Home | Metamath
Proof Explorer Theorem List (p. 119 of 469) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29568) |
Hilbert Space Explorer
(29569-31091) |
Users' Mathboxes
(31092-46872) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | recclzi 11801 | Closure law for reciprocal. (Contributed by NM, 30-Apr-2005.) |
⊢ 𝐴 ∈ ℂ ⇒ ⊢ (𝐴 ≠ 0 → (1 / 𝐴) ∈ ℂ) | ||
Theorem | recne0zi 11802 | The reciprocal of a nonzero number is nonzero. (Contributed by NM, 14-May-1999.) |
⊢ 𝐴 ∈ ℂ ⇒ ⊢ (𝐴 ≠ 0 → (1 / 𝐴) ≠ 0) | ||
Theorem | recidzi 11803 | Multiplication of a number and its reciprocal. (Contributed by NM, 14-May-1999.) |
⊢ 𝐴 ∈ ℂ ⇒ ⊢ (𝐴 ≠ 0 → (𝐴 · (1 / 𝐴)) = 1) | ||
Theorem | div1i 11804 | A number divided by 1 is itself. (Contributed by NM, 9-Jan-2002.) |
⊢ 𝐴 ∈ ℂ ⇒ ⊢ (𝐴 / 1) = 𝐴 | ||
Theorem | eqnegi 11805 | A number equal to its negative is zero. (Contributed by NM, 29-May-1999.) |
⊢ 𝐴 ∈ ℂ ⇒ ⊢ (𝐴 = -𝐴 ↔ 𝐴 = 0) | ||
Theorem | reccli 11806 | Closure law for reciprocal. (Contributed by NM, 30-Apr-2005.) |
⊢ 𝐴 ∈ ℂ & ⊢ 𝐴 ≠ 0 ⇒ ⊢ (1 / 𝐴) ∈ ℂ | ||
Theorem | recidi 11807 | Multiplication of a number and its reciprocal. (Contributed by NM, 9-Feb-1995.) |
⊢ 𝐴 ∈ ℂ & ⊢ 𝐴 ≠ 0 ⇒ ⊢ (𝐴 · (1 / 𝐴)) = 1 | ||
Theorem | recreci 11808 | A number is equal to the reciprocal of its reciprocal. Theorem I.10 of [Apostol] p. 18. (Contributed by NM, 9-Feb-1995.) |
⊢ 𝐴 ∈ ℂ & ⊢ 𝐴 ≠ 0 ⇒ ⊢ (1 / (1 / 𝐴)) = 𝐴 | ||
Theorem | dividi 11809 | A number divided by itself is one. (Contributed by NM, 9-Feb-1995.) |
⊢ 𝐴 ∈ ℂ & ⊢ 𝐴 ≠ 0 ⇒ ⊢ (𝐴 / 𝐴) = 1 | ||
Theorem | div0i 11810 | Division into zero is zero. (Contributed by NM, 12-Aug-1999.) |
⊢ 𝐴 ∈ ℂ & ⊢ 𝐴 ≠ 0 ⇒ ⊢ (0 / 𝐴) = 0 | ||
Theorem | divclzi 11811 | Closure law for division. (Contributed by NM, 7-May-1999.) (Revised by Mario Carneiro, 17-Feb-2014.) |
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ ⇒ ⊢ (𝐵 ≠ 0 → (𝐴 / 𝐵) ∈ ℂ) | ||
Theorem | divcan1zi 11812 | A cancellation law for division. (Contributed by NM, 2-Oct-1999.) |
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ ⇒ ⊢ (𝐵 ≠ 0 → ((𝐴 / 𝐵) · 𝐵) = 𝐴) | ||
Theorem | divcan2zi 11813 | A cancellation law for division. (Contributed by NM, 10-Aug-1999.) |
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ ⇒ ⊢ (𝐵 ≠ 0 → (𝐵 · (𝐴 / 𝐵)) = 𝐴) | ||
Theorem | divreczi 11814 | Relationship between division and reciprocal. Theorem I.9 of [Apostol] p. 18. (Contributed by NM, 11-Oct-1999.) |
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ ⇒ ⊢ (𝐵 ≠ 0 → (𝐴 / 𝐵) = (𝐴 · (1 / 𝐵))) | ||
Theorem | divcan3zi 11815 | A cancellation law for division. (Eliminates a hypothesis of divcan3i 11822 with the weak deduction theorem.) (Contributed by NM, 3-Feb-2004.) |
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ ⇒ ⊢ (𝐵 ≠ 0 → ((𝐵 · 𝐴) / 𝐵) = 𝐴) | ||
