Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 0oo | Structured version Visualization version GIF version |
Description: The zero operator is an operator. (Contributed by NM, 28-Nov-2007.) (New usage is discouraged.) |
Ref | Expression |
---|---|
0oo.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
0oo.2 | ⊢ 𝑌 = (BaseSet‘𝑊) |
0oo.0 | ⊢ 𝑍 = (𝑈 0op 𝑊) |
Ref | Expression |
---|---|
0oo | ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → 𝑍:𝑋⟶𝑌) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvex 6787 | . . . . 5 ⊢ (0vec‘𝑊) ∈ V | |
2 | 1 | fconst 6660 | . . . 4 ⊢ (𝑋 × {(0vec‘𝑊)}):𝑋⟶{(0vec‘𝑊)} |
3 | 0oo.2 | . . . . . 6 ⊢ 𝑌 = (BaseSet‘𝑊) | |
4 | eqid 2738 | . . . . . 6 ⊢ (0vec‘𝑊) = (0vec‘𝑊) | |
5 | 3, 4 | nvzcl 28996 | . . . . 5 ⊢ (𝑊 ∈ NrmCVec → (0vec‘𝑊) ∈ 𝑌) |
6 | 5 | snssd 4742 | . . . 4 ⊢ (𝑊 ∈ NrmCVec → {(0vec‘𝑊)} ⊆ 𝑌) |
7 | fss 6617 | . . . 4 ⊢ (((𝑋 × {(0vec‘𝑊)}):𝑋⟶{(0vec‘𝑊)} ∧ {(0vec‘𝑊)} ⊆ 𝑌) → (𝑋 × {(0vec‘𝑊)}):𝑋⟶𝑌) | |
8 | 2, 6, 7 | sylancr 587 | . . 3 ⊢ (𝑊 ∈ NrmCVec → (𝑋 × {(0vec‘𝑊)}):𝑋⟶𝑌) |
9 | 8 | adantl 482 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → (𝑋 × {(0vec‘𝑊)}):𝑋⟶𝑌) |
10 | 0oo.1 | . . . 4 ⊢ 𝑋 = (BaseSet‘𝑈) | |
11 | 0oo.0 | . . . 4 ⊢ 𝑍 = (𝑈 0op 𝑊) | |
12 | 10, 4, 11 | 0ofval 29149 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → 𝑍 = (𝑋 × {(0vec‘𝑊)})) |
13 | 12 | feq1d 6585 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → (𝑍:𝑋⟶𝑌 ↔ (𝑋 × {(0vec‘𝑊)}):𝑋⟶𝑌)) |
14 | 9, 13 | mpbird 256 | 1 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → 𝑍:𝑋⟶𝑌) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ⊆ wss 3887 {csn 4561 × cxp 5587 ⟶wf 6429 ‘cfv 6433 (class class class)co 7275 NrmCVeccnv 28946 BaseSetcba 28948 0veccn0v 28950 0op c0o 29105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-1st 7831 df-2nd 7832 df-grpo 28855 df-gid 28856 df-ablo 28907 df-vc 28921 df-nv 28954 df-va 28957 df-ba 28958 df-sm 28959 df-0v 28960 df-nmcv 28962 df-0o 29109 |
This theorem is referenced by: 0lno 29152 nmoo0 29153 nmlno0lem 29155 |
Copyright terms: Public domain | W3C validator |