Home | Metamath
Proof Explorer Theorem List (p. 119 of 464) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29181) |
Hilbert Space Explorer
(29182-30704) |
Users' Mathboxes
(30705-46395) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | recgt1 11801 | The reciprocal of a positive number greater than 1 is less than 1. (Contributed by NM, 28-Dec-2005.) |
⊢ ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (1 < 𝐴 ↔ (1 / 𝐴) < 1)) | ||
Theorem | recgt1i 11802 | The reciprocal of a number greater than 1 is positive and less than 1. (Contributed by NM, 23-Feb-2005.) |
⊢ ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → (0 < (1 / 𝐴) ∧ (1 / 𝐴) < 1)) | ||
Theorem | recp1lt1 11803 | Construct a number less than 1 from any nonnegative number. (Contributed by NM, 30-Dec-2005.) |
⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝐴 / (1 + 𝐴)) < 1) | ||
Theorem | recreclt 11804 | Given a positive number 𝐴, construct a new positive number less than both 𝐴 and 1. (Contributed by NM, 28-Dec-2005.) |
⊢ ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → ((1 / (1 + (1 / 𝐴))) < 1 ∧ (1 / (1 + (1 / 𝐴))) < 𝐴)) | ||
Theorem | le2msq 11805 | The square function on nonnegative reals is monotonic. (Contributed by NM, 3-Aug-1999.) (Proof shortened by Mario Carneiro, 27-May-2016.) |
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (𝐴 ≤ 𝐵 ↔ (𝐴 · 𝐴) ≤ (𝐵 · 𝐵))) | ||
Theorem | msq11 11806 | The square of a nonnegative number is a one-to-one function. (Contributed by NM, 29-Jul-1999.) (Revised by Mario Carneiro, 27-May-2016.) |
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((𝐴 · 𝐴) = (𝐵 · 𝐵) ↔ 𝐴 = 𝐵)) | ||
Theorem | ledivp1 11807 | "Less than or equal to" and division relation. (Lemma for computing upper bounds of products. The "+ 1" prevents division by zero.) (Contributed by NM, 28-Sep-2005.) |
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((𝐴 / (𝐵 + 1)) · 𝐵) ≤ 𝐴) | ||
Theorem | squeeze0 11808* | If a nonnegative number is less than any positive number, it is zero. (Contributed by NM, 11-Feb-2006.) |
⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ ∀𝑥 ∈ ℝ (0 < 𝑥 → 𝐴 < 𝑥)) → 𝐴 = 0) | ||
Theorem | ltp1i 11809 | A number is less than itself plus 1. (Contributed by NM, 20-Aug-2001.) |
⊢ 𝐴 ∈ ℝ ⇒ ⊢ 𝐴 < (𝐴 + 1) | ||
Theorem | recgt0i 11810 | The reciprocal of a positive number is positive. Exercise 4 of [Apostol] p. 21. (Contributed by NM, 15-May-1999.) |
⊢ 𝐴 ∈ ℝ ⇒ ⊢ (0 < 𝐴 → 0 < (1 / 𝐴)) | ||
Theorem | recgt0ii 11811 | The reciprocal of a positive number is positive. Exercise 4 of [Apostol] p. 21. (Contributed by NM, 15-May-1999.) |
⊢ 𝐴 ∈ ℝ & ⊢ 0 < 𝐴 ⇒ ⊢ 0 < (1 / 𝐴) | ||
Theorem | prodgt0i 11812 | Infer that a multiplicand is positive from a nonnegative multiplier and positive product. (Contributed by NM, 15-May-1999.) |
⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ ⇒ ⊢ ((0 ≤ 𝐴 ∧ 0 < (𝐴 · 𝐵)) → 0 < 𝐵) | ||
Theorem | divgt0i 11813 | The ratio of two positive numbers is positive. (Contributed by NM, 16-May-1999.) |
⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ ⇒ ⊢ ((0 < 𝐴 ∧ 0 < 𝐵) → 0 < (𝐴 / 𝐵)) | ||
Theorem | divge0i 11814 | The ratio of nonnegative and positive numbers is nonnegative. (Contributed by NM, 12-Aug-1999.) |
⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ ⇒ ⊢ ((0 ≤ 𝐴 ∧ 0 < 𝐵) → 0 ≤ (𝐴 / 𝐵)) | ||
