![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0oo | Structured version Visualization version GIF version |
Description: The zero operator is an operator. (Contributed by NM, 28-Nov-2007.) (New usage is discouraged.) |
Ref | Expression |
---|---|
0oo.1 | β’ π = (BaseSetβπ) |
0oo.2 | β’ π = (BaseSetβπ) |
0oo.0 | β’ π = (π 0op π) |
Ref | Expression |
---|---|
0oo | β’ ((π β NrmCVec β§ π β NrmCVec) β π:πβΆπ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvex 6904 | . . . . 5 β’ (0vecβπ) β V | |
2 | 1 | fconst 6777 | . . . 4 β’ (π Γ {(0vecβπ)}):πβΆ{(0vecβπ)} |
3 | 0oo.2 | . . . . . 6 β’ π = (BaseSetβπ) | |
4 | eqid 2732 | . . . . . 6 β’ (0vecβπ) = (0vecβπ) | |
5 | 3, 4 | nvzcl 29925 | . . . . 5 β’ (π β NrmCVec β (0vecβπ) β π) |
6 | 5 | snssd 4812 | . . . 4 β’ (π β NrmCVec β {(0vecβπ)} β π) |
7 | fss 6734 | . . . 4 β’ (((π Γ {(0vecβπ)}):πβΆ{(0vecβπ)} β§ {(0vecβπ)} β π) β (π Γ {(0vecβπ)}):πβΆπ) | |
8 | 2, 6, 7 | sylancr 587 | . . 3 β’ (π β NrmCVec β (π Γ {(0vecβπ)}):πβΆπ) |
9 | 8 | adantl 482 | . 2 β’ ((π β NrmCVec β§ π β NrmCVec) β (π Γ {(0vecβπ)}):πβΆπ) |
10 | 0oo.1 | . . . 4 β’ π = (BaseSetβπ) | |
11 | 0oo.0 | . . . 4 β’ π = (π 0op π) | |
12 | 10, 4, 11 | 0ofval 30078 | . . 3 β’ ((π β NrmCVec β§ π β NrmCVec) β π = (π Γ {(0vecβπ)})) |
13 | 12 | feq1d 6702 | . 2 β’ ((π β NrmCVec β§ π β NrmCVec) β (π:πβΆπ β (π Γ {(0vecβπ)}):πβΆπ)) |
14 | 9, 13 | mpbird 256 | 1 β’ ((π β NrmCVec β§ π β NrmCVec) β π:πβΆπ) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 = wceq 1541 β wcel 2106 β wss 3948 {csn 4628 Γ cxp 5674 βΆwf 6539 βcfv 6543 (class class class)co 7411 NrmCVeccnv 29875 BaseSetcba 29877 0veccn0v 29879 0op c0o 30034 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-1st 7977 df-2nd 7978 df-grpo 29784 df-gid 29785 df-ablo 29836 df-vc 29850 df-nv 29883 df-va 29886 df-ba 29887 df-sm 29888 df-0v 29889 df-nmcv 29891 df-0o 30038 |
This theorem is referenced by: 0lno 30081 nmoo0 30082 nmlno0lem 30084 |
Copyright terms: Public domain | W3C validator |