MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0lno Structured version   Visualization version   GIF version

Theorem 0lno 30726
Description: The zero operator is linear. (Contributed by NM, 28-Nov-2007.) (Revised by Mario Carneiro, 19-Nov-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
0lno.0 𝑍 = (𝑈 0op 𝑊)
0lno.7 𝐿 = (𝑈 LnOp 𝑊)
Assertion
Ref Expression
0lno ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → 𝑍𝐿)

Proof of Theorem 0lno
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2730 . . 3 (BaseSet‘𝑈) = (BaseSet‘𝑈)
2 eqid 2730 . . 3 (BaseSet‘𝑊) = (BaseSet‘𝑊)
3 0lno.0 . . 3 𝑍 = (𝑈 0op 𝑊)
41, 2, 30oo 30725 . 2 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → 𝑍:(BaseSet‘𝑈)⟶(BaseSet‘𝑊))
5 simplll 774 . . . . . 6 ((((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) ∧ 𝑥 ∈ ℂ) ∧ (𝑦 ∈ (BaseSet‘𝑈) ∧ 𝑧 ∈ (BaseSet‘𝑈))) → 𝑈 ∈ NrmCVec)
6 simpllr 775 . . . . . 6 ((((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) ∧ 𝑥 ∈ ℂ) ∧ (𝑦 ∈ (BaseSet‘𝑈) ∧ 𝑧 ∈ (BaseSet‘𝑈))) → 𝑊 ∈ NrmCVec)
7 simplr 768 . . . . . . . 8 ((((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) ∧ 𝑥 ∈ ℂ) ∧ (𝑦 ∈ (BaseSet‘𝑈) ∧ 𝑧 ∈ (BaseSet‘𝑈))) → 𝑥 ∈ ℂ)
8 simprl 770 . . . . . . . 8 ((((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) ∧ 𝑥 ∈ ℂ) ∧ (𝑦 ∈ (BaseSet‘𝑈) ∧ 𝑧 ∈ (BaseSet‘𝑈))) → 𝑦 ∈ (BaseSet‘𝑈))
9 eqid 2730 . . . . . . . . 9 ( ·𝑠OLD𝑈) = ( ·𝑠OLD𝑈)
101, 9nvscl 30562 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ (BaseSet‘𝑈)) → (𝑥( ·𝑠OLD𝑈)𝑦) ∈ (BaseSet‘𝑈))
115, 7, 8, 10syl3anc 1373 . . . . . . 7 ((((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) ∧ 𝑥 ∈ ℂ) ∧ (𝑦 ∈ (BaseSet‘𝑈) ∧ 𝑧 ∈ (BaseSet‘𝑈))) → (𝑥( ·𝑠OLD𝑈)𝑦) ∈ (BaseSet‘𝑈))
12 simprr 772 . . . . . . 7 ((((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) ∧ 𝑥 ∈ ℂ) ∧ (𝑦 ∈ (BaseSet‘𝑈) ∧ 𝑧 ∈ (BaseSet‘𝑈))) → 𝑧 ∈ (BaseSet‘𝑈))
13 eqid 2730 . . . . . . . 8 ( +𝑣𝑈) = ( +𝑣𝑈)
141, 13nvgcl 30556 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ (𝑥( ·𝑠OLD𝑈)𝑦) ∈ (BaseSet‘𝑈) ∧ 𝑧 ∈ (BaseSet‘𝑈)) → ((𝑥( ·𝑠OLD𝑈)𝑦)( +𝑣𝑈)𝑧) ∈ (BaseSet‘𝑈))
