Step | Hyp | Ref
| Expression |
1 | | eqid 2732 |
. . 3
β’
(BaseSetβπ) =
(BaseSetβπ) |
2 | | eqid 2732 |
. . 3
β’
(BaseSetβπ) =
(BaseSetβπ) |
3 | | 0lno.0 |
. . 3
β’ π = (π 0op π) |
4 | 1, 2, 3 | 0oo 30080 |
. 2
β’ ((π β NrmCVec β§ π β NrmCVec) β π:(BaseSetβπ)βΆ(BaseSetβπ)) |
5 | | simplll 773 |
. . . . . 6
β’ ((((π β NrmCVec β§ π β NrmCVec) β§ π₯ β β) β§ (π¦ β (BaseSetβπ) β§ π§ β (BaseSetβπ))) β π β NrmCVec) |
6 | | simpllr 774 |
. . . . . 6
β’ ((((π β NrmCVec β§ π β NrmCVec) β§ π₯ β β) β§ (π¦ β (BaseSetβπ) β§ π§ β (BaseSetβπ))) β π β NrmCVec) |
7 | | simplr 767 |
. . . . . . . 8
β’ ((((π β NrmCVec β§ π β NrmCVec) β§ π₯ β β) β§ (π¦ β (BaseSetβπ) β§ π§ β (BaseSetβπ))) β π₯ β β) |
8 | | simprl 769 |
. . . . . . . 8
β’ ((((π β NrmCVec β§ π β NrmCVec) β§ π₯ β β) β§ (π¦ β (BaseSetβπ) β§ π§ β (BaseSetβπ))) β π¦ β (BaseSetβπ)) |
9 | | eqid 2732 |
. . . . . . . . 9
β’ (
Β·π OLD βπ) = ( Β·π OLD
βπ) |
10 | 1, 9 | nvscl 29917 |
. . . . . . . 8
β’ ((π β NrmCVec β§ π₯ β β β§ π¦ β (BaseSetβπ)) β (π₯( Β·π OLD
βπ)π¦) β (BaseSetβπ)) |
11 | 5, 7, 8, 10 | syl3anc 1371 |
. . . . . . 7
β’ ((((π β NrmCVec β§ π β NrmCVec) β§ π₯ β β) β§ (π¦ β (BaseSetβπ) β§ π§ β (BaseSetβπ))) β (π₯( Β·π OLD
βπ)π¦) β (BaseSetβπ)) |
12 | | simprr 771 |
. . . . . . 7
β’ ((((π β NrmCVec β§ π β NrmCVec) β§ π₯ β β) β§ (π¦ β (BaseSetβπ) β§ π§ β (BaseSetβπ))) β π§ β (BaseSetβπ)) |
13 | | eqid 2732 |
. . . . . . . 8
β’ (
+π£ βπ) = ( +π£ βπ) |
14 | 1, 13 | nvgcl 29911 |
. . . . . . 7
β’ ((π β NrmCVec β§ (π₯(
Β·π OLD βπ)π¦) β (BaseSetβπ) β§ π§ β (BaseSetβπ)) β ((π₯( Β·π OLD
βπ)π¦)( +π£ βπ)π§) β (BaseSetβπ)) |
15 | 5, 11, 12, 14 | syl3anc 1371 |
. . . . . 6
β’ ((((π β NrmCVec β§ π β NrmCVec) β§ π₯ β β) β§ (π¦ β (BaseSetβπ) β§ π§ β (BaseSetβπ))) β ((π₯( Β·π OLD
βπ)π¦)( +π£ βπ)π§) β (BaseSetβπ)) |
16 | | eqid 2732 |
. . . . . . 7
β’
(0vecβπ) = (0vecβπ) |
17 | 1, 16, 3 | 0oval 30079 |
. . . . . 6
β’ ((π β NrmCVec β§ π β NrmCVec β§ ((π₯(
Β·π OLD βπ)π¦)( +π£ βπ)π§) β (BaseSetβπ)) β (πβ((π₯( Β·π OLD
βπ)π¦)( +π£ βπ)π§)) = (0vecβπ)) |
18 | 5, 6, 15, 17 | syl3anc 1371 |
. . . . 5
β’ ((((π β NrmCVec β§ π β NrmCVec) β§ π₯ β β) β§ (π¦ β (BaseSetβπ) β§ π§ β (BaseSetβπ))) β (πβ((π₯( Β·π OLD
βπ)π¦)( +π£ βπ)π§)) = (0vecβπ)) |
19 | 1, 16, 3 | 0oval 30079 |
. . . . . . . . 9
β’ ((π β NrmCVec β§ π β NrmCVec β§ π¦ β (BaseSetβπ)) β (πβπ¦) = (0vecβπ)) |
20 | 5, 6, 8, 19 | syl3anc 1371 |
. . . . . . . 8
β’ ((((π β NrmCVec β§ π β NrmCVec) β§ π₯ β β) β§ (π¦ β (BaseSetβπ) β§ π§ β (BaseSetβπ))) β (πβπ¦) = (0vecβπ)) |
21 | 20 | oveq2d 7427 |
. . . . . . 7
β’ ((((π β NrmCVec β§ π β NrmCVec) β§ π₯ β β) β§ (π¦ β (BaseSetβπ) β§ π§ β (BaseSetβπ))) β (π₯( Β·π OLD
βπ)(πβπ¦)) = (π₯( Β·π OLD
βπ)(0vecβπ))) |
