| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0oo | Structured version Visualization version GIF version | ||
| Description: The zero operator is an operator. (Contributed by NM, 28-Nov-2007.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| 0oo.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
| 0oo.2 | ⊢ 𝑌 = (BaseSet‘𝑊) |
| 0oo.0 | ⊢ 𝑍 = (𝑈 0op 𝑊) |
| Ref | Expression |
|---|---|
| 0oo | ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → 𝑍:𝑋⟶𝑌) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvex 6844 | . . . . 5 ⊢ (0vec‘𝑊) ∈ V | |
| 2 | 1 | fconst 6717 | . . . 4 ⊢ (𝑋 × {(0vec‘𝑊)}):𝑋⟶{(0vec‘𝑊)} |
| 3 | 0oo.2 | . . . . . 6 ⊢ 𝑌 = (BaseSet‘𝑊) | |
| 4 | eqid 2733 | . . . . . 6 ⊢ (0vec‘𝑊) = (0vec‘𝑊) | |
| 5 | 3, 4 | nvzcl 30635 | . . . . 5 ⊢ (𝑊 ∈ NrmCVec → (0vec‘𝑊) ∈ 𝑌) |
| 6 | 5 | snssd 4762 | . . . 4 ⊢ (𝑊 ∈ NrmCVec → {(0vec‘𝑊)} ⊆ 𝑌) |
| 7 | fss 6675 | . . . 4 ⊢ (((𝑋 × {(0vec‘𝑊)}):𝑋⟶{(0vec‘𝑊)} ∧ {(0vec‘𝑊)} ⊆ 𝑌) → (𝑋 × {(0vec‘𝑊)}):𝑋⟶𝑌) | |
| 8 | 2, 6, 7 | sylancr 587 | . . 3 ⊢ (𝑊 ∈ NrmCVec → (𝑋 × {(0vec‘𝑊)}):𝑋⟶𝑌) |
| 9 | 8 | adantl 481 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → (𝑋 × {(0vec‘𝑊)}):𝑋⟶𝑌) |
| 10 | 0oo.1 | . . . 4 ⊢ 𝑋 = (BaseSet‘𝑈) | |
| 11 | 0oo.0 | . . . 4 ⊢ 𝑍 = (𝑈 0op 𝑊) | |
| 12 | 10, 4, 11 | 0ofval 30788 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → 𝑍 = (𝑋 × {(0vec‘𝑊)})) |
| 13 | 12 | feq1d 6641 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → (𝑍:𝑋⟶𝑌 ↔ (𝑋 × {(0vec‘𝑊)}):𝑋⟶𝑌)) |
| 14 | 9, 13 | mpbird 257 | 1 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → 𝑍:𝑋⟶𝑌) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ⊆ wss 3898 {csn 4577 × cxp 5619 ⟶wf 6485 ‘cfv 6489 (class class class)co 7355 NrmCVeccnv 30585 BaseSetcba 30587 0veccn0v 30589 0op c0o 30744 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-1st 7930 df-2nd 7931 df-grpo 30494 df-gid 30495 df-ablo 30546 df-vc 30560 df-nv 30593 df-va 30596 df-ba 30597 df-sm 30598 df-0v 30599 df-nmcv 30601 df-0o 30748 |
| This theorem is referenced by: 0lno 30791 nmoo0 30792 nmlno0lem 30794 |
| Copyright terms: Public domain | W3C validator |