Theorem | divcan4zi 11816 | A cancellation law for division. (Contributed by NM, 12-Oct-1999.) |
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ ⇒ ⊢ (𝐵 ≠ 0 → ((𝐴 · 𝐵) / 𝐵) = 𝐴) | ||
Theorem | rec11i 11817 | Reciprocal is one-to-one. (Contributed by NM, 16-Sep-1999.) |
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ ⇒ ⊢ ((𝐴 ≠ 0 ∧ 𝐵 ≠ 0) → ((1 / 𝐴) = (1 / 𝐵) ↔ 𝐴 = 𝐵)) | ||
Theorem | divcli 11818 | Closure law for division. (Contributed by NM, 2-Feb-1995.) (Revised by Mario Carneiro, 17-Feb-2014.) |
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐵 ≠ 0 ⇒ ⊢ (𝐴 / 𝐵) ∈ ℂ | ||
Theorem | divcan2i 11819 | A cancellation law for division. (Contributed by NM, 9-Feb-1995.) |
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐵 ≠ 0 ⇒ ⊢ (𝐵 · (𝐴 / 𝐵)) = 𝐴 | ||
Theorem | divcan1i 11820 | A cancellation law for division. (Contributed by NM, 18-May-1999.) |
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐵 ≠ 0 ⇒ ⊢ ((𝐴 / 𝐵) · 𝐵) = 𝐴 | ||
Theorem | divreci 11821 | Relationship between division and reciprocal. Theorem I.9 of [Apostol] p. 18. (Contributed by NM, 9-Feb-1995.) |
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐵 ≠ 0 ⇒ ⊢ (𝐴 / 𝐵) = (𝐴 · (1 / 𝐵)) | ||
Theorem | divcan3i 11822 | A cancellation law for division. (Contributed by NM, 16-Feb-1995.) |
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐵 ≠ 0 ⇒ ⊢ ((𝐵 · 𝐴) / 𝐵) = 𝐴 | ||
Theorem | divcan4i 11823 | A cancellation law for division. (Contributed by NM, 18-May-1999.) |
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐵 ≠ 0 ⇒ ⊢ ((𝐴 · 𝐵) / 𝐵) = 𝐴 | ||
Theorem | divne0i 11824 | The ratio of nonzero numbers is nonzero. (Contributed by NM, 9-Feb-1995.) |
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐴 ≠ 0 & ⊢ 𝐵 ≠ 0 ⇒ ⊢ (𝐴 / 𝐵) ≠ 0 | ||
Theorem | rec11ii 11825 | Reciprocal is one-to-one. (Contributed by NM, 16-Sep-1999.) |
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐴 ≠ 0 & ⊢ 𝐵 ≠ 0 ⇒ ⊢ ((1 / 𝐴) = (1 / 𝐵) ↔ 𝐴 = 𝐵) | ||
Theorem | divasszi 11826 | An associative law for division. (Contributed by NM, 12-Aug-1999.) |
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈ ℂ ⇒ ⊢ (𝐶 ≠ 0 → ((𝐴 · 𝐵) / 𝐶) = (𝐴 · (𝐵 / 𝐶))) | ||
Theorem | divmulzi 11827 | Relationship between division and multiplication. (Contributed by NM, 8-May-1999.) (Revised by Mario Carneiro, 17-Feb-2014.) |
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈ ℂ ⇒ ⊢ (𝐵 ≠ 0 → ((𝐴 / 𝐵) = 𝐶 ↔ (𝐵 · 𝐶) = 𝐴)) | ||
Theorem | divdirzi 11828 | Distribution of division over addition. (Contributed by NM, 31-Jul-2004.) |
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈ ℂ ⇒ ⊢ (𝐶 ≠ 0 → ((𝐴 + 𝐵) / 𝐶) = ((𝐴 / 𝐶) + (𝐵 / 𝐶))) | ||
Theorem | divdiv23zi 11829 | Swap denominators in a division. (Contributed by NM, 15-Sep-1999.) |
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈ ℂ ⇒ ⊢ ((𝐵 ≠ 0 ∧ 𝐶 ≠ 0) → ((𝐴 / 𝐵) / 𝐶) = ((𝐴 / 𝐶) / 𝐵)) | ||
