MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0lno Structured version   Visualization version   GIF version

Theorem 0lno 30809
Description: The zero operator is linear. (Contributed by NM, 28-Nov-2007.) (Revised by Mario Carneiro, 19-Nov-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
0lno.0 𝑍 = (𝑈 0op 𝑊)
0lno.7 𝐿 = (𝑈 LnOp 𝑊)
Assertion
Ref Expression
0lno ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → 𝑍𝐿)

Proof of Theorem 0lno
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2737 . . 3 (BaseSet‘𝑈) = (BaseSet‘𝑈)
2 eqid 2737 . . 3 (BaseSet‘𝑊) = (BaseSet‘𝑊)
3 0lno.0 . . 3 𝑍 = (𝑈 0op 𝑊)
41, 2, 30oo 30808 . 2 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → 𝑍:(BaseSet‘𝑈)⟶(BaseSet‘𝑊))
5 simplll 775 . . . . . 6 ((((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) ∧ 𝑥 ∈ ℂ) ∧ (𝑦 ∈ (BaseSet‘𝑈) ∧ 𝑧 ∈ (BaseSet‘𝑈))) → 𝑈 ∈ NrmCVec)
6 simpllr 776 . . . . . 6 ((((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) ∧ 𝑥 ∈ ℂ) ∧ (𝑦 ∈ (BaseSet‘𝑈) ∧ 𝑧 ∈ (BaseSet‘𝑈))) → 𝑊 ∈ NrmCVec)
7 simplr 769 . . . . . . . 8 ((((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) ∧ 𝑥 ∈ ℂ) ∧ (𝑦 ∈ (BaseSet‘𝑈) ∧ 𝑧 ∈ (BaseSet‘𝑈))) → 𝑥 ∈ ℂ)
8 simprl 771 . . . . . . . 8 ((((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) ∧ 𝑥 ∈ ℂ) ∧ (𝑦 ∈ (BaseSet‘𝑈) ∧ 𝑧 ∈ (BaseSet‘𝑈))) → 𝑦 ∈ (BaseSet‘𝑈))
9 eqid 2737 . . . . . . . . 9 ( ·𝑠OLD𝑈) = ( ·𝑠OLD𝑈)
101, 9nvscl 30645 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ (BaseSet‘𝑈)) → (𝑥( ·𝑠OLD𝑈)𝑦) ∈ (BaseSet‘𝑈))
115, 7, 8, 10syl3anc 1373 . . . . . . 7 ((((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) ∧ 𝑥 ∈ ℂ) ∧ (𝑦 ∈ (BaseSet‘𝑈) ∧ 𝑧 ∈ (BaseSet‘𝑈))) → (𝑥( ·𝑠OLD𝑈)𝑦) ∈ (BaseSet‘𝑈))
12 simprr 773 . . . . . . 7 ((((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) ∧ 𝑥 ∈ ℂ) ∧ (𝑦 ∈ (BaseSet‘𝑈) ∧ 𝑧 ∈ (BaseSet‘𝑈))) → 𝑧 ∈ (BaseSet‘𝑈))
13 eqid 2737 . . . . . . . 8 ( +𝑣𝑈) = ( +𝑣𝑈)
141, 13nvgcl 30639 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ (𝑥( ·𝑠OLD𝑈)𝑦) ∈ (BaseSet‘𝑈) ∧ 𝑧 ∈ (BaseSet‘𝑈)) → ((𝑥( ·𝑠OLD𝑈)𝑦)( +𝑣𝑈)𝑧) ∈ (BaseSet‘𝑈))
155, 11, 12, 14syl3anc 1373 . . . . . 6 ((((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) ∧ 𝑥 ∈ ℂ) ∧ (𝑦 ∈ (BaseSet‘𝑈) ∧ 𝑧 ∈ (BaseSet‘𝑈))) → ((𝑥( ·𝑠OLD𝑈)𝑦)( +𝑣𝑈)𝑧) ∈ (BaseSet‘𝑈))