Theorem | ltreci 11815 | The reciprocal of both sides of 'less than'. (Contributed by NM, 15-Sep-1999.) |
⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ ⇒ ⊢ ((0 < 𝐴 ∧ 0 < 𝐵) → (𝐴 < 𝐵 ↔ (1 / 𝐵) < (1 / 𝐴))) | ||
Theorem | lereci 11816 | The reciprocal of both sides of 'less than or equal to'. (Contributed by NM, 16-Sep-1999.) |
⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ ⇒ ⊢ ((0 < 𝐴 ∧ 0 < 𝐵) → (𝐴 ≤ 𝐵 ↔ (1 / 𝐵) ≤ (1 / 𝐴))) | ||
Theorem | lt2msqi 11817 | The square function on nonnegative reals is strictly monotonic. (Contributed by NM, 3-Aug-1999.) |
⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ ⇒ ⊢ ((0 ≤ 𝐴 ∧ 0 ≤ 𝐵) → (𝐴 < 𝐵 ↔ (𝐴 · 𝐴) < (𝐵 · 𝐵))) | ||
Theorem | le2msqi 11818 | The square function on nonnegative reals is monotonic. (Contributed by NM, 2-Aug-1999.) |
⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ ⇒ ⊢ ((0 ≤ 𝐴 ∧ 0 ≤ 𝐵) → (𝐴 ≤ 𝐵 ↔ (𝐴 · 𝐴) ≤ (𝐵 · 𝐵))) | ||
Theorem | msq11i 11819 | The square of a nonnegative number is a one-to-one function. (Contributed by NM, 29-Jul-1999.) |
⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ ⇒ ⊢ ((0 ≤ 𝐴 ∧ 0 ≤ 𝐵) → ((𝐴 · 𝐴) = (𝐵 · 𝐵) ↔ 𝐴 = 𝐵)) | ||
Theorem | divgt0i2i 11820 | The ratio of two positive numbers is positive. (Contributed by NM, 16-May-1999.) |
⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ & ⊢ 0 < 𝐵 ⇒ ⊢ (0 < 𝐴 → 0 < (𝐴 / 𝐵)) | ||
Theorem | ltrecii 11821 | The reciprocal of both sides of 'less than'. (Contributed by NM, 15-Sep-1999.) |
⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ & ⊢ 0 < 𝐴 & ⊢ 0 < 𝐵 ⇒ ⊢ (𝐴 < 𝐵 ↔ (1 / 𝐵) < (1 / 𝐴)) | ||
Theorem | divgt0ii 11822 | The ratio of two positive numbers is positive. (Contributed by NM, 18-May-1999.) |
⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ & ⊢ 0 < 𝐴 & ⊢ 0 < 𝐵 ⇒ ⊢ 0 < (𝐴 / 𝐵) | ||
Theorem | ltmul1i 11823 | Multiplication of both sides of 'less than' by a positive number. Theorem I.19 of [Apostol] p. 20. (Contributed by NM, 16-May-1999.) |
⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ & ⊢ 𝐶 ∈ ℝ ⇒ ⊢ (0 < 𝐶 → (𝐴 < 𝐵 ↔ (𝐴 · 𝐶) < (𝐵 · 𝐶))) | ||
Theorem | ltdiv1i 11824 | Division of both sides of 'less than' by a positive number. (Contributed by NM, 16-May-1999.) |
⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ & ⊢ 𝐶 ∈ ℝ ⇒ ⊢ (0 < 𝐶 → (𝐴 < 𝐵 ↔ (𝐴 / 𝐶) < (𝐵 / 𝐶))) | ||
Theorem | ltmuldivi 11825 | 'Less than' relationship between division and multiplication. (Contributed by NM, 12-Oct-1999.) |
⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ & ⊢ 𝐶 ∈ ℝ ⇒ ⊢ (0 < 𝐶 → ((𝐴 · 𝐶) < 𝐵 ↔ 𝐴 < (𝐵 / 𝐶))) | ||
Theorem | ltmul2i 11826 | Multiplication of both sides of 'less than' by a positive number. Theorem I.19 of [Apostol] p. 20. (Contributed by NM, 16-May-1999.) |
⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ & ⊢ 𝐶 ∈ ℝ ⇒ ⊢ (0 < 𝐶 → (𝐴 < 𝐵 ↔ (𝐶 · 𝐴) < (𝐶 · 𝐵))) | ||
Theorem | lemul1i 11827 | Multiplication of both sides of 'less than or equal to' by a positive number. (Contributed by NM, 2-Aug-1999.) |
⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ & ⊢ 𝐶 ∈ ℝ ⇒ ⊢ (0 < 𝐶 → (𝐴 ≤ 𝐵 ↔ (𝐴 · 𝐶) ≤ (𝐵 · 𝐶))) | ||
Theorem | lemul2i 11828 | Multiplication of both sides of 'less than or equal to' by a positive number. (Contributed by NM, 1-Aug-1999.) |
⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ & ⊢ 𝐶 ∈ ℝ ⇒ ⊢ (0 < 𝐶 → (𝐴 ≤ 𝐵 ↔ (𝐶 · 𝐴) ≤ (𝐶 · 𝐵))) | ||
