| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0oo | Structured version Visualization version GIF version | ||
| Description: The zero operator is an operator. (Contributed by NM, 28-Nov-2007.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| 0oo.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
| 0oo.2 | ⊢ 𝑌 = (BaseSet‘𝑊) |
| 0oo.0 | ⊢ 𝑍 = (𝑈 0op 𝑊) |
| Ref | Expression |
|---|---|
| 0oo | ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → 𝑍:𝑋⟶𝑌) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvex 6894 | . . . . 5 ⊢ (0vec‘𝑊) ∈ V | |
| 2 | 1 | fconst 6769 | . . . 4 ⊢ (𝑋 × {(0vec‘𝑊)}):𝑋⟶{(0vec‘𝑊)} |
| 3 | 0oo.2 | . . . . . 6 ⊢ 𝑌 = (BaseSet‘𝑊) | |
| 4 | eqid 2736 | . . . . . 6 ⊢ (0vec‘𝑊) = (0vec‘𝑊) | |
| 5 | 3, 4 | nvzcl 30620 | . . . . 5 ⊢ (𝑊 ∈ NrmCVec → (0vec‘𝑊) ∈ 𝑌) |
| 6 | 5 | snssd 4790 | . . . 4 ⊢ (𝑊 ∈ NrmCVec → {(0vec‘𝑊)} ⊆ 𝑌) |
| 7 | fss 6727 | . . . 4 ⊢ (((𝑋 × {(0vec‘𝑊)}):𝑋⟶{(0vec‘𝑊)} ∧ {(0vec‘𝑊)} ⊆ 𝑌) → (𝑋 × {(0vec‘𝑊)}):𝑋⟶𝑌) | |
| 8 | 2, 6, 7 | sylancr 587 | . . 3 ⊢ (𝑊 ∈ NrmCVec → (𝑋 × {(0vec‘𝑊)}):𝑋⟶𝑌) |
| 9 | 8 | adantl 481 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → (𝑋 × {(0vec‘𝑊)}):𝑋⟶𝑌) |
| 10 | 0oo.1 | . . . 4 ⊢ 𝑋 = (BaseSet‘𝑈) | |
| 11 | 0oo.0 | . . . 4 ⊢ 𝑍 = (𝑈 0op 𝑊) | |
| 12 | 10, 4, 11 | 0ofval 30773 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → 𝑍 = (𝑋 × {(0vec‘𝑊)})) |
| 13 | 12 | feq1d 6695 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → (𝑍:𝑋⟶𝑌 ↔ (𝑋 × {(0vec‘𝑊)}):𝑋⟶𝑌)) |
| 14 | 9, 13 | mpbird 257 | 1 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → 𝑍:𝑋⟶𝑌) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ⊆ wss 3931 {csn 4606 × cxp 5657 ⟶wf 6532 ‘cfv 6536 (class class class)co 7410 NrmCVeccnv 30570 BaseSetcba 30572 0veccn0v 30574 0op c0o 30729 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-1st 7993 df-2nd 7994 df-grpo 30479 df-gid 30480 df-ablo 30531 df-vc 30545 df-nv 30578 df-va 30581 df-ba 30582 df-sm 30583 df-0v 30584 df-nmcv 30586 df-0o 30733 |
| This theorem is referenced by: 0lno 30776 nmoo0 30777 nmlno0lem 30779 |
| Copyright terms: Public domain | W3C validator |