16 eqid 2737 . . . . . . 7 (0vec𝑊) = (0vec𝑊)
171, 16, 30oval 30807 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ ((𝑥( ·𝑠OLD𝑈)𝑦)( +𝑣𝑈)𝑧) ∈ (BaseSet‘𝑈)) → (𝑍‘((𝑥( ·𝑠OLD𝑈)𝑦)( +𝑣𝑈)𝑧)) = (0vec𝑊))
185, 6, 15, 17syl3anc 1373 . . . . 5 ((((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) ∧ 𝑥 ∈ ℂ) ∧ (𝑦 ∈ (BaseSet‘𝑈) ∧ 𝑧 ∈ (BaseSet‘𝑈))) → (𝑍‘((𝑥( ·𝑠OLD𝑈)𝑦)( +𝑣𝑈)𝑧)) = (0vec𝑊))
191, 16, 30oval 30807 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑦 ∈ (BaseSet‘𝑈)) → (𝑍𝑦) = (0vec𝑊))
205, 6, 8, 19syl3anc 1373 . . . . . . . 8 ((((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) ∧ 𝑥 ∈ ℂ) ∧ (𝑦 ∈ (BaseSet‘𝑈) ∧ 𝑧 ∈ (BaseSet‘𝑈))) → (𝑍𝑦) = (0vec𝑊))
2120oveq2d 7447 . . . . . . 7 ((((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) ∧ 𝑥 ∈ ℂ) ∧ (𝑦 ∈ (BaseSet‘𝑈) ∧ 𝑧 ∈ (BaseSet‘𝑈))) → (𝑥( ·𝑠OLD𝑊)(𝑍𝑦)) = (𝑥( ·𝑠OLD𝑊)(0vec𝑊)))
221, 16, 30oval 30807 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑧 ∈ (BaseSet‘𝑈)) → (𝑍𝑧) = (0vec𝑊))
235, 6, 12, 22syl3anc 1373 . . . . . . 7 ((((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) ∧ 𝑥 ∈ ℂ) ∧ (𝑦 ∈ (BaseSet‘𝑈) ∧ 𝑧 ∈ (BaseSet‘𝑈))) → (𝑍𝑧) = (0vec𝑊))
2421, 23oveq12d 7449 . . . . . 6 ((((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) ∧ 𝑥 ∈ ℂ) ∧ (𝑦 ∈ (BaseSet‘𝑈) ∧ 𝑧 ∈ (BaseSet‘𝑈))) → ((𝑥( ·𝑠OLD𝑊)(𝑍𝑦))( +𝑣𝑊)(𝑍𝑧)) = ((𝑥( ·𝑠OLD𝑊)(0vec𝑊))( +𝑣𝑊)(0vec𝑊)))
25 eqid 2737 . . . . . . . . 9 ( ·𝑠OLD𝑊) = ( ·𝑠OLD𝑊)
2625, 16nvsz 30657 . . . . . . . 8 ((𝑊 ∈ NrmCVec ∧ 𝑥 ∈ ℂ) → (𝑥( ·𝑠OLD𝑊)(0vec𝑊)) = (0vec𝑊))
276, 7, 26syl2anc 584 . . . . . . 7 ((((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) ∧ 𝑥 ∈ ℂ) ∧ (𝑦 ∈ (BaseSet‘𝑈) ∧ 𝑧 ∈ (BaseSet‘𝑈))) → (𝑥( ·𝑠OLD𝑊)(0vec𝑊)) = (0vec𝑊))
2827oveq1d 7446 . . . . . 6 ((((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) ∧ 𝑥 ∈ ℂ) ∧ (𝑦 ∈ (BaseSet‘𝑈) ∧ 𝑧 ∈ (BaseSet‘𝑈))) → ((𝑥( ·𝑠OLD𝑊)(0vec𝑊))( +𝑣𝑊)(0vec𝑊)) = ((0vec𝑊)( +𝑣𝑊)(0vec𝑊)))
292, 16nvzcl 30653 . . . . . . 7 (𝑊 ∈ NrmCVec → (0vec𝑊) ∈ (BaseSet‘𝑊))
30 eqid 2737 . . . . . . . 8 ( +𝑣𝑊) = ( +𝑣𝑊)
312, 30, 16nv0rid 30654 . . . . . . 7 ((𝑊 ∈ NrmCVec ∧ (0vec𝑊) ∈ (BaseSet‘𝑊)) → ((0vec𝑊)( +𝑣𝑊)(0vec𝑊)) = (0vec𝑊))
326, 29, 31syl2anc2 585 . . . . . 6 ((((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) ∧ 𝑥 ∈ ℂ) ∧ (𝑦 ∈ (BaseSet‘𝑈) ∧ 𝑧 ∈ (BaseSet‘𝑈))) → ((0vec𝑊)( +𝑣𝑊)(0vec𝑊)) = (0vec𝑊))
3324, 28, 323eqtrd 2781 . . . . 5 ((((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) ∧ 𝑥 ∈ ℂ) ∧ (𝑦 ∈ (BaseSet‘𝑈) ∧ 𝑧 ∈ (BaseSet‘𝑈))) → ((𝑥( ·𝑠OLD𝑊)(𝑍𝑦))( +𝑣𝑊)(𝑍𝑧)) = (0vec𝑊))
3418, 33eqtr4d 2780 . . . 4 ((((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) ∧ 𝑥 ∈ ℂ) ∧ (𝑦 ∈ (BaseSet‘𝑈) ∧ 𝑧 ∈ (BaseSet‘𝑈))) → (𝑍‘((𝑥( ·𝑠OLD𝑈)𝑦)( +𝑣𝑈)𝑧)) = ((𝑥( ·𝑠OLD𝑊)(𝑍𝑦))( +𝑣𝑊)(𝑍𝑧)))
3534ralrimivva 3202 . . 3 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) ∧ 𝑥 ∈ ℂ) → ∀𝑦 ∈ (BaseSet‘𝑈)∀𝑧 ∈ (BaseSet‘𝑈)(𝑍‘((𝑥( ·𝑠OLD𝑈)𝑦)( +𝑣𝑈)𝑧)) = ((𝑥( ·𝑠OLD𝑊)(𝑍𝑦))( +𝑣𝑊)(𝑍𝑧)))
3635ralrimiva 3146 . 2 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → ∀𝑥 ∈ ℂ ∀𝑦 ∈ (BaseSet‘𝑈)∀𝑧 ∈ (BaseSet‘𝑈)(𝑍‘((𝑥( ·𝑠OLD𝑈)𝑦)( +𝑣𝑈)𝑧)) = ((𝑥( ·𝑠OLD𝑊)(𝑍𝑦))( +𝑣𝑊)(𝑍𝑧)))
37 0lno.7 . . 3 𝐿 = (𝑈 LnOp 𝑊)
381, 2, 13, 30, 9, 25, 37islno 30772 . 2 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → (𝑍𝐿 ↔ (𝑍:(BaseSet‘𝑈)⟶(BaseSet‘𝑊) ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ (BaseSet‘𝑈)∀𝑧 ∈ (BaseSet‘𝑈)(𝑍‘((𝑥( ·𝑠OLD𝑈)𝑦)( +𝑣𝑈)𝑧)) = ((𝑥( ·𝑠OLD𝑊)(𝑍𝑦))( +𝑣𝑊)(𝑍𝑧)))))
394, 36, 38mpbir2and 713 1 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → 𝑍𝐿)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wral 3061  wf 6557  cfv 6561  (class class class)co 7431  cc 11153  NrmCVeccnv 30603   +𝑣 cpv 30604  BaseSetcba 30605   ·𝑠OLD cns 30606  0veccn0v 30607   LnOp clno 30759   0op c0o 30762
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-po 5592  df-so 5593  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8014  df-2nd 8015  df-er 8745  df-map 8868  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-ltxr 11300  df-grpo 30512  df-gid 30513  df-ginv 30514  df-ablo 30564  df-vc 30578  df-nv 30611  df-va 30614  df-ba 30615  df-sm 30616  df-0v 30617  df-nmcv 30619  df-lno 30763  df-0o 30766
This theorem is referenced by:  0blo  30811  nmlno0i  30813  blocn  30826
  Copyright terms: Public domain W3C validator