| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0oo | Structured version Visualization version GIF version | ||
| Description: The zero operator is an operator. (Contributed by NM, 28-Nov-2007.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| 0oo.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
| 0oo.2 | ⊢ 𝑌 = (BaseSet‘𝑊) |
| 0oo.0 | ⊢ 𝑍 = (𝑈 0op 𝑊) |
| Ref | Expression |
|---|---|
| 0oo | ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → 𝑍:𝑋⟶𝑌) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvex 6918 | . . . . 5 ⊢ (0vec‘𝑊) ∈ V | |
| 2 | 1 | fconst 6793 | . . . 4 ⊢ (𝑋 × {(0vec‘𝑊)}):𝑋⟶{(0vec‘𝑊)} |
| 3 | 0oo.2 | . . . . . 6 ⊢ 𝑌 = (BaseSet‘𝑊) | |
| 4 | eqid 2736 | . . . . . 6 ⊢ (0vec‘𝑊) = (0vec‘𝑊) | |
| 5 | 3, 4 | nvzcl 30654 | . . . . 5 ⊢ (𝑊 ∈ NrmCVec → (0vec‘𝑊) ∈ 𝑌) |
| 6 | 5 | snssd 4808 | . . . 4 ⊢ (𝑊 ∈ NrmCVec → {(0vec‘𝑊)} ⊆ 𝑌) |
| 7 | fss 6751 | . . . 4 ⊢ (((𝑋 × {(0vec‘𝑊)}):𝑋⟶{(0vec‘𝑊)} ∧ {(0vec‘𝑊)} ⊆ 𝑌) → (𝑋 × {(0vec‘𝑊)}):𝑋⟶𝑌) | |
| 8 | 2, 6, 7 | sylancr 587 | . . 3 ⊢ (𝑊 ∈ NrmCVec → (𝑋 × {(0vec‘𝑊)}):𝑋⟶𝑌) |
| 9 | 8 | adantl 481 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → (𝑋 × {(0vec‘𝑊)}):𝑋⟶𝑌) |
| 10 | 0oo.1 | . . . 4 ⊢ 𝑋 = (BaseSet‘𝑈) | |
| 11 | 0oo.0 | . . . 4 ⊢ 𝑍 = (𝑈 0op 𝑊) | |
| 12 | 10, 4, 11 | 0ofval 30807 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → 𝑍 = (𝑋 × {(0vec‘𝑊)})) |
| 13 | 12 | feq1d 6719 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → (𝑍:𝑋⟶𝑌 ↔ (𝑋 × {(0vec‘𝑊)}):𝑋⟶𝑌)) |
| 14 | 9, 13 | mpbird 257 | 1 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → 𝑍:𝑋⟶𝑌) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ⊆ wss 3950 {csn 4625 × cxp 5682 ⟶wf 6556 ‘cfv 6560 (class class class)co 7432 NrmCVeccnv 30604 BaseSetcba 30606 0veccn0v 30608 0op c0o 30763 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5278 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-id 5577 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-riota 7389 df-ov 7435 df-oprab 7436 df-mpo 7437 df-1st 8015 df-2nd 8016 df-grpo 30513 df-gid 30514 df-ablo 30565 df-vc 30579 df-nv 30612 df-va 30615 df-ba 30616 df-sm 30617 df-0v 30618 df-nmcv 30620 df-0o 30767 |
| This theorem is referenced by: 0lno 30810 nmoo0 30811 nmlno0lem 30813 |
| Copyright terms: Public domain | W3C validator |