Home Metamath Proof ExplorerTheorem List (p. 119 of 437) < Previous  Next > Bad symbols? Try the GIF version. Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

 Color key: Metamath Proof Explorer (1-28347) Hilbert Space Explorer (28348-29872) Users' Mathboxes (29873-43650)

Theorem List for Metamath Proof Explorer - 11801-11900   *Has distinct variable group(s)
TypeLabelDescription
Statement

Theoremzdivmul 11801 Property of divisibility: if 𝐷 divides 𝐴 then it divides 𝐵 · 𝐴. (Contributed by NM, 3-Oct-2008.)
(((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐴 / 𝐷) ∈ ℤ) → ((𝐵 · 𝐴) / 𝐷) ∈ ℤ)

Theoremzextle 11802* An extensionality-like property for integer ordering. (Contributed by NM, 29-Oct-2005.)
((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ∀𝑘 ∈ ℤ (𝑘𝑀𝑘𝑁)) → 𝑀 = 𝑁)

Theoremzextlt 11803* An extensionality-like property for integer ordering. (Contributed by NM, 29-Oct-2005.)
((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ∀𝑘 ∈ ℤ (𝑘 < 𝑀𝑘 < 𝑁)) → 𝑀 = 𝑁)

Theoremrecnz 11804 The reciprocal of a number greater than 1 is not an integer. (Contributed by NM, 3-May-2005.)
((𝐴 ∈ ℝ ∧ 1 < 𝐴) → ¬ (1 / 𝐴) ∈ ℤ)

Theorembtwnnz 11805 A number between an integer and its successor is not an integer. (Contributed by NM, 3-May-2005.)
((𝐴 ∈ ℤ ∧ 𝐴 < 𝐵𝐵 < (𝐴 + 1)) → ¬ 𝐵 ∈ ℤ)

Theoremgtndiv 11806 A larger number does not divide a smaller positive integer. (Contributed by NM, 3-May-2005.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐵 < 𝐴) → ¬ (𝐵 / 𝐴) ∈ ℤ)

Theoremhalfnz 11807 One-half is not an integer. (Contributed by NM, 31-Jul-2004.)
¬ (1 / 2) ∈ ℤ

Theorem3halfnz 11808 Three halves is not an integer. (Contributed by AV, 2-Jun-2020.)
¬ (3 / 2) ∈ ℤ

Theoremsuprzcl 11809* The supremum of a bounded-above set of integers is a member of the set. (Contributed by Paul Chapman, 21-Mar-2011.) (Revised by Mario Carneiro, 26-Jun-2015.)
((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → sup(𝐴, ℝ, < ) ∈ 𝐴)

Theoremprime 11810* Two ways to express "𝐴 is a prime number (or 1)." See also isprm 15792. (Contributed by NM, 4-May-2005.)
(𝐴 ∈ ℕ → (∀𝑥 ∈ ℕ ((𝐴 / 𝑥) ∈ ℕ → (𝑥 = 1 ∨ 𝑥 = 𝐴)) ↔ ∀𝑥 ∈ ℕ ((1 < 𝑥𝑥𝐴 ∧ (𝐴 / 𝑥) ∈ ℕ) → 𝑥 = 𝐴)))

Theoremmsqznn 11811 The square of a nonzero integer is a positive integer. (Contributed by NM, 2-Aug-2004.)
((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) → (𝐴 · 𝐴) ∈ ℕ)

Theoremzneo 11812 No even integer equals an odd integer (i.e. no integer can be both even and odd). Exercise 10(a) of [Apostol] p. 28. (Contributed by NM, 31-Jul-2004.) (Proof shortened by Mario Carneiro, 18-May-2014.)
((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (2 · 𝐴) ≠ ((2 · 𝐵) + 1))

Theoremnneo 11813 A positive integer is even or odd but not both. (Contributed by NM, 1-Jan-2006.) (Proof shortened by Mario Carneiro, 18-May-2014.)
(𝑁 ∈ ℕ → ((𝑁 / 2) ∈ ℕ ↔ ¬ ((𝑁 + 1) / 2) ∈ ℕ))

Theoremnneoi 11814 A positive integer is even or odd but not both. (Contributed by NM, 20-Aug-2001.)
𝑁 ∈ ℕ       ((𝑁 / 2) ∈ ℕ ↔ ¬ ((𝑁 + 1) / 2) ∈ ℕ)

Theoremzeo 11815 An integer is even or odd. (Contributed by NM, 1-Jan-2006.)
(𝑁 ∈ ℤ → ((𝑁 / 2) ∈ ℤ ∨ ((𝑁 + 1) / 2) ∈ ℤ))

Theoremzeo2 11816 An integer is even or odd but not both. (Contributed by Mario Carneiro, 12-Sep-2015.)
(𝑁 ∈ ℤ → ((𝑁 / 2) ∈ ℤ ↔ ¬ ((𝑁 + 1) / 2) ∈ ℤ))

Theorempeano2uz2 11817* Second Peano postulate for upper integers. (Contributed by NM, 3-Oct-2004.)
((𝐴 ∈ ℤ ∧ 𝐵 ∈ {𝑥 ∈ ℤ ∣ 𝐴𝑥}) → (𝐵 + 1) ∈ {𝑥 ∈ ℤ ∣ 𝐴𝑥})

Theorempeano5uzi 11818* Peano's inductive postulate for upper integers. (Contributed by NM, 6-Jul-2005.) (Revised by Mario Carneiro, 3-May-2014.)
𝑁 ∈ ℤ       ((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → {𝑘 ∈ ℤ ∣ 𝑁𝑘} ⊆ 𝐴)

Theorempeano5uzti 11819* Peano's inductive postulate for upper integers. (Contributed by NM, 6-Jul-2005.) (Revised by Mario Carneiro, 25-Jul-2013.)
(𝑁 ∈ ℤ → ((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → {𝑘 ∈ ℤ ∣ 𝑁𝑘} ⊆ 𝐴))

Theoremdfuzi 11820* An expression for the upper integers that start at 𝑁 that is analogous to dfnn2 11389 for positive integers. (Contributed by NM, 6-Jul-2005.) (Proof shortened by Mario Carneiro, 3-May-2014.)
𝑁 ∈ ℤ       {𝑧 ∈ ℤ ∣ 𝑁𝑧} = {𝑥 ∣ (𝑁𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}

Theoremuzind 11821* Induction on the upper integers that start at 𝑀. The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. (Contributed by NM, 5-Jul-2005.)
(𝑗 = 𝑀 → (𝜑𝜓))    &   (𝑗 = 𝑘 → (𝜑𝜒))    &   (𝑗 = (𝑘 + 1) → (𝜑𝜃))    &   (𝑗 = 𝑁 → (𝜑𝜏))    &   (𝑀 ∈ ℤ → 𝜓)    &   ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑀𝑘) → (𝜒𝜃))       ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀𝑁) → 𝜏)

Theoremuzind2 11822* Induction on the upper integers that start after an integer 𝑀. The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. (Contributed by NM, 25-Jul-2005.)
(𝑗 = (𝑀 + 1) → (𝜑𝜓))    &   (𝑗 = 𝑘 → (𝜑𝜒))    &   (𝑗 = (𝑘 + 1) → (𝜑𝜃))    &   (𝑗 = 𝑁 → (𝜑𝜏))    &   (𝑀 ∈ ℤ → 𝜓)    &   ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑀 < 𝑘) → (𝜒𝜃))       ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) → 𝜏)

Theoremuzind3 11823* Induction on the upper integers that start at an integer 𝑀. The first four hypotheses give us the substitution instances we need, and the last two are the basis and the induction step. (Contributed by NM, 26-Jul-2005.)
(𝑗 = 𝑀 → (𝜑𝜓))    &   (𝑗 = 𝑚 → (𝜑𝜒))    &   (𝑗 = (𝑚 + 1) → (𝜑𝜃))    &   (𝑗 = 𝑁 → (𝜑𝜏))    &   (𝑀 ∈ ℤ → 𝜓)    &   ((𝑀 ∈ ℤ ∧ 𝑚 ∈ {𝑘 ∈ ℤ ∣ 𝑀𝑘}) → (𝜒𝜃))       ((𝑀 ∈ ℤ ∧ 𝑁 ∈ {𝑘 ∈ ℤ ∣ 𝑀𝑘}) → 𝜏)

Theoremnn0ind 11824* Principle of Mathematical Induction (inference schema) on nonnegative integers. The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. (Contributed by NM, 13-May-2004.)
(𝑥 = 0 → (𝜑𝜓))    &   (𝑥 = 𝑦 → (𝜑𝜒))    &   (𝑥 = (𝑦 + 1) → (𝜑𝜃))    &   (𝑥 = 𝐴 → (𝜑𝜏))    &   𝜓    &   (𝑦 ∈ ℕ0 → (𝜒𝜃))       (𝐴 ∈ ℕ0𝜏)

Theoremnn0indALT 11825* Principle of Mathematical Induction (inference schema) on nonnegative integers. The last four hypotheses give us the substitution instances we need; the first two are the basis and the induction step. Either nn0ind 11824 or nn0indALT 11825 may be used; see comment for nnind 11394. (Contributed by NM, 28-Nov-2005.) (New usage is discouraged.) (Proof modification is discouraged.)
(𝑦 ∈ ℕ0 → (𝜒𝜃))    &   𝜓    &   (𝑥 = 0 → (𝜑𝜓))    &   (𝑥 = 𝑦 → (𝜑𝜒))    &   (𝑥 = (𝑦 + 1) → (𝜑𝜃))    &   (𝑥 = 𝐴 → (𝜑𝜏))       (𝐴 ∈ ℕ0𝜏)

Theoremnn0indd 11826* Principle of Mathematical Induction (inference schema) on nonnegative integers, a deduction version. (Contributed by Thierry Arnoux, 23-Mar-2018.)
(𝑥 = 0 → (𝜓𝜒))    &   (𝑥 = 𝑦 → (𝜓𝜃))    &   (𝑥 = (𝑦 + 1) → (𝜓𝜏))    &   (𝑥 = 𝐴 → (𝜓𝜂))    &   (𝜑𝜒)    &   (((𝜑𝑦 ∈ ℕ0) ∧ 𝜃) → 𝜏)       ((𝜑𝐴 ∈ ℕ0) → 𝜂)

Theoremfzind 11827* Induction on the integers from 𝑀 to 𝑁 inclusive . The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. (Contributed by Paul Chapman, 31-Mar-2011.)
(𝑥 = 𝑀 → (𝜑𝜓))    &   (𝑥 = 𝑦 → (𝜑𝜒))    &   (𝑥 = (𝑦 + 1) → (𝜑𝜃))    &   (𝑥 = 𝐾 → (𝜑𝜏))    &   ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀𝑁) → 𝜓)    &   (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑦 ∈ ℤ ∧ 𝑀𝑦𝑦 < 𝑁)) → (𝜒𝜃))       (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀𝐾𝐾𝑁)) → 𝜏)

Theoremfnn0ind 11828* Induction on the integers from 0 to 𝑁 inclusive. The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. (Contributed by Paul Chapman, 31-Mar-2011.)
(𝑥 = 0 → (𝜑𝜓))    &   (𝑥 = 𝑦 → (𝜑𝜒))    &   (𝑥 = (𝑦 + 1) → (𝜑𝜃))    &   (𝑥 = 𝐾 → (𝜑𝜏))    &   (𝑁 ∈ ℕ0𝜓)    &   ((𝑁 ∈ ℕ0𝑦 ∈ ℕ0𝑦 < 𝑁) → (𝜒𝜃))       ((𝑁 ∈ ℕ0𝐾 ∈ ℕ0𝐾𝑁) → 𝜏)

Theoremnn0ind-raph 11829* Principle of Mathematical Induction (inference schema) on nonnegative integers. The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. Raph Levien remarks: "This seems a bit painful. I wonder if an explicit substitution version would be easier." (Contributed by Raph Levien, 10-Apr-2004.)
(𝑥 = 0 → (𝜑𝜓))    &   (𝑥 = 𝑦 → (𝜑𝜒))    &   (𝑥 = (𝑦 + 1) → (𝜑𝜃))    &   (𝑥 = 𝐴 → (𝜑𝜏))    &   𝜓    &   (𝑦 ∈ ℕ0 → (𝜒𝜃))       (𝐴 ∈ ℕ0𝜏)

Theoremzindd 11830* Principle of Mathematical Induction on all integers, deduction version. The first five hypotheses give the substitutions; the last three are the basis, the induction, and the extension to negative numbers. (Contributed by Paul Chapman, 17-Apr-2009.) (Proof shortened by Mario Carneiro, 4-Jan-2017.)
(𝑥 = 0 → (𝜑𝜓))    &   (𝑥 = 𝑦 → (𝜑𝜒))    &   (𝑥 = (𝑦 + 1) → (𝜑𝜏))    &   (𝑥 = -𝑦 → (𝜑𝜃))    &   (𝑥 = 𝐴 → (𝜑𝜂))    &   (𝜁𝜓)    &   (𝜁 → (𝑦 ∈ ℕ0 → (𝜒𝜏)))    &   (𝜁 → (𝑦 ∈ ℕ → (𝜒𝜃)))       (𝜁 → (𝐴 ∈ ℤ → 𝜂))

Theorembtwnz 11831* Any real number can be sandwiched between two integers. Exercise 2 of [Apostol] p. 28. (Contributed by NM, 10-Nov-2004.)
(𝐴 ∈ ℝ → (∃𝑥 ∈ ℤ 𝑥 < 𝐴 ∧ ∃𝑦 ∈ ℤ 𝐴 < 𝑦))

Theoremnn0zd 11832 A positive integer is an integer. (Contributed by Mario Carneiro, 28-May-2016.)
(𝜑𝐴 ∈ ℕ0)       (𝜑𝐴 ∈ ℤ)

Theoremnnzd 11833 A nonnegative integer is an integer. (Contributed by Mario Carneiro, 28-May-2016.)
(𝜑𝐴 ∈ ℕ)       (𝜑𝐴 ∈ ℤ)

Theoremzred 11834 An integer is a real number. (Contributed by Mario Carneiro, 28-May-2016.)
(𝜑𝐴 ∈ ℤ)       (𝜑𝐴 ∈ ℝ)

Theoremzcnd 11835 An integer is a complex number. (Contributed by Mario Carneiro, 28-May-2016.)
(𝜑𝐴 ∈ ℤ)       (𝜑𝐴 ∈ ℂ)

Theoremznegcld 11836 Closure law for negative integers. (Contributed by Mario Carneiro, 28-May-2016.)
(𝜑𝐴 ∈ ℤ)       (𝜑 → -𝐴 ∈ ℤ)

Theorempeano2zd 11837 Deduction from second Peano postulate generalized to integers. (Contributed by Mario Carneiro, 28-May-2016.)
(𝜑𝐴 ∈ ℤ)       (𝜑 → (𝐴 + 1) ∈ ℤ)

Theoremzaddcld 11838 Closure of addition of integers. (Contributed by Mario Carneiro, 28-May-2016.)
(𝜑𝐴 ∈ ℤ)    &   (𝜑𝐵 ∈ ℤ)       (𝜑 → (𝐴 + 𝐵) ∈ ℤ)

Theoremzsubcld 11839 Closure of subtraction of integers. (Contributed by Mario Carneiro, 28-May-2016.)
(𝜑𝐴 ∈ ℤ)    &   (𝜑𝐵 ∈ ℤ)       (𝜑 → (𝐴𝐵) ∈ ℤ)

Theoremzmulcld 11840 Closure of multiplication of integers. (Contributed by Mario Carneiro, 28-May-2016.)
(𝜑𝐴 ∈ ℤ)    &   (𝜑𝐵 ∈ ℤ)       (𝜑 → (𝐴 · 𝐵) ∈ ℤ)

Theoremznnn0nn 11841 The negative of a negative integer, is a natural number. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
((𝑁 ∈ ℤ ∧ ¬ 𝑁 ∈ ℕ0) → -𝑁 ∈ ℕ)

Theoremzadd2cl 11842 Increasing an integer by 2 results in an integer. (Contributed by Alexander van der Vekens, 16-Sep-2018.)
(𝑁 ∈ ℤ → (𝑁 + 2) ∈ ℤ)

Theoremzriotaneg 11843* The negative of the unique integer such that 𝜑. (Contributed by AV, 1-Dec-2018.)
(𝑥 = -𝑦 → (𝜑𝜓))       (∃!𝑥 ∈ ℤ 𝜑 → (𝑥 ∈ ℤ 𝜑) = -(𝑦 ∈ ℤ 𝜓))

Theoremsuprfinzcl 11844 The supremum of a nonempty finite set of integers is a member of the set. (Contributed by AV, 1-Oct-2019.)
((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) → sup(𝐴, ℝ, < ) ∈ 𝐴)

5.4.10  Decimal arithmetic

Syntaxcdc 11845 Constant used for decimal constructor.
class 𝐴𝐵

Definitiondf-dec 11846 Define the "decimal constructor", which is used to build up "decimal integers" or "numeric terms" in base 10. For example, (1000 + 2000) = 3000 1kp2ke3k 27878. (Contributed by Mario Carneiro, 17-Apr-2015.) (Revised by AV, 1-Aug-2021.)
𝐴𝐵 = (((9 + 1) · 𝐴) + 𝐵)

Theorem9p1e10 11847 9 + 1 = 10. (Contributed by Mario Carneiro, 18-Apr-2015.) (Revised by Stanislas Polu, 7-Apr-2020.) (Revised by AV, 1-Aug-2021.)
(9 + 1) = 10

Theoremdfdec10 11848 Version of the definition of the "decimal constructor" using 10 instead of the symbol 10. Of course, this statement cannot be used as definition, because it uses the "decimal constructor". (Contributed by AV, 1-Aug-2021.)
𝐴𝐵 = ((10 · 𝐴) + 𝐵)

Theoremdecex 11849 A decimal number is a set. (Contributed by Mario Carneiro, 17-Apr-2015.) (Revised by AV, 6-Sep-2021.)
𝐴𝐵 ∈ V

Theoremdeceq1 11850 Equality theorem for the decimal constructor. (Contributed by Mario Carneiro, 17-Apr-2015.) (Revised by AV, 6-Sep-2021.)
(𝐴 = 𝐵𝐴𝐶 = 𝐵𝐶)

Theoremdeceq2 11851 Equality theorem for the decimal constructor. (Contributed by Mario Carneiro, 17-Apr-2015.) (Revised by AV, 6-Sep-2021.)
(𝐴 = 𝐵𝐶𝐴 = 𝐶𝐵)

Theoremdeceq1i 11852 Equality theorem for the decimal constructor. (Contributed by Mario Carneiro, 17-Apr-2015.)
𝐴 = 𝐵       𝐴𝐶 = 𝐵𝐶

Theoremdeceq2i 11853 Equality theorem for the decimal constructor. (Contributed by Mario Carneiro, 17-Apr-2015.)
𝐴 = 𝐵       𝐶𝐴 = 𝐶𝐵

Theoremdeceq12i 11854 Equality theorem for the decimal constructor. (Contributed by Mario Carneiro, 17-Apr-2015.)
𝐴 = 𝐵    &   𝐶 = 𝐷       𝐴𝐶 = 𝐵𝐷

Theoremnumnncl 11855 Closure for a numeral (with units place). (Contributed by Mario Carneiro, 18-Feb-2014.)
𝑇 ∈ ℕ0    &   𝐴 ∈ ℕ0    &   𝐵 ∈ ℕ       ((𝑇 · 𝐴) + 𝐵) ∈ ℕ

Theoremnum0u 11856 Add a zero in the units place. (Contributed by Mario Carneiro, 18-Feb-2014.)
𝑇 ∈ ℕ0    &   𝐴 ∈ ℕ0       (𝑇 · 𝐴) = ((𝑇 · 𝐴) + 0)

Theoremnum0h 11857 Add a zero in the higher places. (Contributed by Mario Carneiro, 18-Feb-2014.)
𝑇 ∈ ℕ0    &   𝐴 ∈ ℕ0       𝐴 = ((𝑇 · 0) + 𝐴)

Theoremnumcl 11858 Closure for a decimal integer (with units place). (Contributed by Mario Carneiro, 18-Feb-2014.)
𝑇 ∈ ℕ0    &   𝐴 ∈ ℕ0    &   𝐵 ∈ ℕ0       ((𝑇 · 𝐴) + 𝐵) ∈ ℕ0

Theoremnumsuc 11859 The successor of a decimal integer (no carry). (Contributed by Mario Carneiro, 18-Feb-2014.)
𝑇 ∈ ℕ0    &   𝐴 ∈ ℕ0    &   𝐵 ∈ ℕ0    &   (𝐵 + 1) = 𝐶    &   𝑁 = ((𝑇 · 𝐴) + 𝐵)       (𝑁 + 1) = ((𝑇 · 𝐴) + 𝐶)

Theoremdeccl 11860 Closure for a numeral. (Contributed by Mario Carneiro, 17-Apr-2015.) (Revised by AV, 6-Sep-2021.)
𝐴 ∈ ℕ0    &   𝐵 ∈ ℕ0       𝐴𝐵 ∈ ℕ0

Theorem10nn 11861 10 is a positive integer. (Contributed by NM, 8-Nov-2012.) (Revised by AV, 6-Sep-2021.)
10 ∈ ℕ

Theorem10pos 11862 The number 10 is positive. (Contributed by NM, 5-Feb-2007.) (Revised by AV, 8-Sep-2021.)
0 < 10

Theorem10nn0 11863 10 is a nonnegative integer. (Contributed by Mario Carneiro, 19-Apr-2015.) (Revised by AV, 6-Sep-2021.)
10 ∈ ℕ0

Theorem10re 11864 The number 10 is real. (Contributed by NM, 5-Feb-2007.) (Revised by AV, 8-Sep-2021.) Reduce dependencies on axioms. (Revised by Steven Nguyen, 8-Oct-2022.)
10 ∈ ℝ

Theorem10reOLD 11865 Obsolete version of 10re 11864 as of 8-Oct-2022. The number 10 is real. (Contributed by NM, 5-Feb-2007.) (Revised by AV, 8-Sep-2021.) (Proof modification is discouraged.) (New usage is discouraged.)
10 ∈ ℝ

Theoremdecnncl 11866 Closure for a numeral. (Contributed by Mario Carneiro, 17-Apr-2015.) (Revised by AV, 6-Sep-2021.)
𝐴 ∈ ℕ0    &   𝐵 ∈ ℕ       𝐴𝐵 ∈ ℕ

Theoremdec0u 11867 Add a zero in the units place. (Contributed by Mario Carneiro, 17-Apr-2015.) (Revised by AV, 6-Sep-2021.)
𝐴 ∈ ℕ0       (10 · 𝐴) = 𝐴0

Theoremdec0h 11868 Add a zero in the higher places. (Contributed by Mario Carneiro, 17-Apr-2015.) (Revised by AV, 6-Sep-2021.)
𝐴 ∈ ℕ0       𝐴 = 0𝐴

Theoremnumnncl2 11869 Closure for a decimal integer (zero units place). (Contributed by Mario Carneiro, 9-Mar-2015.)
𝑇 ∈ ℕ    &   𝐴 ∈ ℕ       ((𝑇 · 𝐴) + 0) ∈ ℕ

Theoremdecnncl2 11870 Closure for a decimal integer (zero units place). (Contributed by Mario Carneiro, 17-Apr-2015.) (Revised by AV, 6-Sep-2021.)
𝐴 ∈ ℕ       𝐴0 ∈ ℕ

Theoremnumlt 11871 Comparing two decimal integers (equal higher places). (Contributed by Mario Carneiro, 18-Feb-2014.)
𝑇 ∈ ℕ    &   𝐴 ∈ ℕ0    &   𝐵 ∈ ℕ0    &   𝐶 ∈ ℕ    &   𝐵 < 𝐶       ((𝑇 · 𝐴) + 𝐵) < ((𝑇 · 𝐴) + 𝐶)

Theoremnumltc 11872 Comparing two decimal integers (unequal higher places). (Contributed by Mario Carneiro, 18-Feb-2014.)
𝑇 ∈ ℕ    &   𝐴 ∈ ℕ0    &   𝐵 ∈ ℕ0    &   𝐶 ∈ ℕ0    &   𝐷 ∈ ℕ0    &   𝐶 < 𝑇    &   𝐴 < 𝐵       ((𝑇 · 𝐴) + 𝐶) < ((𝑇 · 𝐵) + 𝐷)

Theoremle9lt10 11873 A "decimal digit" (i.e. a nonnegative integer less than or equal to 9) is less then 10. (Contributed by AV, 8-Sep-2021.)
𝐴 ∈ ℕ0    &   𝐴 ≤ 9       𝐴 < 10

Theoremdeclt 11874 Comparing two decimal integers (equal higher places). (Contributed by Mario Carneiro, 17-Apr-2015.) (Revised by AV, 6-Sep-2021.)
𝐴 ∈ ℕ0    &   𝐵 ∈ ℕ0    &   𝐶 ∈ ℕ    &   𝐵 < 𝐶       𝐴𝐵 < 𝐴𝐶

Theoremdecltc 11875 Comparing two decimal integers (unequal higher places). (Contributed by Mario Carneiro, 18-Feb-2014.) (Revised by AV, 6-Sep-2021.)
𝐴 ∈ ℕ0    &   𝐵 ∈ ℕ0    &   𝐶 ∈ ℕ0    &   𝐷 ∈ ℕ0    &   𝐶 < 10    &   𝐴 < 𝐵       𝐴𝐶 < 𝐵𝐷

Theoremdeclth 11876 Comparing two decimal integers (unequal higher places). (Contributed by AV, 8-Sep-2021.)
𝐴 ∈ ℕ0    &   𝐵 ∈ ℕ0    &   𝐶 ∈ ℕ0    &   𝐷 ∈ ℕ0    &   𝐶 ≤ 9    &   𝐴 < 𝐵       𝐴𝐶 < 𝐵𝐷

Theoremdecsuc 11877 The successor of a decimal integer (no carry). (Contributed by Mario Carneiro, 17-Apr-2015.) (Revised by AV, 6-Sep-2021.)
𝐴 ∈ ℕ0    &   𝐵 ∈ ℕ0    &   (𝐵 + 1) = 𝐶    &   𝑁 = 𝐴𝐵       (𝑁 + 1) = 𝐴𝐶

Theorem3declth 11878 Comparing two decimal integers with three "digits" (unequal higher places). (Contributed by AV, 8-Sep-2021.)
𝐴 ∈ ℕ0    &   𝐵 ∈ ℕ0    &   𝐶 ∈ ℕ0    &   𝐷 ∈ ℕ0    &   𝐸 ∈ ℕ0    &   𝐹 ∈ ℕ0    &   𝐴 < 𝐵    &   𝐶 ≤ 9    &   𝐸 ≤ 9       𝐴𝐶𝐸 < 𝐵𝐷𝐹

Theorem3decltc 11879 Comparing two decimal integers with three "digits" (unequal higher places). (Contributed by AV, 15-Jun-2021.) (Revised by AV, 6-Sep-2021.)
𝐴 ∈ ℕ0    &   𝐵 ∈ ℕ0    &   𝐶 ∈ ℕ0    &   𝐷 ∈ ℕ0    &   𝐸 ∈ ℕ0    &   𝐹 ∈ ℕ0    &   𝐴 < 𝐵    &   𝐶 < 10    &   𝐸 < 10       𝐴𝐶𝐸 < 𝐵𝐷𝐹

Theoremdecle 11880 Comparing two decimal integers (equal higher places). (Contributed by AV, 17-Aug-2021.) (Revised by AV, 8-Sep-2021.)
𝐴 ∈ ℕ0    &   𝐵 ∈ ℕ0    &   𝐶 ∈ ℕ0    &   𝐵𝐶       𝐴𝐵𝐴𝐶

Theoremdecleh 11881 Comparing two decimal integers (unequal higher places). (Contributed by AV, 17-Aug-2021.) (Revised by AV, 8-Sep-2021.)
𝐴 ∈ ℕ0    &   𝐵 ∈ ℕ0    &   𝐶 ∈ ℕ0    &   𝐷 ∈ ℕ0    &   𝐶 ≤ 9    &   𝐴 < 𝐵       𝐴𝐶𝐵𝐷

Theoremdeclei 11882 Comparing a digit to a decimal integer. (Contributed by AV, 17-Aug-2021.)
𝐴 ∈ ℕ    &   𝐵 ∈ ℕ0    &   𝐶 ∈ ℕ0    &   𝐶 ≤ 9       𝐶𝐴𝐵

Theoremnumlti 11883 Comparing a digit to a decimal integer. (Contributed by Mario Carneiro, 18-Feb-2014.)
𝑇 ∈ ℕ    &   𝐴 ∈ ℕ    &   𝐵 ∈ ℕ0    &   𝐶 ∈ ℕ0    &   𝐶 < 𝑇       𝐶 < ((𝑇 · 𝐴) + 𝐵)

Theoremdeclti 11884 Comparing a digit to a decimal integer. (Contributed by Mario Carneiro, 18-Feb-2014.) (Revised by AV, 6-Sep-2021.)
𝐴 ∈ ℕ    &   𝐵 ∈ ℕ0    &   𝐶 ∈ ℕ0    &   𝐶 < 10       𝐶 < 𝐴𝐵

Theoremdecltdi 11885 Comparing a digit to a decimal integer. (Contributed by AV, 8-Sep-2021.)
𝐴 ∈ ℕ    &   𝐵 ∈ ℕ0    &   𝐶 ∈ ℕ0    &   𝐶 ≤ 9       𝐶 < 𝐴𝐵

Theoremnumsucc 11886 The successor of a decimal integer (with carry). (Contributed by Mario Carneiro, 18-Feb-2014.)
𝑌 ∈ ℕ0    &   𝑇 = (𝑌 + 1)    &   𝐴 ∈ ℕ0    &   (𝐴 + 1) = 𝐵    &   𝑁 = ((𝑇 · 𝐴) + 𝑌)       (𝑁 + 1) = ((𝑇 · 𝐵) + 0)

Theoremdecsucc 11887 The successor of a decimal integer (with carry). (Contributed by Mario Carneiro, 18-Feb-2014.) (Revised by AV, 6-Sep-2021.)
𝐴 ∈ ℕ0    &   (𝐴 + 1) = 𝐵    &   𝑁 = 𝐴9       (𝑁 + 1) = 𝐵0

Theorem1e0p1 11888 The successor of zero. (Contributed by Mario Carneiro, 18-Feb-2014.)
1 = (0 + 1)

Theoremdec10p 11889 Ten plus an integer. (Contributed by Mario Carneiro, 19-Apr-2015.) (Revised by AV, 6-Sep-2021.)
(10 + 𝐴) = 1𝐴

Theoremnumma 11890 Perform a multiply-add of two decimal integers 𝑀 and 𝑁 against a fixed multiplicand 𝑃 (no carry). (Contributed by Mario Carneiro, 18-Feb-2014.)
𝑇 ∈ ℕ0    &   𝐴 ∈ ℕ0    &   𝐵 ∈ ℕ0    &   𝐶 ∈ ℕ0    &   𝐷 ∈ ℕ0    &   𝑀 = ((𝑇 · 𝐴) + 𝐵)    &   𝑁 = ((𝑇 · 𝐶) + 𝐷)    &   𝑃 ∈ ℕ0    &   ((𝐴 · 𝑃) + 𝐶) = 𝐸    &   ((𝐵 · 𝑃) + 𝐷) = 𝐹       ((𝑀 · 𝑃) + 𝑁) = ((𝑇 · 𝐸) + 𝐹)

Theoremnummac 11891 Perform a multiply-add of two decimal integers 𝑀 and 𝑁 against a fixed multiplicand 𝑃 (with carry). (Contributed by Mario Carneiro, 18-Feb-2014.)
𝑇 ∈ ℕ0    &   𝐴 ∈ ℕ0    &   𝐵 ∈ ℕ0    &   𝐶 ∈ ℕ0    &   𝐷 ∈ ℕ0    &   𝑀 = ((𝑇 · 𝐴) + 𝐵)    &   𝑁 = ((𝑇 · 𝐶) + 𝐷)    &   𝑃 ∈ ℕ0    &   𝐹 ∈ ℕ0    &   𝐺 ∈ ℕ0    &   ((𝐴 · 𝑃) + (𝐶 + 𝐺)) = 𝐸    &   ((𝐵 · 𝑃) + 𝐷) = ((𝑇 · 𝐺) + 𝐹)       ((𝑀 · 𝑃) + 𝑁) = ((𝑇 · 𝐸) + 𝐹)

Theoremnumma2c 11892 Perform a multiply-add of two decimal integers 𝑀 and 𝑁 against a fixed multiplicand 𝑃 (with carry). (Contributed by Mario Carneiro, 18-Feb-2014.)
𝑇 ∈ ℕ0    &   𝐴 ∈ ℕ0    &   𝐵 ∈ ℕ0    &   𝐶 ∈ ℕ0    &   𝐷 ∈ ℕ0    &   𝑀 = ((𝑇 · 𝐴) + 𝐵)    &   𝑁 = ((𝑇 · 𝐶) + 𝐷)    &   𝑃 ∈ ℕ0    &   𝐹 ∈ ℕ0    &   𝐺 ∈ ℕ0    &   ((𝑃 · 𝐴) + (𝐶 + 𝐺)) = 𝐸    &   ((𝑃 · 𝐵) + 𝐷) = ((𝑇 · 𝐺) + 𝐹)       ((𝑃 · 𝑀) + 𝑁) = ((𝑇 · 𝐸) + 𝐹)

Theoremnumadd 11893 Add two decimal integers 𝑀 and 𝑁 (no carry). (Contributed by Mario Carneiro, 18-Feb-2014.)
𝑇 ∈ ℕ0    &   𝐴 ∈ ℕ0    &   𝐵 ∈ ℕ0    &   𝐶 ∈ ℕ0    &   𝐷 ∈ ℕ0    &   𝑀 = ((𝑇 · 𝐴) + 𝐵)    &   𝑁 = ((𝑇 · 𝐶) + 𝐷)    &   (𝐴 + 𝐶) = 𝐸    &   (𝐵 + 𝐷) = 𝐹       (𝑀 + 𝑁) = ((𝑇 · 𝐸) + 𝐹)

Theoremnumaddc 11894 Add two decimal integers 𝑀 and 𝑁 (with carry). (Contributed by Mario Carneiro, 18-Feb-2014.)
𝑇 ∈ ℕ0    &   𝐴 ∈ ℕ0    &   𝐵 ∈ ℕ0    &   𝐶 ∈ ℕ0    &   𝐷 ∈ ℕ0    &   𝑀 = ((𝑇 · 𝐴) + 𝐵)    &   𝑁 = ((𝑇 · 𝐶) + 𝐷)    &   𝐹 ∈ ℕ0    &   ((𝐴 + 𝐶) + 1) = 𝐸    &   (𝐵 + 𝐷) = ((𝑇 · 1) + 𝐹)       (𝑀 + 𝑁) = ((𝑇 · 𝐸) + 𝐹)

Theoremnummul1c 11895 The product of a decimal integer with a number. (Contributed by Mario Carneiro, 18-Feb-2014.)
𝑇 ∈ ℕ0    &   𝑃 ∈ ℕ0    &   𝐴 ∈ ℕ0    &   𝐵 ∈ ℕ0    &   𝑁 = ((𝑇 · 𝐴) + 𝐵)    &   𝐷 ∈ ℕ0    &   𝐸 ∈ ℕ0    &   ((𝐴 · 𝑃) + 𝐸) = 𝐶    &   (𝐵 · 𝑃) = ((𝑇 · 𝐸) + 𝐷)       (𝑁 · 𝑃) = ((𝑇 · 𝐶) + 𝐷)

Theoremnummul2c 11896 The product of a decimal integer with a number (with carry). (Contributed by Mario Carneiro, 18-Feb-2014.)
𝑇 ∈ ℕ0    &   𝑃 ∈ ℕ0    &   𝐴 ∈ ℕ0    &   𝐵 ∈ ℕ0    &   𝑁 = ((𝑇 · 𝐴) + 𝐵)    &   𝐷 ∈ ℕ0    &   𝐸 ∈ ℕ0    &   ((𝑃 · 𝐴) + 𝐸) = 𝐶    &   (𝑃 · 𝐵) = ((𝑇 · 𝐸) + 𝐷)       (𝑃 · 𝑁) = ((𝑇 · 𝐶) + 𝐷)

Theoremdecma 11897 Perform a multiply-add of two numerals 𝑀 and 𝑁 against a fixed multiplicand 𝑃 (no carry). (Contributed by Mario Carneiro, 18-Feb-2014.) (Revised by AV, 6-Sep-2021.)
𝐴 ∈ ℕ0    &   𝐵 ∈ ℕ0    &   𝐶 ∈ ℕ0    &   𝐷 ∈ ℕ0    &   𝑀 = 𝐴𝐵    &   𝑁 = 𝐶𝐷    &   𝑃 ∈ ℕ0    &   ((𝐴 · 𝑃) + 𝐶) = 𝐸    &   ((𝐵 · 𝑃) + 𝐷) = 𝐹       ((𝑀 · 𝑃) + 𝑁) = 𝐸𝐹

Theoremdecmac 11898 Perform a multiply-add of two numerals 𝑀 and 𝑁 against a fixed multiplicand 𝑃 (with carry). (Contributed by Mario Carneiro, 18-Feb-2014.) (Revised by AV, 6-Sep-2021.)
𝐴 ∈ ℕ0    &   𝐵 ∈ ℕ0    &   𝐶 ∈ ℕ0    &   𝐷 ∈ ℕ0    &   𝑀 = 𝐴𝐵    &   𝑁 = 𝐶𝐷    &   𝑃 ∈ ℕ0    &   𝐹 ∈ ℕ0    &   𝐺 ∈ ℕ0    &   ((𝐴 · 𝑃) + (𝐶 + 𝐺)) = 𝐸    &   ((𝐵 · 𝑃) + 𝐷) = 𝐺𝐹       ((𝑀 · 𝑃) + 𝑁) = 𝐸𝐹

Theoremdecma2c 11899 Perform a multiply-add of two numerals 𝑀 and 𝑁 against a fixed multiplier 𝑃 (with carry). (Contributed by Mario Carneiro, 18-Feb-2014.) (Revised by AV, 6-Sep-2021.)
𝐴 ∈ ℕ0    &   𝐵 ∈ ℕ0    &   𝐶 ∈ ℕ0    &   𝐷 ∈ ℕ0    &   𝑀 = 𝐴𝐵    &   𝑁 = 𝐶𝐷    &   𝑃 ∈ ℕ0    &   𝐹 ∈ ℕ0    &   𝐺 ∈ ℕ0    &   ((𝑃 · 𝐴) + (𝐶 + 𝐺)) = 𝐸    &   ((𝑃 · 𝐵) + 𝐷) = 𝐺𝐹       ((𝑃 · 𝑀) + 𝑁) = 𝐸𝐹

Theoremdecadd 11900 Add two numerals 𝑀 and 𝑁 (no carry). (Contributed by Mario Carneiro, 18-Feb-2014.) (Revised by AV, 6-Sep-2021.)
𝐴 ∈ ℕ0    &   𝐵 ∈ ℕ0    &   𝐶 ∈ ℕ0    &   𝐷 ∈ ℕ0    &   𝑀 = 𝐴𝐵    &   𝑁 = 𝐶𝐷    &   (𝐴 + 𝐶) = 𝐸    &   (𝐵 + 𝐷) = 𝐹       (𝑀 + 𝑁) = 𝐸𝐹

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43650
 Copyright terms: Public domain < Previous  Next >