)}):𝑋⟶𝑌) |
9 | 8 | adantl 474 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → (𝑋 × {(0vec‘𝑊)}):𝑋⟶𝑌) |
10 | 0oo.1 | . . . 4 ⊢ 𝑋 = (BaseSet‘𝑈) | |
11 | 0oo.0 | . . . 4 ⊢ 𝑍 = (𝑈 0op 𝑊) | |
12 | 10, 4, 11 | 0ofval 28160 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → 𝑍 = (𝑋 × {(0vec‘𝑊)})) |
13 | 12 | feq1d 6240 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → (𝑍:𝑋⟶𝑌 ↔ (𝑋 × {(0vec‘𝑊)}):𝑋⟶𝑌)) |
14 | 9, 13 | mpbird 249 | 1 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → 𝑍:𝑋⟶𝑌) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 385 = wceq 1653 ∈ wcel 2157 ⊆ wss 3768 {csn 4367 × cxp 5309 ⟶wf 6096 ‘cfv 6100 (class class class)co 6877 NrmCVeccnv 27957 BaseSetcba 27959 0veccn0v 27961 0op c0o 28116 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2776 ax-rep 4963 ax-sep 4974 ax-nul 4982 ax-pow 5034 ax-pr 5096 ax-un 7182 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2785 df-cleq 2791 df-clel 2794 df-nfc 2929 df-ne 2971 df-ral 3093 df-rex 3094 df-reu 3095 df-rab 3097 df-v 3386 df-sbc 3633 df-csb 3728 df-dif 3771 df-un 3773 df-in 3775 df-ss 3782 df-nul 4115 df-if 4277 df-pw 4350 df-sn 4368 df-pr 4370 df-op 4374 df-uni 4628 df-iun 4711 df-br 4843 df-opab 4905 df-mpt 4922 df-id 5219 df-xp 5317 df-rel 5318 df-cnv 5319 df-co 5320 df-dm 5321 df-rn 5322 df-res 5323 df-ima 5324 df-iota 6063 df-fun 6102 df-fn 6103 df-f 6104 df-f1 6105 df-fo 6106 df-f1o 6107 df-fv 6108 df-riota 6838 df-ov 6880 df-oprab 6881 df-mpt2 6882 df-1st 7400 df-2nd 7401 df-grpo 27866 df-gid 27867 df-ablo 27918 df-vc 27932 df-nv 27965 df-va 27968 df-ba 27969 df-sm 27970 df-0v 27971 df-nmcv 27973 df-0o 28120 |
This theorem is referenced by: 0lno 28163 nmoo0 28164 nmlno0lem 28166 |
Copyright terms: Public domain | W3C validator |