155, 11, 12, 14syl3anc 1373 . . . . . 6 ((((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) ∧ 𝑥 ∈ ℂ) ∧ (𝑦 ∈ (BaseSet‘𝑈) ∧ 𝑧 ∈ (BaseSet‘𝑈))) → ((𝑥( ·𝑠OLD𝑈)𝑦)( +𝑣𝑈)𝑧) ∈ (BaseSet‘𝑈))
16 eqid 2730 . . . . . . 7 (0vec𝑊) = (0vec𝑊)
171, 16, 30oval 30724 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ ((𝑥( ·𝑠OLD𝑈)𝑦)( +𝑣𝑈)𝑧) ∈ (BaseSet‘𝑈)) → (𝑍‘((𝑥( ·𝑠OLD𝑈)𝑦)( +𝑣𝑈)𝑧)) = (0vec𝑊))
185, 6, 15, 17syl3anc 1373 . . . . 5 ((((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) ∧ 𝑥 ∈ ℂ) ∧ (𝑦 ∈ (BaseSet‘𝑈) ∧ 𝑧 ∈ (BaseSet‘𝑈))) → (𝑍‘((𝑥( ·𝑠OLD𝑈)𝑦)( +𝑣𝑈)𝑧)) = (0vec𝑊))
191, 16, 30oval 30724 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑦 ∈ (BaseSet‘𝑈)) → (𝑍𝑦) = (0vec𝑊))
205, 6, 8, 19syl3anc 1373 . . . . . . . 8 ((((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) ∧ 𝑥 ∈ ℂ) ∧ (𝑦 ∈ (BaseSet‘𝑈) ∧ 𝑧 ∈ (BaseSet‘𝑈))) → (𝑍𝑦) = (0vec𝑊))
2120oveq2d 7406 . . . . . . 7 ((((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) ∧ 𝑥 ∈ ℂ) ∧ (𝑦 ∈ (BaseSet‘𝑈) ∧ 𝑧 ∈ (BaseSet‘𝑈))) → (𝑥( ·𝑠OLD𝑊)(𝑍𝑦)) = (𝑥( ·𝑠OLD𝑊)(0vec𝑊)))
221, 16, 30oval 30724 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑧 ∈ (BaseSet‘𝑈)) → (𝑍𝑧) = (0vec𝑊))
235, 6, 12, 22syl3anc 1373 . . . . . . 7 ((((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) ∧ 𝑥 ∈ ℂ) ∧ (𝑦 ∈ (BaseSet‘𝑈) ∧ 𝑧 ∈ (BaseSet‘𝑈))) → (𝑍𝑧) = (0vec𝑊))
2421, 23oveq12d 7408 . . . . . 6 ((((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) ∧ 𝑥 ∈ ℂ) ∧ (𝑦 ∈ (BaseSet‘𝑈) ∧ 𝑧 ∈ (BaseSet‘𝑈))) → ((𝑥( ·𝑠OLD𝑊)(𝑍𝑦))( +𝑣𝑊)(𝑍𝑧)) = ((𝑥( ·𝑠OLD𝑊)(0vec𝑊))( +𝑣𝑊)(0vec𝑊)))
25 eqid 2730 . . . . . . . . 9 ( ·𝑠OLD𝑊) = ( ·𝑠OLD𝑊)
2625, 16nvsz 30574 . . . . . . . 8 ((𝑊 ∈ NrmCVec ∧ 𝑥 ∈ ℂ) → (𝑥( ·𝑠OLD𝑊)(0vec𝑊)) = (0vec𝑊))
276, 7, 26syl2anc 584 . . . . . . 7 ((((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) ∧ 𝑥 ∈ ℂ) ∧ (𝑦 ∈ (BaseSet‘𝑈) ∧ 𝑧 ∈ (BaseSet‘𝑈))) → (𝑥( ·𝑠OLD𝑊)(0vec𝑊)) = (0vec𝑊))
2827oveq1d 7405 . . . . . 6 ((((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) ∧ 𝑥 ∈ ℂ) ∧ (𝑦 ∈ (BaseSet‘𝑈) ∧ 𝑧 ∈ (BaseSet‘𝑈))) → ((𝑥( ·𝑠OLD𝑊)(0vec𝑊))( +𝑣𝑊)(0vec𝑊)) = ((0vec𝑊)( +𝑣𝑊)(0vec𝑊)))
292, 16nvzcl 30570 . . . . . . 7 (𝑊 ∈ NrmCVec → (0vec𝑊) ∈ (BaseSet‘𝑊))
30 eqid 2730 . . . . . . . 8 ( +𝑣𝑊) = ( +𝑣𝑊)