Theorem | divmuli 11830 | Relationship between division and multiplication. (Contributed by NM, 2-Feb-1995.) (Revised by Mario Carneiro, 17-Feb-2014.) |
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈ ℂ & ⊢ 𝐵 ≠ 0 ⇒ ⊢ ((𝐴 / 𝐵) = 𝐶 ↔ (𝐵 · 𝐶) = 𝐴) | ||
Theorem | divdiv32i 11831 | Swap denominators in a division. (Contributed by NM, 15-Sep-1999.) |
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈ ℂ & ⊢ 𝐵 ≠ 0 & ⊢ 𝐶 ≠ 0 ⇒ ⊢ ((𝐴 / 𝐵) / 𝐶) = ((𝐴 / 𝐶) / 𝐵) | ||
Theorem | divassi 11832 | An associative law for division. (Contributed by NM, 15-Feb-1995.) |
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈ ℂ & ⊢ 𝐶 ≠ 0 ⇒ ⊢ ((𝐴 · 𝐵) / 𝐶) = (𝐴 · (𝐵 / 𝐶)) | ||
Theorem | divdiri 11833 | Distribution of division over addition. (Contributed by NM, 16-Feb-1995.) |
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈ ℂ & ⊢ 𝐶 ≠ 0 ⇒ ⊢ ((𝐴 + 𝐵) / 𝐶) = ((𝐴 / 𝐶) + (𝐵 / 𝐶)) | ||
Theorem | div23i 11834 | A commutative/associative law for division. (Contributed by NM, 3-Sep-1999.) |
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈ ℂ & ⊢ 𝐶 ≠ 0 ⇒ ⊢ ((𝐴 · 𝐵) / 𝐶) = ((𝐴 / 𝐶) · 𝐵) | ||
Theorem | div11i 11835 | One-to-one relationship for division. (Contributed by NM, 20-Aug-2001.) |
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈ ℂ & ⊢ 𝐶 ≠ 0 ⇒ ⊢ ((𝐴 / 𝐶) = (𝐵 / 𝐶) ↔ 𝐴 = 𝐵) | ||
Theorem | divmuldivi 11836 | Multiplication of two ratios. Theorem I.14 of [Apostol] p. 18. (Contributed by NM, 16-Feb-1995.) |
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈ ℂ & ⊢ 𝐷 ∈ ℂ & ⊢ 𝐵 ≠ 0 & ⊢ 𝐷 ≠ 0 ⇒ ⊢ ((𝐴 / 𝐵) · (𝐶 / 𝐷)) = ((𝐴 · 𝐶) / (𝐵 · 𝐷)) | ||
Theorem | divmul13i 11837 | Swap denominators of two ratios. (Contributed by NM, 6-Aug-1999.) |
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈ ℂ & ⊢ 𝐷 ∈ ℂ & ⊢ 𝐵 ≠ 0 & ⊢ 𝐷 ≠ 0 ⇒ ⊢ ((𝐴 / 𝐵) · (𝐶 / 𝐷)) = ((𝐶 / 𝐵) · (𝐴 / 𝐷)) | ||
Theorem | divadddivi 11838 | Addition of two ratios. Theorem I.13 of [Apostol] p. 18. (Contributed by NM, 21-Feb-1995.) |
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈ ℂ & ⊢ 𝐷 ∈ ℂ & ⊢ 𝐵 ≠ 0 & ⊢ 𝐷 ≠ 0 ⇒ ⊢ ((𝐴 / 𝐵) + (𝐶 / 𝐷)) = (((𝐴 · 𝐷) + (𝐶 · 𝐵)) / (𝐵 · 𝐷)) | ||
Theorem | divdivdivi 11839 | Division of two ratios. Theorem I.15 of [Apostol] p. 18. (Contributed by NM, 22-Feb-1995.) |
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈ ℂ & ⊢ 𝐷 ∈ ℂ & ⊢ 𝐵 ≠ 0 & ⊢ 𝐷 ≠ 0 & ⊢ 𝐶 ≠ 0 ⇒ ⊢ ((𝐴 / 𝐵) / (𝐶 / 𝐷)) = ((𝐴 · 𝐷) / (𝐵 · 𝐶)) | ||
Theorem | rerecclzi 11840 | Closure law for reciprocal. (Contributed by NM, 30-Apr-2005.) |
⊢ 𝐴 ∈ ℝ ⇒ ⊢ (𝐴 ≠ 0 → (1 / 𝐴) ∈ ℝ) | ||
Theorem | rereccli 11841 | Closure law for reciprocal. (Contributed by NM, 30-Apr-2005.) |
⊢ 𝐴 ∈ ℝ & ⊢ 𝐴 ≠ 0 ⇒ ⊢ (1 / 𝐴) ∈ ℝ | ||
Theorem | redivclzi 11842 | Closure law for division of reals. (Contributed by NM, 9-May-1999.) |
⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ ⇒ ⊢ (𝐵 ≠ 0 → (𝐴 / 𝐵) ∈ ℝ) | ||
Theorem | redivcli 11843 | Closure law for division of reals. (Contributed by NM, 9-May-1999.) |
⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ & ⊢ 𝐵 ≠ 0 ⇒ ⊢ (𝐴 / 𝐵) ∈ ℝ | ||
Theorem | div1d 11844 | A number divided by 1 is itself. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝐴 / 1) = 𝐴) | ||
Theorem | reccld 11845 | Closure law for reciprocal. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐴 ≠ 0) ⇒ ⊢ (𝜑 → (1 / 𝐴) ∈ ℂ) | ||
Theorem | recne0d 11846 | The reciprocal of a nonzero number is nonzero. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐴 ≠ 0) ⇒ ⊢ (𝜑 → (1 / 𝐴) ≠ 0) | ||
Theorem | recidd 11847 | Multiplication of a number and its reciprocal. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐴 ≠ 0) ⇒ ⊢ (𝜑 → (𝐴 · (1 / 𝐴)) = 1) | ||
Theorem | recid2d 11848 | Multiplication of a number and its reciprocal. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐴 ≠ 0) ⇒ ⊢ (𝜑 → ((1 / 𝐴) · 𝐴) = 1) | ||
Theorem | recrecd 11849 | A number is equal to the reciprocal of its reciprocal. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐴 ≠ 0) ⇒ ⊢ (𝜑 → (1 / (1 / 𝐴)) = 𝐴) | ||
Theorem | dividd 11850 | A number divided by itself is one. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐴 ≠ 0) ⇒ ⊢ (𝜑 → (𝐴 / 𝐴) = 1) | ||
Theorem | div0d 11851 | Division into zero is zero. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐴 ≠ 0) ⇒ ⊢ (𝜑 → (0 / 𝐴) = 0) | ||
Theorem | divcld 11852 | Closure law for division. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ≠ 0) ⇒ ⊢ (𝜑 → (𝐴 / 𝐵) ∈ ℂ) | ||
Theorem | divcan1d 11853 | A cancellation law for division. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ≠ 0) ⇒ ⊢ (𝜑 → ((𝐴 / 𝐵) · 𝐵) = 𝐴) | ||
Theorem | divcan2d 11854 | A cancellation law for division. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ≠ 0) ⇒ ⊢ (𝜑 → (𝐵 · (𝐴 / 𝐵)) = 𝐴) | ||
Theorem | divrecd 11855 | Relationship between division and reciprocal. Theorem I.9 of [Apostol] p. 18. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ≠ 0) ⇒ ⊢ (𝜑 → (𝐴 / 𝐵) = (𝐴 · (1 / 𝐵))) | ||
Theorem | divrec2d 11856 | Relationship between division and reciprocal. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ≠ 0) ⇒ ⊢ (𝜑 → (𝐴 / 𝐵) = ((1 / 𝐵) · 𝐴)) | ||
Theorem | divcan3d 11857 | A cancellation law for division. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ≠ 0) ⇒ ⊢ (𝜑 → ((𝐵 · 𝐴) / 𝐵) = 𝐴) | ||
Theorem | divcan4d 11858 | A cancellation law for division. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ≠ 0) ⇒ ⊢ (𝜑 → ((𝐴 · 𝐵) / 𝐵) = 𝐴) | ||
Theorem | diveq0d 11859 | A ratio is zero iff the numerator is zero. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ≠ 0) & ⊢ (𝜑 → (𝐴 / 𝐵) = 0) ⇒ ⊢ (𝜑 → 𝐴 = 0) | ||
Theorem | diveq1d 11860 | Equality in terms of unit ratio. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ≠ 0) & ⊢ (𝜑 → (𝐴 / 𝐵) = 1) ⇒ ⊢ (𝜑 → 𝐴 = 𝐵) | ||
Theorem | diveq1ad 11861 | The quotient of two complex numbers is one iff they are equal. Deduction form of diveq1 11767. Generalization of diveq1d 11860. (Contributed by David Moews, 28-Feb-2017.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ≠ 0) ⇒ ⊢ (𝜑 → ((𝐴 / 𝐵) = 1 ↔ 𝐴 = 𝐵)) | ||
Theorem | diveq0ad 11862 | A fraction of complex numbers is zero iff its numerator is. Deduction form of diveq0 11744. (Contributed by David Moews, 28-Feb-2017.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ≠ 0) ⇒ ⊢ (𝜑 → ((𝐴 / 𝐵) = 0 ↔ 𝐴 = 0)) | ||
Theorem | divne1d 11863 | If two complex numbers are unequal, their quotient is not one. Contrapositive of diveq1d 11860. (Contributed by David Moews, 28-Feb-2017.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ≠ 0) & ⊢ (𝜑 → 𝐴 ≠ 𝐵) ⇒ ⊢ (𝜑 → (𝐴 / 𝐵) ≠ 1) | ||
Theorem | divne0bd 11864 | A ratio is zero iff the numerator is zero. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ≠ 0) ⇒ ⊢ (𝜑 → (𝐴 ≠ 0 ↔ (𝐴 / 𝐵) ≠ 0)) | ||
Theorem | divnegd 11865 | Move negative sign inside of a division. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ≠ 0) ⇒ ⊢ (𝜑 → -(𝐴 / 𝐵) = (-𝐴 / 𝐵)) | ||
Theorem | divneg2d 11866 | Move negative sign inside of a division. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ≠ 0) ⇒ ⊢ (𝜑 → -(𝐴 / 𝐵) = (𝐴 / -𝐵)) | ||
Theorem | div2negd 11867 | Quotient of two negatives. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ≠ 0) ⇒ ⊢ (𝜑 → (-𝐴 / -𝐵) = (𝐴 / 𝐵)) | ||
Theorem | divne0d 11868 | The ratio of nonzero numbers is nonzero. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐴 ≠ 0) & ⊢ (𝜑 → 𝐵 ≠ 0) ⇒ ⊢ (𝜑 → (𝐴 / 𝐵) ≠ 0) | ||
Theorem | recdivd 11869 | The reciprocal of a ratio. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐴 ≠ 0) & ⊢ (𝜑 → 𝐵 ≠ 0) ⇒ ⊢ (𝜑 → (1 / (𝐴 / 𝐵)) = (𝐵 / 𝐴)) | ||
Theorem | recdiv2d 11870 | Division into a reciprocal. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐴 ≠ 0) & ⊢ (𝜑 → 𝐵 ≠ 0) ⇒ ⊢ (𝜑 → ((1 / 𝐴) / 𝐵) = (1 / (𝐴 · 𝐵))) | ||
Theorem | divcan6d 11871 | Cancellation of inverted fractions. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐴 ≠ 0) & ⊢ (𝜑 → 𝐵 ≠ 0) ⇒ ⊢ (𝜑 → ((𝐴 / 𝐵) · (𝐵 / 𝐴)) = 1) | ||
Theorem | ddcand 11872 | Cancellation in a double division. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐴 ≠ 0) & ⊢ (𝜑 → 𝐵 ≠ 0) ⇒ ⊢ (𝜑 → (𝐴 / (𝐴 / 𝐵)) = 𝐵) | ||
Theorem | rec11d 11873 | Reciprocal is one-to-one. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐴 ≠ 0) & ⊢ (𝜑 → 𝐵 ≠ 0) & ⊢ (𝜑 → (1 / 𝐴) = (1 / 𝐵)) ⇒ ⊢ (𝜑 → 𝐴 = 𝐵) | ||
Theorem | divmuld 11874 | Relationship between division and multiplication. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ≠ 0) ⇒ ⊢ (𝜑 → ((𝐴 / 𝐵) = 𝐶 ↔ (𝐵 · 𝐶) = 𝐴)) | ||
Theorem | div32d 11875 | A commutative/associative law for division. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ≠ 0) ⇒ ⊢ (𝜑 → ((𝐴 / 𝐵) · 𝐶) = (𝐴 · (𝐶 / 𝐵))) | ||
Theorem | div13d 11876 | A commutative/associative law for division. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ≠ 0) ⇒ ⊢ (𝜑 → ((𝐴 / 𝐵) · 𝐶) = ((𝐶 / 𝐵) · 𝐴)) | ||
Theorem | divdiv32d 11877 | Swap denominators in a division. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ≠ 0) & ⊢ (𝜑 → 𝐶 ≠ 0) ⇒ ⊢ (𝜑 → ((𝐴 / 𝐵) / 𝐶) = ((𝐴 / 𝐶) / 𝐵)) | ||
Theorem | divcan5d 11878 | Cancellation of common factor in a ratio. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ≠ 0) & ⊢ (𝜑 → 𝐶 ≠ 0) ⇒ ⊢ (𝜑 → ((𝐶 · 𝐴) / (𝐶 · 𝐵)) = (𝐴 / 𝐵)) | ||
Theorem | divcan5rd 11879 | Cancellation of common factor in a ratio. (Contributed by Mario Carneiro, 1-Jan-2017.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ≠ 0) & ⊢ (𝜑 → 𝐶 ≠ 0) ⇒ ⊢ (𝜑 → ((𝐴 · 𝐶) / (𝐵 · 𝐶)) = (𝐴 / 𝐵)) | ||
Theorem | divcan7d 11880 | Cancel equal divisors in a division. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ≠ 0) & ⊢ (𝜑 → 𝐶 ≠ 0) ⇒ ⊢ (𝜑 → ((𝐴 / 𝐶) / (𝐵 / 𝐶)) = (𝐴 / 𝐵)) | ||
Theorem | dmdcand 11881 | Cancellation law for division and multiplication. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ≠ 0) & ⊢ (𝜑 → 𝐶 ≠ 0) ⇒ ⊢ (𝜑 → ((𝐵 / 𝐶) · (𝐴 / 𝐵)) = (𝐴 / 𝐶)) | ||
Theorem | dmdcan2d 11882 | Cancellation law for division and multiplication. (Contributed by David Moews, 28-Feb-2017.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ≠ 0) & ⊢ (𝜑 → 𝐶 ≠ 0) ⇒ ⊢ (𝜑 → ((𝐴 / 𝐵) · (𝐵 / 𝐶)) = (𝐴 / 𝐶)) | ||
Theorem | divdiv1d 11883 | Division into a fraction. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ≠ 0) & ⊢ (𝜑 → 𝐶 ≠ 0) ⇒ ⊢ (𝜑 → ((𝐴 / 𝐵) / 𝐶) = (𝐴 / (𝐵 · 𝐶))) | ||
Theorem | divdiv2d 11884 | Division by a fraction. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ≠ 0) & ⊢ (𝜑 → 𝐶 ≠ 0) ⇒ ⊢ (𝜑 → (𝐴 / (𝐵 / 𝐶)) = ((𝐴 · 𝐶) / 𝐵)) | ||
Theorem | divmul2d 11885 | Relationship between division and multiplication. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ≠ 0) ⇒ ⊢ (𝜑 → ((𝐴 / 𝐶) = 𝐵 ↔ 𝐴 = (𝐶 · 𝐵))) | ||
Theorem | divmul3d 11886 | Relationship between division and multiplication. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ≠ 0) ⇒ ⊢ (𝜑 → ((𝐴 / 𝐶) = 𝐵 ↔ 𝐴 = (𝐵 · 𝐶))) | ||
Theorem | divassd 11887 | An associative law for division. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ≠ 0) ⇒ ⊢ (𝜑 → ((𝐴 · 𝐵) / 𝐶) = (𝐴 · (𝐵 / 𝐶))) | ||
Theorem | div12d 11888 | A commutative/associative law for division. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ≠ 0) ⇒ ⊢ (𝜑 → (𝐴 · (𝐵 / 𝐶)) = (𝐵 · (𝐴 / 𝐶))) | ||
Theorem | div23d 11889 | A commutative/associative law for division. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ≠ 0) ⇒ ⊢ (𝜑 → ((𝐴 · 𝐵) / 𝐶) = ((𝐴 / 𝐶) · 𝐵)) | ||
Theorem | divdird 11890 | Distribution of division over addition. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ≠ 0) ⇒ ⊢ (𝜑 → ((𝐴 + 𝐵) / 𝐶) = ((𝐴 / 𝐶) + (𝐵 / 𝐶))) | ||
Theorem | divsubdird 11891 | Distribution of division over subtraction. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ≠ 0) ⇒ ⊢ (𝜑 → ((𝐴 − 𝐵) / 𝐶) = ((𝐴 / 𝐶) − (𝐵 / 𝐶))) | ||
Theorem | div11d 11892 | One-to-one relationship for division. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ≠ 0) & ⊢ (𝜑 → (𝐴 / 𝐶) = (𝐵 / 𝐶)) ⇒ ⊢ (𝜑 → 𝐴 = 𝐵) | ||
Theorem | divmuldivd 11893 | Multiplication of two ratios. Theorem I.14 of [Apostol] p. 18. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐷 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ≠ 0) & ⊢ (𝜑 → 𝐷 ≠ 0) ⇒ ⊢ (𝜑 → ((𝐴 / 𝐵) · (𝐶 / 𝐷)) = ((𝐴 · 𝐶) / (𝐵 · 𝐷))) | ||
Theorem | divmul13d 11894 | Swap denominators of two ratios. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐷 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ≠ 0) & ⊢ (𝜑 → 𝐷 ≠ 0) ⇒ ⊢ (𝜑 → ((𝐴 / 𝐵) · (𝐶 / 𝐷)) = ((𝐶 / 𝐵) · (𝐴 / 𝐷))) | ||
Theorem | divmul24d 11895 | Swap the numerators in the product of two ratios. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐷 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ≠ 0) & ⊢ (𝜑 → 𝐷 ≠ 0) ⇒ ⊢ (𝜑 → ((𝐴 / 𝐵) · (𝐶 / 𝐷)) = ((𝐴 / 𝐷) · (𝐶 / 𝐵))) | ||
Theorem | divadddivd 11896 | Addition of two ratios. Theorem I.13 of [Apostol] p. 18. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐷 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ≠ 0) & ⊢ (𝜑 → 𝐷 ≠ 0) ⇒ ⊢ (𝜑 → ((𝐴 / 𝐵) + (𝐶 / 𝐷)) = (((𝐴 · 𝐷) + (𝐶 · 𝐵)) / (𝐵 · 𝐷))) | ||
Theorem | divsubdivd 11897 | Subtraction of two ratios. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐷 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ≠ 0) & ⊢ (𝜑 → 𝐷 ≠ 0) ⇒ ⊢ (𝜑 → ((𝐴 / 𝐵) − (𝐶 / 𝐷)) = (((𝐴 · 𝐷) − (𝐶 · 𝐵)) / (𝐵 · 𝐷))) | ||
Theorem | divmuleqd 11898 | Cross-multiply in an equality of ratios. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐷 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ≠ 0) & ⊢ (𝜑 → 𝐷 ≠ 0) ⇒ ⊢ (𝜑 → ((𝐴 / 𝐵) = (𝐶 / 𝐷) ↔ (𝐴 · 𝐷) = (𝐶 · 𝐵))) | ||
Theorem | divdivdivd 11899 | Division of two ratios. Theorem I.15 of [Apostol] p. 18. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐷 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ≠ 0) & ⊢ (𝜑 → 𝐷 ≠ 0) & ⊢ (𝜑 → 𝐶 ≠ 0) ⇒ ⊢ (𝜑 → ((𝐴 / 𝐵) / (𝐶 / 𝐷)) = ((𝐴 · 𝐷) / (𝐵 · 𝐶))) | ||
Theorem | diveq1bd 11900 | If two complex numbers are equal, their quotient is one. One-way deduction form of diveq1 11767. Converse of diveq1d 11860. (Contributed by David Moews, 28-Feb-2017.) |
⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ≠ 0) & ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (𝐴 / 𝐵) = 1) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |