MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0lno Structured version   Visualization version   GIF version

Theorem 0lno 29152
Description: The zero operator is linear. (Contributed by NM, 28-Nov-2007.) (Revised by Mario Carneiro, 19-Nov-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
0lno.0 𝑍 = (𝑈 0op 𝑊)
0lno.7 𝐿 = (𝑈 LnOp 𝑊)
Assertion
Ref Expression
0lno ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → 𝑍𝐿)

Proof of Theorem 0lno
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2738 . . 3 (BaseSet‘𝑈) = (BaseSet‘𝑈)
2 eqid 2738 . . 3 (BaseSet‘𝑊) = (BaseSet‘𝑊)
3 0lno.0 . . 3 𝑍 = (𝑈 0op 𝑊)
41, 2, 30oo 29151 . 2 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → 𝑍:(BaseSet‘𝑈)⟶(BaseSet‘𝑊))
5 simplll 772 . . . . . 6 ((((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) ∧ 𝑥 ∈ ℂ) ∧ (𝑦 ∈ (BaseSet‘𝑈) ∧ 𝑧 ∈ (BaseSet‘𝑈))) → 𝑈 ∈ NrmCVec)
6 simpllr 773 . . . . . 6 ((((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) ∧ 𝑥 ∈ ℂ) ∧ (𝑦 ∈ (BaseSet‘𝑈) ∧ 𝑧 ∈ (BaseSet‘𝑈))) → 𝑊 ∈ NrmCVec)
7 simplr 766 . . . . . . . 8 ((((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) ∧ 𝑥 ∈ ℂ) ∧ (𝑦 ∈ (BaseSet‘𝑈) ∧ 𝑧 ∈ (BaseSet‘𝑈))) → 𝑥 ∈ ℂ)
8 simprl 768 . . . . . . . 8 ((((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) ∧ 𝑥 ∈ ℂ) ∧ (𝑦 ∈ (BaseSet‘𝑈) ∧ 𝑧 ∈ (BaseSet‘𝑈))) → 𝑦 ∈ (BaseSet‘𝑈))
9 eqid 2738 . . . . . . . . 9 ( ·𝑠OLD𝑈) = ( ·𝑠OLD𝑈)
101, 9nvscl 28988 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ (BaseSet‘𝑈)) → (𝑥( ·𝑠OLD𝑈)𝑦) ∈ (BaseSet‘𝑈))
115, 7, 8, 10syl3anc 1370 . . . . . . 7 ((((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) ∧ 𝑥 ∈ ℂ) ∧ (𝑦 ∈ (BaseSet‘𝑈) ∧ 𝑧 ∈ (BaseSet‘𝑈))) → (𝑥( ·𝑠OLD𝑈)𝑦) ∈ (BaseSet‘𝑈))
12 simprr 770 . . . . . . 7 ((((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) ∧ 𝑥 ∈ ℂ) ∧ (𝑦 ∈ (BaseSet‘𝑈) ∧ 𝑧 ∈ (BaseSet‘𝑈))) → 𝑧 ∈ (BaseSet‘𝑈))
13 eqid 2738 . . . . . . . 8 ( +𝑣𝑈) = ( +𝑣𝑈)
141, 13nvgcl 28982 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ (𝑥( ·𝑠OLD𝑈)𝑦) ∈ (BaseSet‘𝑈) ∧ 𝑧 ∈ (BaseSet‘𝑈)) → ((𝑥( ·𝑠OLD𝑈)𝑦)( +𝑣𝑈)𝑧) ∈ (BaseSet‘𝑈))