312, 30, 16nv0rid 30571 . . . . . . 7 ((𝑊 ∈ NrmCVec ∧ (0vec𝑊) ∈ (BaseSet‘𝑊)) → ((0vec𝑊)( +𝑣𝑊)(0vec𝑊)) = (0vec𝑊))
326, 29, 31syl2anc2 585 . . . . . 6 ((((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) ∧ 𝑥 ∈ ℂ) ∧ (𝑦 ∈ (BaseSet‘𝑈) ∧ 𝑧 ∈ (BaseSet‘𝑈))) → ((0vec𝑊)( +𝑣𝑊)(0vec𝑊)) = (0vec𝑊))
3324, 28, 323eqtrd 2769 . . . . 5 ((((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) ∧ 𝑥 ∈ ℂ) ∧ (𝑦 ∈ (BaseSet‘𝑈) ∧ 𝑧 ∈ (BaseSet‘𝑈))) → ((𝑥( ·𝑠OLD𝑊)(𝑍𝑦))( +𝑣𝑊)(𝑍𝑧)) = (0vec𝑊))
3418, 33eqtr4d 2768 . . . 4 ((((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) ∧ 𝑥 ∈ ℂ) ∧ (𝑦 ∈ (BaseSet‘𝑈) ∧ 𝑧 ∈ (BaseSet‘𝑈))) → (𝑍‘((𝑥( ·𝑠OLD𝑈)𝑦)( +𝑣𝑈)𝑧)) = ((𝑥( ·𝑠OLD𝑊)(𝑍𝑦))( +𝑣𝑊)(𝑍𝑧)))
3534ralrimivva 3181 . . 3 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) ∧ 𝑥 ∈ ℂ) → ∀𝑦 ∈ (BaseSet‘𝑈)∀𝑧 ∈ (BaseSet‘𝑈)(𝑍‘((𝑥( ·𝑠OLD𝑈)𝑦)( +𝑣𝑈)𝑧)) = ((𝑥( ·𝑠OLD𝑊)(𝑍𝑦))( +𝑣𝑊)(𝑍𝑧)))
3635ralrimiva 3126 . 2 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → ∀𝑥 ∈ ℂ ∀𝑦 ∈ (BaseSet‘𝑈)∀𝑧 ∈ (BaseSet‘𝑈)(𝑍‘((𝑥( ·𝑠OLD𝑈)𝑦)( +𝑣𝑈)𝑧)) = ((𝑥( ·𝑠OLD𝑊)(𝑍𝑦))( +𝑣𝑊)(𝑍𝑧)))
37 0lno.7 . . 3 𝐿 = (𝑈 LnOp 𝑊)
381, 2, 13, 30, 9, 25, 37islno 30689 . 2 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → (𝑍𝐿 ↔ (𝑍:(BaseSet‘𝑈)⟶(BaseSet‘𝑊) ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ (BaseSet‘𝑈)∀𝑧 ∈ (BaseSet‘𝑈)(𝑍‘((𝑥( ·𝑠OLD𝑈)𝑦)( +𝑣𝑈)𝑧)) = ((𝑥( ·𝑠OLD𝑊)(𝑍𝑦))( +𝑣𝑊)(𝑍𝑧)))))
394, 36, 38mpbir2and 713 1 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → 𝑍𝐿)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3045  wf 6510  cfv 6514  (class class class)co 7390  cc 11073  NrmCVeccnv 30520   +𝑣 cpv 30521  BaseSetcba 30522   ·𝑠OLD cns 30523  0veccn0v 30524   LnOp clno 30676   0op c0o 30679
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-po 5549  df-so 5550  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-1st 7971  df-2nd 7972  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-ltxr 11220  df-grpo 30429  df-gid 30430  df-ginv 30431  df-ablo 30481  df-vc 30495  df-nv 30528  df-va 30531  df-ba 30532  df-sm 30533  df-0v 30534  df-nmcv 30536  df-lno 30680  df-0o 30683
This theorem is referenced by:  0blo  30728  nmlno0i  30730  blocn  30743
  Copyright terms: Public domain W3C validator