22 | 1, 16, 3 | 0oval 30079 |
. . . . . . . 8
β’ ((π β NrmCVec β§ π β NrmCVec β§ π§ β (BaseSetβπ)) β (πβπ§) = (0vecβπ)) |
23 | 5, 6, 12, 22 | syl3anc 1371 |
. . . . . . 7
β’ ((((π β NrmCVec β§ π β NrmCVec) β§ π₯ β β) β§ (π¦ β (BaseSetβπ) β§ π§ β (BaseSetβπ))) β (πβπ§) = (0vecβπ)) |
24 | 21, 23 | oveq12d 7429 |
. . . . . 6
β’ ((((π β NrmCVec β§ π β NrmCVec) β§ π₯ β β) β§ (π¦ β (BaseSetβπ) β§ π§ β (BaseSetβπ))) β ((π₯( Β·π OLD
βπ)(πβπ¦))( +π£ βπ)(πβπ§)) = ((π₯( Β·π OLD
βπ)(0vecβπ))( +π£ βπ)(0vecβπ))) |
25 | | eqid 2732 |
. . . . . . . . 9
β’ (
Β·π OLD βπ) = ( Β·π OLD
βπ) |
26 | 25, 16 | nvsz 29929 |
. . . . . . . 8
β’ ((π β NrmCVec β§ π₯ β β) β (π₯(
Β·π OLD βπ)(0vecβπ)) = (0vecβπ)) |
27 | 6, 7, 26 | syl2anc 584 |
. . . . . . 7
β’ ((((π β NrmCVec β§ π β NrmCVec) β§ π₯ β β) β§ (π¦ β (BaseSetβπ) β§ π§ β (BaseSetβπ))) β (π₯( Β·π OLD
βπ)(0vecβπ)) = (0vecβπ)) |
28 | 27 | oveq1d 7426 |
. . . . . 6
β’ ((((π β NrmCVec β§ π β NrmCVec) β§ π₯ β β) β§ (π¦ β (BaseSetβπ) β§ π§ β (BaseSetβπ))) β ((π₯( Β·π OLD
βπ)(0vecβπ))( +π£ βπ)(0vecβπ)) =
((0vecβπ)(
+π£ βπ)(0vecβπ))) |
29 | 2, 16 | nvzcl 29925 |
. . . . . . 7
β’ (π β NrmCVec β
(0vecβπ)
β (BaseSetβπ)) |
30 | | eqid 2732 |
. . . . . . . 8
β’ (
+π£ βπ) = ( +π£ βπ) |
31 | 2, 30, 16 | nv0rid 29926 |
. . . . . . 7
β’ ((π β NrmCVec β§
(0vecβπ)
β (BaseSetβπ))
β ((0vecβπ)( +π£ βπ)(0vecβπ)) =
(0vecβπ)) |
32 | 6, 29, 31 | syl2anc2 585 |
. . . . . 6
β’ ((((π β NrmCVec β§ π β NrmCVec) β§ π₯ β β) β§ (π¦ β (BaseSetβπ) β§ π§ β (BaseSetβπ))) β ((0vecβπ)( +π£
βπ)(0vecβπ)) = (0vecβπ)) |
33 | 24, 28, 32 | 3eqtrd 2776 |
. . . . 5
β’ ((((π β NrmCVec β§ π β NrmCVec) β§ π₯ β β) β§ (π¦ β (BaseSetβπ) β§ π§ β (BaseSetβπ))) β ((π₯( Β·π OLD
βπ)(πβπ¦))( +π£ βπ)(πβπ§)) = (0vecβπ)) |
34 | 18, 33 | eqtr4d 2775 |
. . . 4
β’ ((((π β NrmCVec β§ π β NrmCVec) β§ π₯ β β) β§ (π¦ β (BaseSetβπ) β§ π§ β (BaseSetβπ))) β (πβ((π₯( Β·π OLD
βπ)π¦)( +π£ βπ)π§)) = ((π₯( Β·π OLD
βπ)(πβπ¦))( +π£ βπ)(πβπ§))) |
35 | 34 | ralrimivva 3200 |
. . 3
β’ (((π β NrmCVec β§ π β NrmCVec) β§ π₯ β β) β
βπ¦ β
(BaseSetβπ)βπ§ β (BaseSetβπ)(πβ((π₯( Β·π OLD
βπ)π¦)( +π£ βπ)π§)) = ((π₯( Β·π OLD
βπ)(πβπ¦))( +π£ βπ)(πβπ§))) |
36 | 35 | ralrimiva 3146 |
. 2
β’ ((π β NrmCVec β§ π β NrmCVec) β
βπ₯ β β
βπ¦ β
(BaseSetβπ)βπ§ β (BaseSetβπ)(πβ((π₯( Β·π OLD
βπ)π¦)( +π£ βπ)π§)) = ((π₯( Β·π OLD
βπ)(πβπ¦))( +π£ βπ)(πβπ§))) |
37 | | 0lno.7 |
. . 3
β’ πΏ = (π LnOp π) |
38 | 1, 2, 13, 30, 9, 25, 37 | islno 30044 |
. 2
β’ ((π β NrmCVec β§ π β NrmCVec) β (π β πΏ β (π:(BaseSetβπ)βΆ(BaseSetβπ) β§ βπ₯ β β βπ¦ β (BaseSetβπ)βπ§ β (BaseSetβπ)(πβ((π₯( Β·π OLD
βπ)π¦)( +π£ βπ)π§)) = ((π₯( Β·π OLD
βπ)(πβπ¦))( +π£ βπ)(πβπ§))))) |
39 | 4, 36, 38 | mpbir2and 711 |
1
β’ ((π β NrmCVec β§ π β NrmCVec) β π β πΏ) |