155, 11, 12, 14syl3anc 1370 . . . . . 6 ((((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) ∧ 𝑥 ∈ ℂ) ∧ (𝑦 ∈ (BaseSet‘𝑈) ∧ 𝑧 ∈ (BaseSet‘𝑈))) → ((𝑥( ·𝑠OLD𝑈)𝑦)( +𝑣𝑈)𝑧) ∈ (BaseSet‘𝑈))
16 eqid 2738 . . . . . . 7 (0vec𝑊) = (0vec𝑊)
171, 16, 30oval 29150 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ ((𝑥( ·𝑠OLD𝑈)𝑦)( +𝑣𝑈)𝑧) ∈ (BaseSet‘𝑈)) → (𝑍‘((𝑥( ·𝑠OLD𝑈)𝑦)( +𝑣𝑈)𝑧)) = (0vec𝑊))
185, 6, 15, 17syl3anc 1370 . . . . 5 ((((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) ∧ 𝑥 ∈ ℂ) ∧ (𝑦 ∈ (BaseSet‘𝑈) ∧ 𝑧 ∈ (BaseSet‘𝑈))) → (𝑍‘((𝑥( ·𝑠OLD𝑈)𝑦)( +𝑣𝑈)𝑧)) = (0vec𝑊))
191, 16, 30oval 29150 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑦 ∈ (BaseSet‘𝑈)) → (𝑍𝑦) = (0vec𝑊))
205, 6, 8, 19syl3anc 1370 . . . . . . . 8 ((((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) ∧ 𝑥 ∈ ℂ) ∧ (𝑦 ∈ (BaseSet‘𝑈) ∧ 𝑧 ∈ (BaseSet‘𝑈))) → (𝑍𝑦) = (0vec𝑊))
2120oveq2d 7291 . . . . . . 7 ((((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) ∧ 𝑥 ∈ ℂ) ∧ (𝑦 ∈ (BaseSet‘𝑈) ∧ 𝑧 ∈ (BaseSet‘𝑈))) → (𝑥( ·𝑠OLD𝑊)(𝑍𝑦)) = (𝑥( ·𝑠OLD𝑊)(0vec𝑊)))
221, 16, 30oval 29150 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑧 ∈ (BaseSet‘𝑈)) → (𝑍𝑧) = (0vec𝑊))
235, 6, 12, 22syl3anc 1370 . . . . . . 7 ((((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) ∧ 𝑥 ∈ ℂ) ∧ (𝑦 ∈ (BaseSet‘𝑈) ∧ 𝑧 ∈ (BaseSet‘𝑈))) → (𝑍𝑧) = (0vec𝑊))
2421, 23oveq12d 7293 . . . . . 6 ((((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) ∧ 𝑥 ∈ ℂ) ∧ (𝑦 ∈ (BaseSet‘𝑈) ∧ 𝑧 ∈ (BaseSet‘𝑈))) → ((𝑥( ·𝑠OLD𝑊)(𝑍𝑦))( +𝑣𝑊)(𝑍𝑧)) = ((𝑥( ·𝑠OLD𝑊)(0vec𝑊))( +𝑣𝑊)(0vec𝑊)))
25 eqid 2738 . . . . . . . . 9 ( ·𝑠OLD𝑊) = ( ·𝑠OLD𝑊)
2625, 16nvsz 29000 . . . . . . . 8 ((𝑊 ∈ NrmCVec ∧ 𝑥 ∈ ℂ) → (𝑥( ·𝑠OLD𝑊)(0vec𝑊)) = (0vec𝑊))
276, 7, 26syl2anc 584 . . . . . . 7 ((((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) ∧ 𝑥 ∈ ℂ) ∧ (𝑦 ∈ (BaseSet‘𝑈) ∧ 𝑧 ∈ (BaseSet‘𝑈))) → (𝑥( ·𝑠OLD𝑊)(0vec𝑊)) = (0vec𝑊))
2827oveq1d 7290 . . . . . 6 ((((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) ∧ 𝑥 ∈ ℂ) ∧ (𝑦 ∈ (BaseSet‘𝑈) ∧ 𝑧 ∈ (BaseSet‘𝑈))) → ((𝑥( ·𝑠OLD𝑊)(0vec𝑊))( +𝑣𝑊)(0vec𝑊)) = ((0vec𝑊)( +𝑣𝑊)(0vec𝑊)))
292, 16nvzcl 28996 . . . . . . 7 (𝑊 ∈ NrmCVec → (0vec𝑊) ∈ (BaseSet‘𝑊))
30 eqid 2738 . . . . . . . 8 ( +𝑣𝑊) = ( +𝑣𝑊)
312, 30, 16nv0rid 28997 . . . . . . 7 ((𝑊 ∈ NrmCVec ∧ (0vec𝑊) ∈ (BaseSet‘𝑊)) → ((0vec𝑊)( +𝑣𝑊)(0vec𝑊)) = (0vec𝑊))
326, 29, 31syl2anc2 585 . . . . . 6 ((((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) ∧ 𝑥 ∈ ℂ) ∧ (𝑦 ∈ (BaseSet‘𝑈) ∧ 𝑧 ∈ (BaseSet‘𝑈))) → ((0vec𝑊)( +𝑣𝑊)(0vec𝑊)) = (0vec𝑊))
3324, 28, 323eqtrd 2782 . . . . 5 ((((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) ∧ 𝑥 ∈ ℂ) ∧ (𝑦 ∈ (BaseSet‘𝑈) ∧ 𝑧 ∈ (BaseSet‘𝑈))) → ((𝑥( ·𝑠OLD𝑊)(𝑍𝑦))( +𝑣𝑊)(𝑍𝑧)) = (0vec𝑊))
3418, 33eqtr4d 2781 . . . 4 ((((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) ∧ 𝑥 ∈ ℂ) ∧ (𝑦 ∈ (BaseSet‘𝑈) ∧ 𝑧 ∈ (BaseSet‘𝑈))) → (𝑍‘((𝑥( ·𝑠OLD𝑈)𝑦)( +𝑣𝑈)𝑧)) = ((𝑥( ·𝑠OLD𝑊)(𝑍𝑦))( +𝑣𝑊)(𝑍𝑧)))
3534ralrimivva 3123 . . 3 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) ∧ 𝑥 ∈ ℂ) → ∀𝑦 ∈ (BaseSet‘𝑈)∀𝑧 ∈ (BaseSet‘𝑈)(𝑍‘((𝑥( ·𝑠OLD𝑈)𝑦)( +𝑣𝑈)𝑧)) = ((𝑥( ·𝑠OLD𝑊)(𝑍𝑦))( +𝑣𝑊)(𝑍𝑧)))
3635ralrimiva 3103 . 2 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → ∀𝑥 ∈ ℂ ∀𝑦 ∈ (BaseSet‘𝑈)∀𝑧 ∈ (BaseSet‘𝑈)(𝑍‘((𝑥( ·𝑠OLD𝑈)𝑦)( +𝑣𝑈)𝑧)) = ((𝑥( ·𝑠OLD𝑊)(𝑍𝑦))( +𝑣𝑊)(𝑍𝑧)))
37 0lno.7 . . 3 𝐿 = (𝑈 LnOp 𝑊)
381, 2, 13, 30, 9, 25, 37islno 29115 . 2 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → (𝑍𝐿 ↔ (𝑍:(BaseSet‘𝑈)⟶(BaseSet‘𝑊) ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ (BaseSet‘𝑈)∀𝑧 ∈ (BaseSet‘𝑈)(𝑍‘((𝑥( ·𝑠OLD𝑈)𝑦)( +𝑣𝑈)𝑧)) = ((𝑥( ·𝑠OLD𝑊)(𝑍𝑦))( +𝑣𝑊)(𝑍𝑧)))))
394, 36, 38mpbir2and 710 1 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → 𝑍𝐿)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  wral 3064  wf 6429  cfv 6433  (class class class)co 7275  cc 10869  NrmCVeccnv 28946   +𝑣 cpv 28947  BaseSetcba 28948   ·𝑠OLD cns 28949  0veccn0v 28950   LnOp clno 29102   0op c0o 29105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-po 5503  df-so 5504  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-1st 7831  df-2nd 7832  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-ltxr 11014  df-grpo 28855  df-gid 28856  df-ginv 28857  df-ablo 28907  df-vc 28921  df-nv 28954  df-va 28957  df-ba 28958  df-sm 28959  df-0v 28960  df-nmcv 28962  df-lno 29106  df-0o 29109
This theorem is referenced by:  0blo  29154  nmlno0i  29156  blocn  29169
  Copyright terms: Public domain W3C validator