Theorem | ltdiv23i 11829 | Swap denominator with other side of 'less than'. (Contributed by NM, 26-Sep-1999.) |
⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ & ⊢ 𝐶 ∈ ℝ ⇒ ⊢ ((0 < 𝐵 ∧ 0 < 𝐶) → ((𝐴 / 𝐵) < 𝐶 ↔ (𝐴 / 𝐶) < 𝐵)) | ||
Theorem | ledivp1i 11830 | "Less than or equal to" and division relation. (Lemma for computing upper bounds of products. The "+ 1" prevents division by zero.) (Contributed by NM, 17-Sep-2005.) |
⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ & ⊢ 𝐶 ∈ ℝ ⇒ ⊢ ((0 ≤ 𝐴 ∧ 0 ≤ 𝐶 ∧ 𝐴 ≤ (𝐵 / (𝐶 + 1))) → (𝐴 · 𝐶) ≤ 𝐵) | ||
Theorem | ltdivp1i 11831 | Less-than and division relation. (Lemma for computing upper bounds of products. The "+ 1" prevents division by zero.) (Contributed by NM, 17-Sep-2005.) |
⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ & ⊢ 𝐶 ∈ ℝ ⇒ ⊢ ((0 ≤ 𝐴 ∧ 0 ≤ 𝐶 ∧ 𝐴 < (𝐵 / (𝐶 + 1))) → (𝐴 · 𝐶) < 𝐵) | ||
Theorem | ltdiv23ii 11832 | Swap denominator with other side of 'less than'. (Contributed by NM, 26-Sep-1999.) |
⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ & ⊢ 𝐶 ∈ ℝ & ⊢ 0 < 𝐵 & ⊢ 0 < 𝐶 ⇒ ⊢ ((𝐴 / 𝐵) < 𝐶 ↔ (𝐴 / 𝐶) < 𝐵) | ||
Theorem | ltmul1ii 11833 | Multiplication of both sides of 'less than' by a positive number. Theorem I.19 of [Apostol] p. 20. (Contributed by NM, 16-May-1999.) (Proof shortened by Paul Chapman, 25-Jan-2008.) |
⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ & ⊢ 𝐶 ∈ ℝ & ⊢ 0 < 𝐶 ⇒ ⊢ (𝐴 < 𝐵 ↔ (𝐴 · 𝐶) < (𝐵 · 𝐶)) | ||
Theorem | ltdiv1ii 11834 | Division of both sides of 'less than' by a positive number. (Contributed by NM, 16-May-1999.) |
⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ & ⊢ 𝐶 ∈ ℝ & ⊢ 0 < 𝐶 ⇒ ⊢ (𝐴 < 𝐵 ↔ (𝐴 / 𝐶) < (𝐵 / 𝐶)) | ||
Theorem | ltp1d 11835 | A number is less than itself plus 1. (Contributed by Mario Carneiro, 28-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) ⇒ ⊢ (𝜑 → 𝐴 < (𝐴 + 1)) | ||
Theorem | lep1d 11836 | A number is less than or equal to itself plus 1. (Contributed by Mario Carneiro, 28-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) ⇒ ⊢ (𝜑 → 𝐴 ≤ (𝐴 + 1)) | ||
Theorem | ltm1d 11837 | A number minus 1 is less than itself. (Contributed by Mario Carneiro, 28-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) ⇒ ⊢ (𝜑 → (𝐴 − 1) < 𝐴) | ||
Theorem | lem1d 11838 | A number minus 1 is less than or equal to itself. (Contributed by Mario Carneiro, 28-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) ⇒ ⊢ (𝜑 → (𝐴 − 1) ≤ 𝐴) | ||
Theorem | recgt0d 11839 | The reciprocal of a positive number is positive. Exercise 4 of [Apostol] p. 21. (Contributed by Mario Carneiro, 28-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 0 < 𝐴) ⇒ ⊢ (𝜑 → 0 < (1 / 𝐴)) | ||
Theorem | divgt0d 11840 | The ratio of two positive numbers is positive. (Contributed by Mario Carneiro, 28-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 0 < 𝐴) & ⊢ (𝜑 → 0 < 𝐵) ⇒ ⊢ (𝜑 → 0 < (𝐴 / 𝐵)) | ||
Theorem | mulgt1d 11841 | The product of two numbers greater than 1 is greater than 1. (Contributed by Mario Carneiro, 28-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 1 < 𝐴) & ⊢ (𝜑 → 1 < 𝐵) ⇒ ⊢ (𝜑 → 1 < (𝐴 · 𝐵)) | ||
Theorem | lemulge11d 11842 | Multiplication by a number greater than or equal to 1. (Contributed by Mario Carneiro, 28-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴) & ⊢ (𝜑 → 1 ≤ 𝐵) ⇒ ⊢ (𝜑 → 𝐴 ≤ (𝐴 · 𝐵)) | ||
Theorem | lemulge12d 11843 | Multiplication by a number greater than or equal to 1. (Contributed by Mario Carneiro, 28-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴) & ⊢ (𝜑 → 1 ≤ 𝐵) ⇒ ⊢ (𝜑 → 𝐴 ≤ (𝐵 · 𝐴)) | ||
Theorem | lemul1ad 11844 | Multiplication of both sides of 'less than or equal to' by a nonnegative number. (Contributed by Mario Carneiro, 28-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐶) & ⊢ (𝜑 → 𝐴 ≤ 𝐵) ⇒ ⊢ (𝜑 → (𝐴 · 𝐶) ≤ (𝐵 · 𝐶)) | ||
Theorem | lemul2ad 11845 | Multiplication of both sides of 'less than or equal to' by a nonnegative number. (Contributed by Mario Carneiro, 28-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐶) & ⊢ (𝜑 → 𝐴 ≤ 𝐵) ⇒ ⊢ (𝜑 → (𝐶 · 𝐴) ≤ (𝐶 · 𝐵)) | ||
Theorem | ltmul12ad 11846 | Comparison of product of two positive numbers. (Contributed by Mario Carneiro, 28-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐷 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴) & ⊢ (𝜑 → 𝐴 < 𝐵) & ⊢ (𝜑 → 0 ≤ 𝐶) & ⊢ (𝜑 → 𝐶 < 𝐷) ⇒ ⊢ (𝜑 → (𝐴 · 𝐶) < (𝐵 · 𝐷)) | ||
Theorem | lemul12ad 11847 | Comparison of product of two nonnegative numbers. (Contributed by Mario Carneiro, 28-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐷 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴) & ⊢ (𝜑 → 0 ≤ 𝐶) & ⊢ (𝜑 → 𝐴 ≤ 𝐵) & ⊢ (𝜑 → 𝐶 ≤ 𝐷) ⇒ ⊢ (𝜑 → (𝐴 · 𝐶) ≤ (𝐵 · 𝐷)) | ||
Theorem | lemul12bd 11848 | Comparison of product of two nonnegative numbers. (Contributed by Mario Carneiro, 28-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐷 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴) & ⊢ (𝜑 → 0 ≤ 𝐷) & ⊢ (𝜑 → 𝐴 ≤ 𝐵) & ⊢ (𝜑 → 𝐶 ≤ 𝐷) ⇒ ⊢ (𝜑 → (𝐴 · 𝐶) ≤ (𝐵 · 𝐷)) | ||
Theorem | fimaxre 11849* | A finite set of real numbers has a maximum. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Steven Nguyen, 3-Jun-2023.) |
⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) | ||
Theorem | fimaxre2 11850* | A nonempty finite set of real numbers has an upper bound. (Contributed by Jeff Madsen, 27-May-2011.) (Revised by Mario Carneiro, 13-Feb-2014.) |
⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) | ||
Theorem | fimaxre3 11851* | A nonempty finite set of real numbers has a maximum (image set version). (Contributed by Mario Carneiro, 13-Feb-2014.) |
⊢ ((𝐴 ∈ Fin ∧ ∀𝑦 ∈ 𝐴 𝐵 ∈ ℝ) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝐵 ≤ 𝑥) | ||
Theorem | fiminre 11852* | A nonempty finite set of real numbers has a minimum. Analogous to fimaxre 11849. (Contributed by AV, 9-Aug-2020.) (Proof shortened by Steven Nguyen, 3-Jun-2023.) |
⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦) | ||
Theorem | fiminre2 11853* | A nonempty finite set of real numbers is bounded below. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦) | ||
Theorem | negfi 11854* | The negation of a finite set of real numbers is finite. (Contributed by AV, 9-Aug-2020.) |
⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin) → {𝑛 ∈ ℝ ∣ -𝑛 ∈ 𝐴} ∈ Fin) | ||
Theorem | lbreu 11855* | If a set of reals contains a lower bound, it contains a unique lower bound. (Contributed by NM, 9-Oct-2005.) |
⊢ ((𝑆 ⊆ ℝ ∧ ∃𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦) → ∃!𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦) | ||
Theorem | lbcl 11856* | If a set of reals contains a lower bound, it contains a unique lower bound that belongs to the set. (Contributed by NM, 9-Oct-2005.) (Revised by Mario Carneiro, 24-Dec-2016.) |
⊢ ((𝑆 ⊆ ℝ ∧ ∃𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦) → (℩𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦) ∈ 𝑆) | ||
Theorem | lble 11857* | If a set of reals contains a lower bound, the lower bound is less than or equal to all members of the set. (Contributed by NM, 9-Oct-2005.) (Proof shortened by Mario Carneiro, 24-Dec-2016.) |
⊢ ((𝑆 ⊆ ℝ ∧ ∃𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ 𝐴 ∈ 𝑆) → (℩𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦) ≤ 𝐴) | ||
Theorem | lbinf 11858* | If a set of reals contains a lower bound, the lower bound is its infimum. (Contributed by NM, 9-Oct-2005.) (Revised by AV, 4-Sep-2020.) |
⊢ ((𝑆 ⊆ ℝ ∧ ∃𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦) → inf(𝑆, ℝ, < ) = (℩𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦)) | ||
Theorem | lbinfcl 11859* | If a set of reals contains a lower bound, it contains its infimum. (Contributed by NM, 11-Oct-2005.) (Revised by AV, 4-Sep-2020.) |
⊢ ((𝑆 ⊆ ℝ ∧ ∃𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦) → inf(𝑆, ℝ, < ) ∈ 𝑆) | ||
Theorem | lbinfle 11860* | If a set of reals contains a lower bound, its infimum is less than or equal to all members of the set. (Contributed by NM, 11-Oct-2005.) (Revised by AV, 4-Sep-2020.) |
⊢ ((𝑆 ⊆ ℝ ∧ ∃𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ 𝐴 ∈ 𝑆) → inf(𝑆, ℝ, < ) ≤ 𝐴) | ||
Theorem | sup2 11861* | A nonempty, bounded-above set of reals has a supremum. Stronger version of completeness axiom (it has a slightly weaker antecedent). (Contributed by NM, 19-Jan-1997.) |
⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 (𝑦 < 𝑥 ∨ 𝑦 = 𝑥)) → ∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧))) | ||
Theorem | sup3 11862* | A version of the completeness axiom for reals. (Contributed by NM, 12-Oct-2004.) |
⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) → ∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧))) | ||
Theorem | infm3lem 11863* | Lemma for infm3 11864. (Contributed by NM, 14-Jun-2005.) |
⊢ (𝑥 ∈ ℝ → ∃𝑦 ∈ ℝ 𝑥 = -𝑦) | ||
Theorem | infm3 11864* | The completeness axiom for reals in terms of infimum: a nonempty, bounded-below set of reals has an infimum. (This theorem is the dual of sup3 11862.) (Contributed by NM, 14-Jun-2005.) |
⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦) → ∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦))) | ||
Theorem | suprcl 11865* | Closure of supremum of a nonempty bounded set of reals. (Contributed by NM, 12-Oct-2004.) |
⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) → sup(𝐴, ℝ, < ) ∈ ℝ) | ||
Theorem | suprub 11866* | A member of a nonempty bounded set of reals is less than or equal to the set's upper bound. (Contributed by NM, 12-Oct-2004.) |
⊢ (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) ∧ 𝐵 ∈ 𝐴) → 𝐵 ≤ sup(𝐴, ℝ, < )) | ||
Theorem | suprubd 11867* | Natural deduction form of suprubd 11867. (Contributed by Stanislas Polu, 9-Mar-2020.) |
⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → 𝐴 ≠ ∅) & ⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) & ⊢ (𝜑 → 𝐵 ∈ 𝐴) ⇒ ⊢ (𝜑 → 𝐵 ≤ sup(𝐴, ℝ, < )) | ||
Theorem | suprcld 11868* | Natural deduction form of suprcl 11865. (Contributed by Stanislas Polu, 9-Mar-2020.) |
⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → 𝐴 ≠ ∅) & ⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) ⇒ ⊢ (𝜑 → sup(𝐴, ℝ, < ) ∈ ℝ) | ||
Theorem | suprlub 11869* | The supremum of a nonempty bounded set of reals is the least upper bound. (Contributed by NM, 15-Nov-2004.) (Revised by Mario Carneiro, 6-Sep-2014.) |
⊢ (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) ∧ 𝐵 ∈ ℝ) → (𝐵 < sup(𝐴, ℝ, < ) ↔ ∃𝑧 ∈ 𝐴 𝐵 < 𝑧)) | ||
Theorem | suprnub 11870* | An upper bound is not less than the supremum of a nonempty bounded set of reals. (Contributed by NM, 15-Nov-2004.) (Revised by Mario Carneiro, 6-Sep-2014.) |
⊢ (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) ∧ 𝐵 ∈ ℝ) → (¬ 𝐵 < sup(𝐴, ℝ, < ) ↔ ∀𝑧 ∈ 𝐴 ¬ 𝐵 < 𝑧)) | ||
Theorem | suprleub 11871* | The supremum of a nonempty bounded set of reals is less than or equal to an upper bound. (Contributed by NM, 18-Mar-2005.) (Revised by Mario Carneiro, 6-Sep-2014.) |
⊢ (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) ∧ 𝐵 ∈ ℝ) → (sup(𝐴, ℝ, < ) ≤ 𝐵 ↔ ∀𝑧 ∈ 𝐴 𝑧 ≤ 𝐵)) | ||
Theorem | supaddc 11872* | The supremum function distributes over addition in a sense similar to that in supmul1 11874. (Contributed by Brendan Leahy, 25-Sep-2017.) |
⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → 𝐴 ≠ ∅) & ⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ 𝐶 = {𝑧 ∣ ∃𝑣 ∈ 𝐴 𝑧 = (𝑣 + 𝐵)} ⇒ ⊢ (𝜑 → (sup(𝐴, ℝ, < ) + 𝐵) = sup(𝐶, ℝ, < )) | ||
Theorem | supadd 11873* | The supremum function distributes over addition in a sense similar to that in supmul 11877. (Contributed by Brendan Leahy, 26-Sep-2017.) |
⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → 𝐴 ≠ ∅) & ⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) & ⊢ (𝜑 → 𝐵 ⊆ ℝ) & ⊢ (𝜑 → 𝐵 ≠ ∅) & ⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐵 𝑦 ≤ 𝑥) & ⊢ 𝐶 = {𝑧 ∣ ∃𝑣 ∈ 𝐴 ∃𝑏 ∈ 𝐵 𝑧 = (𝑣 + 𝑏)} ⇒ ⊢ (𝜑 → (sup(𝐴, ℝ, < ) + sup(𝐵, ℝ, < )) = sup(𝐶, ℝ, < )) | ||
Theorem | supmul1 11874* | The supremum function distributes over multiplication, in the sense that 𝐴 · (sup𝐵) = sup(𝐴 · 𝐵), where 𝐴 · 𝐵 is shorthand for {𝐴 · 𝑏 ∣ 𝑏 ∈ 𝐵} and is defined as 𝐶 below. This is the simple version, with only one set argument; see supmul 11877 for the more general case with two set arguments. (Contributed by Mario Carneiro, 5-Jul-2013.) |
⊢ 𝐶 = {𝑧 ∣ ∃𝑣 ∈ 𝐵 𝑧 = (𝐴 · 𝑣)} & ⊢ (𝜑 ↔ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ ∀𝑥 ∈ 𝐵 0 ≤ 𝑥) ∧ (𝐵 ⊆ ℝ ∧ 𝐵 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐵 𝑦 ≤ 𝑥))) ⇒ ⊢ (𝜑 → (𝐴 · sup(𝐵, ℝ, < )) = sup(𝐶, ℝ, < )) | ||
Theorem | supmullem1 11875* | Lemma for supmul 11877. (Contributed by Mario Carneiro, 5-Jul-2013.) |
⊢ 𝐶 = {𝑧 ∣ ∃𝑣 ∈ 𝐴 ∃𝑏 ∈ 𝐵 𝑧 = (𝑣 · 𝑏)} & ⊢ (𝜑 ↔ ((∀𝑥 ∈ 𝐴 0 ≤ 𝑥 ∧ ∀𝑥 ∈ 𝐵 0 ≤ 𝑥) ∧ (𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) ∧ (𝐵 ⊆ ℝ ∧ 𝐵 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐵 𝑦 ≤ 𝑥))) ⇒ ⊢ (𝜑 → ∀𝑤 ∈ 𝐶 𝑤 ≤ (sup(𝐴, ℝ, < ) · sup(𝐵, ℝ, < ))) | ||
Theorem | supmullem2 11876* | Lemma for supmul 11877. (Contributed by Mario Carneiro, 5-Jul-2013.) |
⊢ 𝐶 = {𝑧 ∣ ∃𝑣 ∈ 𝐴 ∃𝑏 ∈ 𝐵 𝑧 = (𝑣 · 𝑏)} & ⊢ (𝜑 ↔ ((∀𝑥 ∈ 𝐴 0 ≤ 𝑥 ∧ ∀𝑥 ∈ 𝐵 0 ≤ 𝑥) ∧ (𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) ∧ (𝐵 ⊆ ℝ ∧ 𝐵 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐵 𝑦 ≤ 𝑥))) ⇒ ⊢ (𝜑 → (𝐶 ⊆ ℝ ∧ 𝐶 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑤 ∈ 𝐶 𝑤 ≤ 𝑥)) | ||
Theorem | supmul 11877* | The supremum function distributes over multiplication, in the sense that (sup𝐴) · (sup𝐵) = sup(𝐴 · 𝐵), where 𝐴 · 𝐵 is shorthand for {𝑎 · 𝑏 ∣ 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵} and is defined as 𝐶 below. We made use of this in our definition of multiplication in the Dedekind cut construction of the reals (see df-mp 10671). (Contributed by Mario Carneiro, 5-Jul-2013.) (Revised by Mario Carneiro, 6-Sep-2014.) |
⊢ 𝐶 = {𝑧 ∣ ∃𝑣 ∈ 𝐴 ∃𝑏 ∈ 𝐵 𝑧 = (𝑣 · 𝑏)} & ⊢ (𝜑 ↔ ((∀𝑥 ∈ 𝐴 0 ≤ 𝑥 ∧ ∀𝑥 ∈ 𝐵 0 ≤ 𝑥) ∧ (𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) ∧ (𝐵 ⊆ ℝ ∧ 𝐵 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐵 𝑦 ≤ 𝑥))) ⇒ ⊢ (𝜑 → (sup(𝐴, ℝ, < ) · sup(𝐵, ℝ, < )) = sup(𝐶, ℝ, < )) | ||
Theorem | sup3ii 11878* | A version of the completeness axiom for reals. (Contributed by NM, 23-Aug-1999.) |
⊢ (𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) ⇒ ⊢ ∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧)) | ||
Theorem | suprclii 11879* | Closure of supremum of a nonempty bounded set of reals. (Contributed by NM, 12-Sep-1999.) |
⊢ (𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) ⇒ ⊢ sup(𝐴, ℝ, < ) ∈ ℝ | ||
Theorem | suprubii 11880* | A member of a nonempty bounded set of reals is less than or equal to the set's upper bound. (Contributed by NM, 12-Sep-1999.) |
⊢ (𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) ⇒ ⊢ (𝐵 ∈ 𝐴 → 𝐵 ≤ sup(𝐴, ℝ, < )) | ||
Theorem | suprlubii 11881* | The supremum of a nonempty bounded set of reals is the least upper bound. (Contributed by NM, 15-Oct-2004.) (Revised by Mario Carneiro, 6-Sep-2014.) |
⊢ (𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) ⇒ ⊢ (𝐵 ∈ ℝ → (𝐵 < sup(𝐴, ℝ, < ) ↔ ∃𝑧 ∈ 𝐴 𝐵 < 𝑧)) | ||
Theorem | suprnubii 11882* | An upper bound is not less than the supremum of a nonempty bounded set of reals. (Contributed by NM, 15-Oct-2004.) (Revised by Mario Carneiro, 6-Sep-2014.) |
⊢ (𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) ⇒ ⊢ (𝐵 ∈ ℝ → (¬ 𝐵 < sup(𝐴, ℝ, < ) ↔ ∀𝑧 ∈ 𝐴 ¬ 𝐵 < 𝑧)) | ||
Theorem | suprleubii 11883* | The supremum of a nonempty bounded set of reals is less than or equal to an upper bound. (Contributed by NM, 18-Mar-2005.) (Revised by Mario Carneiro, 6-Sep-2014.) |
⊢ (𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) ⇒ ⊢ (𝐵 ∈ ℝ → (sup(𝐴, ℝ, < ) ≤ 𝐵 ↔ ∀𝑧 ∈ 𝐴 𝑧 ≤ 𝐵)) | ||
Theorem | riotaneg 11884* | The negative of the unique real such that 𝜑. (Contributed by NM, 13-Jun-2005.) |
⊢ (𝑥 = -𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃!𝑥 ∈ ℝ 𝜑 → (℩𝑥 ∈ ℝ 𝜑) = -(℩𝑦 ∈ ℝ 𝜓)) | ||
Theorem | negiso 11885 | Negation is an order anti-isomorphism of the real numbers, which is its own inverse. (Contributed by Mario Carneiro, 24-Dec-2016.) |
⊢ 𝐹 = (𝑥 ∈ ℝ ↦ -𝑥) ⇒ ⊢ (𝐹 Isom < , ◡ < (ℝ, ℝ) ∧ ◡𝐹 = 𝐹) | ||
Theorem | dfinfre 11886* | The infimum of a set of reals 𝐴. (Contributed by NM, 9-Oct-2005.) (Revised by AV, 4-Sep-2020.) |
⊢ (𝐴 ⊆ ℝ → inf(𝐴, ℝ, < ) = ∪ {𝑥 ∈ ℝ ∣ (∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦))}) | ||
Theorem | infrecl 11887* | Closure of infimum of a nonempty bounded set of reals. (Contributed by NM, 8-Oct-2005.) (Revised by AV, 4-Sep-2020.) |
⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦) → inf(𝐴, ℝ, < ) ∈ ℝ) | ||
Theorem | infrenegsup 11888* | The infimum of a set of reals 𝐴 is the negative of the supremum of the negatives of its elements. The antecedent ensures that 𝐴 is nonempty and has a lower bound. (Contributed by NM, 14-Jun-2005.) (Revised by AV, 4-Sep-2020.) |
⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦) → inf(𝐴, ℝ, < ) = -sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴}, ℝ, < )) | ||
Theorem | infregelb 11889* | Any lower bound of a nonempty set of real numbers is less than or equal to its infimum. (Contributed by Jeff Hankins, 1-Sep-2013.) (Revised by AV, 4-Sep-2020.) (Proof modification is discouraged.) |
⊢ (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦) ∧ 𝐵 ∈ ℝ) → (𝐵 ≤ inf(𝐴, ℝ, < ) ↔ ∀𝑧 ∈ 𝐴 𝐵 ≤ 𝑧)) | ||
Theorem | infrelb 11890* | If a nonempty set of real numbers has a lower bound, its infimum is less than or equal to any of its elements. (Contributed by Jeff Hankins, 15-Sep-2013.) (Revised by AV, 4-Sep-2020.) |
⊢ ((𝐵 ⊆ ℝ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐵 𝑥 ≤ 𝑦 ∧ 𝐴 ∈ 𝐵) → inf(𝐵, ℝ, < ) ≤ 𝐴) | ||
Theorem | infrefilb 11891 | The infimum of a finite set of reals is less than or equal to any of its elements. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
⊢ ((𝐵 ⊆ ℝ ∧ 𝐵 ∈ Fin ∧ 𝐴 ∈ 𝐵) → inf(𝐵, ℝ, < ) ≤ 𝐴) | ||
Theorem | supfirege 11892 | The supremum of a finite set of real numbers is greater than or equal to all the real numbers of the set. (Contributed by AV, 1-Oct-2019.) |
⊢ (𝜑 → 𝐵 ⊆ ℝ) & ⊢ (𝜑 → 𝐵 ∈ Fin) & ⊢ (𝜑 → 𝐶 ∈ 𝐵) & ⊢ (𝜑 → 𝑆 = sup(𝐵, ℝ, < )) ⇒ ⊢ (𝜑 → 𝐶 ≤ 𝑆) | ||
Theorem | inelr 11893 | The imaginary unit i is not a real number. (Contributed by NM, 6-May-1999.) |
⊢ ¬ i ∈ ℝ | ||
Theorem | rimul 11894 | A real number times the imaginary unit is real only if the number is 0. (Contributed by NM, 28-May-1999.) (Revised by Mario Carneiro, 27-May-2016.) |
⊢ ((𝐴 ∈ ℝ ∧ (i · 𝐴) ∈ ℝ) → 𝐴 = 0) | ||
Theorem | cru 11895 | The representation of complex numbers in terms of real and imaginary parts is unique. Proposition 10-1.3 of [Gleason] p. 130. (Contributed by NM, 9-May-1999.) (Proof shortened by Mario Carneiro, 27-May-2016.) |
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((𝐴 + (i · 𝐵)) = (𝐶 + (i · 𝐷)) ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) | ||
Theorem | crne0 11896 | The real representation of complex numbers is nonzero iff one of its terms is nonzero. (Contributed by NM, 29-Apr-2005.) (Proof shortened by Mario Carneiro, 27-May-2016.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 ≠ 0 ∨ 𝐵 ≠ 0) ↔ (𝐴 + (i · 𝐵)) ≠ 0)) | ||
Theorem | creur 11897* | The real part of a complex number is unique. Proposition 10-1.3 of [Gleason] p. 130. (Contributed by NM, 9-May-1999.) (Proof shortened by Mario Carneiro, 27-May-2016.) |
⊢ (𝐴 ∈ ℂ → ∃!𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦))) | ||
Theorem | creui 11898* | The imaginary part of a complex number is unique. Proposition 10-1.3 of [Gleason] p. 130. (Contributed by NM, 9-May-1999.) (Proof shortened by Mario Carneiro, 27-May-2016.) |
⊢ (𝐴 ∈ ℂ → ∃!𝑦 ∈ ℝ ∃𝑥 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦))) | ||
Theorem | cju 11899* | The complex conjugate of a complex number is unique. (Contributed by Mario Carneiro, 6-Nov-2013.) |
⊢ (𝐴 ∈ ℂ → ∃!𝑥 ∈ ℂ ((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴 − 𝑥)) ∈ ℝ)) | ||
Theorem | ofsubeq0 11900 | Function analogue of subeq0 11177. (Contributed by Mario Carneiro, 24-Jul-2014.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → ((𝐹 ∘f − 𝐺) = (𝐴 × {0}) ↔ 𝐹 = 𝐺)) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |