| Metamath
Proof Explorer Theorem List (p. 119 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30847) |
(30848-32370) |
(32371-49794) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | lt2addd 11801 | Adding both side of two inequalities. Theorem I.25 of [Apostol] p. 20. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐷 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐶) & ⊢ (𝜑 → 𝐵 < 𝐷) ⇒ ⊢ (𝜑 → (𝐴 + 𝐵) < (𝐶 + 𝐷)) | ||
| Theorem | lt2subd 11802 | Subtracting both sides of two 'less than' relations. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐷 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐶) & ⊢ (𝜑 → 𝐵 < 𝐷) ⇒ ⊢ (𝜑 → (𝐴 − 𝐷) < (𝐶 − 𝐵)) | ||
| Theorem | possumd 11803 | Condition for a positive sum. (Contributed by Scott Fenton, 16-Dec-2017.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → (0 < (𝐴 + 𝐵) ↔ -𝐵 < 𝐴)) | ||
| Theorem | sublt0d 11804 | When a subtraction gives a negative result. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → ((𝐴 − 𝐵) < 0 ↔ 𝐴 < 𝐵)) | ||
| Theorem | ltaddsublt 11805 | Addition and subtraction on one side of 'less than'. (Contributed by AV, 24-Nov-2018.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 < 𝐶 ↔ ((𝐴 + 𝐵) − 𝐶) < 𝐴)) | ||
| Theorem | 1le1 11806 | One is less than or equal to one. (Contributed by David A. Wheeler, 16-Jul-2016.) |
| ⊢ 1 ≤ 1 | ||
| Theorem | ixi 11807 | i times itself is minus 1. (Contributed by NM, 6-May-1999.) (Proof shortened by Andrew Salmon, 19-Nov-2011.) |
| ⊢ (i · i) = -1 | ||
| Theorem | recextlem1 11808 | Lemma for recex 11810. (Contributed by Eric Schmidt, 23-May-2007.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + (i · 𝐵)) · (𝐴 − (i · 𝐵))) = ((𝐴 · 𝐴) + (𝐵 · 𝐵))) | ||
| Theorem | recextlem2 11809 | Lemma for recex 11810. (Contributed by Eric Schmidt, 23-May-2007.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐴 + (i · 𝐵)) ≠ 0) → ((𝐴 · 𝐴) + (𝐵 · 𝐵)) ≠ 0) | ||
| Theorem | recex 11810* | Existence of reciprocal of nonzero complex number. (Contributed by Eric Schmidt, 22-May-2007.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ∃𝑥 ∈ ℂ (𝐴 · 𝑥) = 1) | ||
| Theorem | mulcand 11811 | Cancellation law for multiplication. Theorem I.7 of [Apostol] p. 18. (Contributed by NM, 26-Jan-1995.) (Revised by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ≠ 0) ⇒ ⊢ (𝜑 → ((𝐶 · 𝐴) = (𝐶 · 𝐵) ↔ 𝐴 = 𝐵)) | ||
| Theorem | mulcan2d 11812 | Cancellation law for multiplication. Theorem I.7 of [Apostol] p. 18. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ≠ 0) ⇒ ⊢ (𝜑 → ((𝐴 · 𝐶) = (𝐵 · 𝐶) ↔ 𝐴 = 𝐵)) | ||
| Theorem | mulcanad 11813 | Cancellation of a nonzero factor on the left in an equation. One-way deduction form of mulcand 11811. (Contributed by David Moews, 28-Feb-2017.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ≠ 0) & ⊢ (𝜑 → (𝐶 · 𝐴) = (𝐶 · 𝐵)) ⇒ ⊢ (𝜑 → 𝐴 = 𝐵) | ||
| Theorem | mulcan2ad 11814 | Cancellation of a nonzero factor on the right in an equation. One-way deduction form of mulcan2d 11812. (Contributed by David Moews, 28-Feb-2017.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ≠ 0) & ⊢ (𝜑 → (𝐴 · 𝐶) = (𝐵 · 𝐶)) ⇒ ⊢ (𝜑 → 𝐴 = 𝐵) | ||
| Theorem | mulcan 11815 | Cancellation law for multiplication (full theorem form). Theorem I.7 of [Apostol] p. 18. (Contributed by NM, 29-Jan-1995.) (Revised by Mario Carneiro, 27-May-2016.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((𝐶 · 𝐴) = (𝐶 · 𝐵) ↔ 𝐴 = 𝐵)) | ||
| Theorem | mulcan2 11816 | Cancellation law for multiplication. (Contributed by NM, 21-Jan-2005.) (Revised by Mario Carneiro, 27-May-2016.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((𝐴 · 𝐶) = (𝐵 · 𝐶) ↔ 𝐴 = 𝐵)) | ||
| Theorem | mulcani 11817 | Cancellation law for multiplication. Theorem I.7 of [Apostol] p. 18. (Contributed by NM, 26-Jan-1995.) |
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈ ℂ & ⊢ 𝐶 ≠ 0 ⇒ ⊢ ((𝐶 · 𝐴) = (𝐶 · 𝐵) ↔ 𝐴 = 𝐵) | ||
| Theorem | mul0or 11818 | If a product is zero, one of its factors must be zero. Theorem I.11 of [Apostol] p. 18. (Contributed by NM, 9-Oct-1999.) (Revised by Mario Carneiro, 27-May-2016.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · 𝐵) = 0 ↔ (𝐴 = 0 ∨ 𝐵 = 0))) | ||
| Theorem | mulne0b 11819 | The product of two nonzero numbers is nonzero. (Contributed by NM, 1-Aug-2004.) (Proof shortened by Andrew Salmon, 19-Nov-2011.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 ≠ 0 ∧ 𝐵 ≠ 0) ↔ (𝐴 · 𝐵) ≠ 0)) | ||
| Theorem | mulne0 11820 | The product of two nonzero numbers is nonzero. (Contributed by NM, 30-Dec-2007.) |
| ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) → (𝐴 · 𝐵) ≠ 0) | ||
| Theorem | mulne0i 11821 | The product of two nonzero numbers is nonzero. (Contributed by NM, 15-Feb-1995.) |
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐴 ≠ 0 & ⊢ 𝐵 ≠ 0 ⇒ ⊢ (𝐴 · 𝐵) ≠ 0 | ||
| Theorem | muleqadd 11822 | Property of numbers whose product equals their sum. Equation 5 of [Kreyszig] p. 12. (Contributed by NM, 13-Nov-2006.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · 𝐵) = (𝐴 + 𝐵) ↔ ((𝐴 − 1) · (𝐵 − 1)) = 1)) | ||
| Theorem | receu 11823* | Existential uniqueness of reciprocals. Theorem I.8 of [Apostol] p. 18. (Contributed by NM, 29-Jan-1995.) (Revised by Mario Carneiro, 17-Feb-2014.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → ∃!𝑥 ∈ ℂ (𝐵 · 𝑥) = 𝐴) | ||
| Theorem | mulnzcnf 11824 | Multiplication maps nonzero complex numbers to nonzero complex numbers. (Contributed by Steve Rodriguez, 23-Feb-2007.) |
| ⊢ ( · ↾ ((ℂ ∖ {0}) × (ℂ ∖ {0}))):((ℂ ∖ {0}) × (ℂ ∖ {0}))⟶(ℂ ∖ {0}) | ||
| Theorem | mul0ori 11825 | If a product is zero, one of its factors must be zero. Theorem I.11 of [Apostol] p. 18. (Contributed by NM, 7-Oct-1999.) |
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ ⇒ ⊢ ((𝐴 · 𝐵) = 0 ↔ (𝐴 = 0 ∨ 𝐵 = 0)) | ||
| Theorem | mul0ord 11826 | If a product is zero, one of its factors must be zero. Theorem I.11 of [Apostol] p. 18. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → ((𝐴 · 𝐵) = 0 ↔ (𝐴 = 0 ∨ 𝐵 = 0))) | ||
| Theorem | msq0i 11827 | A number is zero iff its square is zero (where square is represented using multiplication). (Contributed by NM, 28-Jul-1999.) |
| ⊢ 𝐴 ∈ ℂ ⇒ ⊢ ((𝐴 · 𝐴) = 0 ↔ 𝐴 = 0) | ||
| Theorem | msq0d 11828 | A number is zero iff its square is zero (where square is represented using multiplication). (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → ((𝐴 · 𝐴) = 0 ↔ 𝐴 = 0)) | ||
| Theorem | mulne0bd 11829 | The product of two nonzero numbers is nonzero. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → ((𝐴 ≠ 0 ∧ 𝐵 ≠ 0) ↔ (𝐴 · 𝐵) ≠ 0)) | ||
| Theorem | mulne0d 11830 | The product of two nonzero numbers is nonzero. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐴 ≠ 0) & ⊢ (𝜑 → 𝐵 ≠ 0) ⇒ ⊢ (𝜑 → (𝐴 · 𝐵) ≠ 0) | ||
| Theorem | mulcan1g 11831 | A generalized form of the cancellation law for multiplication. (Contributed by Scott Fenton, 17-Jun-2013.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵) = (𝐴 · 𝐶) ↔ (𝐴 = 0 ∨ 𝐵 = 𝐶))) | ||
| Theorem | mulcan2g 11832 | A generalized form of the cancellation law for multiplication. (Contributed by Scott Fenton, 17-Jun-2013.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐶) = (𝐵 · 𝐶) ↔ (𝐴 = 𝐵 ∨ 𝐶 = 0))) | ||
| Theorem | mulne0bad 11833 | A factor of a nonzero complex number is nonzero. Partial converse of mulne0d 11830 and consequence of mulne0bd 11829. (Contributed by David Moews, 28-Feb-2017.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → (𝐴 · 𝐵) ≠ 0) ⇒ ⊢ (𝜑 → 𝐴 ≠ 0) | ||
| Theorem | mulne0bbd 11834 | A factor of a nonzero complex number is nonzero. Partial converse of mulne0d 11830 and consequence of mulne0bd 11829. (Contributed by David Moews, 28-Feb-2017.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → (𝐴 · 𝐵) ≠ 0) ⇒ ⊢ (𝜑 → 𝐵 ≠ 0) | ||
| Syntax | cdiv 11835 | Extend class notation to include division. |
| class / | ||
| Definition | df-div 11836* | Define division. Theorem divmuli 11936 relates it to multiplication, and divcli 11924 and redivcli 11949 prove its closure laws. (Contributed by NM, 2-Feb-1995.) Use divval 11839 instead. (Revised by Mario Carneiro, 1-Apr-2014.) (New usage is discouraged.) |
| ⊢ / = (𝑥 ∈ ℂ, 𝑦 ∈ (ℂ ∖ {0}) ↦ (℩𝑧 ∈ ℂ (𝑦 · 𝑧) = 𝑥)) | ||
| Theorem | 1div0 11837 | You can't divide by zero, because division explicitly excludes zero from the domain of the function. Thus, by the definition of function value, it evaluates to the empty set. (This theorem is for information only and normally is not referenced by other proofs. To be meaningful, it assumes that ∅ is not a complex number, which depends on the particular complex number construction that is used.) (Contributed by Mario Carneiro, 1-Apr-2014.) (Proof shortened by SN, 5-Jun-2025.) (New usage is discouraged.) |
| ⊢ (1 / 0) = ∅ | ||
| Theorem | 1div0OLD 11838 | Obsolete version of 1div0 11837 as of 5-Jun-2025. (Contributed by Mario Carneiro, 1-Apr-2014.) (New usage is discouraged.) (Proof modification is discouraged.) |
| ⊢ (1 / 0) = ∅ | ||
| Theorem | divval 11839* | Value of division: if 𝐴 and 𝐵 are complex numbers with 𝐵 nonzero, then (𝐴 / 𝐵) is the (unique) complex number such that (𝐵 · 𝑥) = 𝐴. (Contributed by NM, 8-May-1999.) (Revised by Mario Carneiro, 17-Feb-2014.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (𝐴 / 𝐵) = (℩𝑥 ∈ ℂ (𝐵 · 𝑥) = 𝐴)) | ||
| Theorem | divmul 11840 | Relationship between division and multiplication. (Contributed by NM, 2-Aug-2004.) (Revised by Mario Carneiro, 17-Feb-2014.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((𝐴 / 𝐶) = 𝐵 ↔ (𝐶 · 𝐵) = 𝐴)) | ||
| Theorem | divmul2 11841 | Relationship between division and multiplication. (Contributed by NM, 7-Feb-2006.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((𝐴 / 𝐶) = 𝐵 ↔ 𝐴 = (𝐶 · 𝐵))) | ||
| Theorem | divmul3 11842 | Relationship between division and multiplication. (Contributed by NM, 13-Feb-2006.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((𝐴 / 𝐶) = 𝐵 ↔ 𝐴 = (𝐵 · 𝐶))) | ||
| Theorem | divcl 11843 | Closure law for division. (Contributed by NM, 21-Jul-2001.) (Proof shortened by Mario Carneiro, 17-Feb-2014.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (𝐴 / 𝐵) ∈ ℂ) | ||
| Theorem | reccl 11844 | Closure law for reciprocal. (Contributed by NM, 30-Apr-2005.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (1 / 𝐴) ∈ ℂ) | ||
| Theorem | divcan2 11845 | A cancellation law for division. (Contributed by NM, 3-Feb-2004.) (Revised by Mario Carneiro, 27-May-2016.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (𝐵 · (𝐴 / 𝐵)) = 𝐴) | ||
| Theorem | divcan1 11846 | A cancellation law for division. (Contributed by NM, 5-Jun-2004.) (Revised by Mario Carneiro, 27-May-2016.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → ((𝐴 / 𝐵) · 𝐵) = 𝐴) | ||
| Theorem | diveq0 11847 | A ratio is zero iff the numerator is zero. (Contributed by NM, 20-Apr-2006.) (Revised by Mario Carneiro, 27-May-2016.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → ((𝐴 / 𝐵) = 0 ↔ 𝐴 = 0)) | ||
| Theorem | divne0b 11848 | The ratio of nonzero numbers is nonzero. (Contributed by NM, 2-Aug-2004.) (Proof shortened by Mario Carneiro, 27-May-2016.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (𝐴 ≠ 0 ↔ (𝐴 / 𝐵) ≠ 0)) | ||
| Theorem | divne0 11849 | The ratio of nonzero numbers is nonzero. (Contributed by NM, 28-Dec-2007.) |
| ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) → (𝐴 / 𝐵) ≠ 0) | ||
| Theorem | recne0 11850 | The reciprocal of a nonzero number is nonzero. (Contributed by NM, 9-Feb-2006.) (Proof shortened by Mario Carneiro, 27-May-2016.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (1 / 𝐴) ≠ 0) | ||
| Theorem | recid 11851 | Multiplication of a number and its reciprocal. (Contributed by NM, 25-Oct-1999.) (Proof shortened by Mario Carneiro, 27-May-2016.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (𝐴 · (1 / 𝐴)) = 1) | ||
| Theorem | recid2 11852 | Multiplication of a number and its reciprocal. (Contributed by NM, 22-Jun-2006.) (Proof shortened by Mario Carneiro, 27-May-2016.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((1 / 𝐴) · 𝐴) = 1) | ||
| Theorem | divrec 11853 | Relationship between division and reciprocal. Theorem I.9 of [Apostol] p. 18. (Contributed by NM, 2-Aug-2004.) (Revised by Mario Carneiro, 27-May-2016.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (𝐴 / 𝐵) = (𝐴 · (1 / 𝐵))) | ||
| Theorem | divrec2 11854 | Relationship between division and reciprocal. (Contributed by NM, 7-Feb-2006.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (𝐴 / 𝐵) = ((1 / 𝐵) · 𝐴)) | ||
| Theorem | divass 11855 | An associative law for division. (Contributed by NM, 2-Aug-2004.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((𝐴 · 𝐵) / 𝐶) = (𝐴 · (𝐵 / 𝐶))) | ||
| Theorem | div23 11856 | A commutative/associative law for division. (Contributed by NM, 2-Aug-2004.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((𝐴 · 𝐵) / 𝐶) = ((𝐴 / 𝐶) · 𝐵)) | ||
| Theorem | div32 11857 | A commutative/associative law for division. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℂ) → ((𝐴 / 𝐵) · 𝐶) = (𝐴 · (𝐶 / 𝐵))) | ||
| Theorem | div13 11858 | A commutative/associative law for division. (Contributed by NM, 22-Apr-2005.) |
| ⊢ ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℂ) → ((𝐴 / 𝐵) · 𝐶) = ((𝐶 / 𝐵) · 𝐴)) | ||
| Theorem | div12 11859 | A commutative/associative law for division. (Contributed by NM, 30-Apr-2005.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → (𝐴 · (𝐵 / 𝐶)) = (𝐵 · (𝐴 / 𝐶))) | ||
| Theorem | divmulass 11860 | An associative law for division and multiplication. (Contributed by AV, 10-Jul-2021.) |
| ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐷 ∈ ℂ ∧ 𝐷 ≠ 0)) → ((𝐴 · (𝐵 / 𝐷)) · 𝐶) = ((𝐴 · 𝐵) · (𝐶 / 𝐷))) | ||
| Theorem | divmulasscom 11861 | An associative/commutative law for division and multiplication. (Contributed by AV, 10-Jul-2021.) |
| ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐷 ∈ ℂ ∧ 𝐷 ≠ 0)) → ((𝐴 · (𝐵 / 𝐷)) · 𝐶) = (𝐵 · ((𝐴 · 𝐶) / 𝐷))) | ||
| Theorem | divdir 11862 | Distribution of division over addition. (Contributed by NM, 31-Jul-2004.) (Proof shortened by Mario Carneiro, 27-May-2016.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((𝐴 + 𝐵) / 𝐶) = ((𝐴 / 𝐶) + (𝐵 / 𝐶))) | ||
| Theorem | divcan3 11863 | A cancellation law for division. (Contributed by NM, 3-Feb-2004.) (Proof shortened by Mario Carneiro, 27-May-2016.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → ((𝐵 · 𝐴) / 𝐵) = 𝐴) | ||
| Theorem | divcan4 11864 | A cancellation law for division. (Contributed by NM, 8-Feb-2005.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → ((𝐴 · 𝐵) / 𝐵) = 𝐴) | ||
| Theorem | div11 11865 | One-to-one relationship for division. (Contributed by NM, 20-Apr-2006.) (Proof shortened by Mario Carneiro, 27-May-2016.) (Proof shortened by SN, 9-Jul-2025.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((𝐴 / 𝐶) = (𝐵 / 𝐶) ↔ 𝐴 = 𝐵)) | ||
| Theorem | div11OLD 11866 | Obsolete version of div11 11865 as of 9-Jul-2025. (Contributed by NM, 20-Apr-2006.) (Proof shortened by Mario Carneiro, 27-May-2016.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((𝐴 / 𝐶) = (𝐵 / 𝐶) ↔ 𝐴 = 𝐵)) | ||
| Theorem | diveq1 11867 | Equality in terms of unit ratio. (Contributed by Stefan O'Rear, 27-Aug-2015.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → ((𝐴 / 𝐵) = 1 ↔ 𝐴 = 𝐵)) | ||
| Theorem | divid 11868 | A number divided by itself is one. (Contributed by NM, 1-Aug-2004.) (Proof shortened by SN, 9-Jul-2025.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (𝐴 / 𝐴) = 1) | ||
| Theorem | dividOLD 11869 | Obsolete version of divid 11868 as of 9-Jul-2025. (Contributed by NM, 1-Aug-2004.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (𝐴 / 𝐴) = 1) | ||
| Theorem | div0 11870 | Division into zero is zero. (Contributed by NM, 14-Mar-2005.) (Proof shortened by SN, 9-Jul-2025.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (0 / 𝐴) = 0) | ||
| Theorem | div0OLD 11871 | Obsolete version of div0 11870 as of 9-Jul-2025. (Contributed by NM, 14-Mar-2005.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (0 / 𝐴) = 0) | ||
| Theorem | div1 11872 | A number divided by 1 is itself. (Contributed by NM, 9-Jan-2002.) (Proof shortened by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝐴 ∈ ℂ → (𝐴 / 1) = 𝐴) | ||
| Theorem | 1div1e1 11873 | 1 divided by 1 is 1. (Contributed by David A. Wheeler, 7-Dec-2018.) |
| ⊢ (1 / 1) = 1 | ||
| Theorem | divneg 11874 | Move negative sign inside of a division. (Contributed by NM, 17-Sep-2004.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → -(𝐴 / 𝐵) = (-𝐴 / 𝐵)) | ||
| Theorem | muldivdir 11875 | Distribution of division over addition with a multiplication. (Contributed by AV, 1-Jul-2021.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → (((𝐶 · 𝐴) + 𝐵) / 𝐶) = (𝐴 + (𝐵 / 𝐶))) | ||
| Theorem | divsubdir 11876 | Distribution of division over subtraction. (Contributed by NM, 4-Mar-2005.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((𝐴 − 𝐵) / 𝐶) = ((𝐴 / 𝐶) − (𝐵 / 𝐶))) | ||
| Theorem | subdivcomb1 11877 | Bring a term in a subtraction into the numerator. (Contributed by Scott Fenton, 3-Jul-2013.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → (((𝐶 · 𝐴) − 𝐵) / 𝐶) = (𝐴 − (𝐵 / 𝐶))) | ||
| Theorem | subdivcomb2 11878 | Bring a term in a subtraction into the numerator. (Contributed by Scott Fenton, 3-Jul-2013.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((𝐴 − (𝐶 · 𝐵)) / 𝐶) = ((𝐴 / 𝐶) − 𝐵)) | ||
| Theorem | recrec 11879 | A number is equal to the reciprocal of its reciprocal. Theorem I.10 of [Apostol] p. 18. (Contributed by NM, 26-Sep-1999.) (Proof shortened by Mario Carneiro, 27-May-2016.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (1 / (1 / 𝐴)) = 𝐴) | ||
| Theorem | rec11 11880 | Reciprocal is one-to-one. (Contributed by NM, 16-Sep-1999.) (Revised by Mario Carneiro, 27-May-2016.) |
| ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) → ((1 / 𝐴) = (1 / 𝐵) ↔ 𝐴 = 𝐵)) | ||
| Theorem | rec11r 11881 | Mutual reciprocals. (Contributed by Paul Chapman, 18-Oct-2007.) |
| ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) → ((1 / 𝐴) = 𝐵 ↔ (1 / 𝐵) = 𝐴)) | ||
| Theorem | divmuldiv 11882 | Multiplication of two ratios. Theorem I.14 of [Apostol] p. 18. (Contributed by NM, 1-Aug-2004.) |
| ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 ≠ 0))) → ((𝐴 / 𝐶) · (𝐵 / 𝐷)) = ((𝐴 · 𝐵) / (𝐶 · 𝐷))) | ||
| Theorem | divdivdiv 11883 | Division of two ratios. Theorem I.15 of [Apostol] p. 18. (Contributed by NM, 2-Aug-2004.) |
| ⊢ (((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 ≠ 0))) → ((𝐴 / 𝐵) / (𝐶 / 𝐷)) = ((𝐴 · 𝐷) / (𝐵 · 𝐶))) | ||
| Theorem | divcan5 11884 | Cancellation of common factor in a ratio. (Contributed by NM, 9-Jan-2006.) |
| ⊢ ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((𝐶 · 𝐴) / (𝐶 · 𝐵)) = (𝐴 / 𝐵)) | ||
| Theorem | divmul13 11885 | Swap the denominators in the product of two ratios. (Contributed by NM, 3-May-2005.) |
| ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 ≠ 0))) → ((𝐴 / 𝐶) · (𝐵 / 𝐷)) = ((𝐵 / 𝐶) · (𝐴 / 𝐷))) | ||
| Theorem | divmul24 11886 | Swap the numerators in the product of two ratios. (Contributed by NM, 3-May-2005.) |
| ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 ≠ 0))) → ((𝐴 / 𝐶) · (𝐵 / 𝐷)) = ((𝐴 / 𝐷) · (𝐵 / 𝐶))) | ||
| Theorem | divmuleq 11887 | Cross-multiply in an equality of ratios. (Contributed by Mario Carneiro, 23-Feb-2014.) |
| ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 ≠ 0))) → ((𝐴 / 𝐶) = (𝐵 / 𝐷) ↔ (𝐴 · 𝐷) = (𝐵 · 𝐶))) | ||
| Theorem | recdiv 11888 | The reciprocal of a ratio. (Contributed by NM, 3-Aug-2004.) |
| ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) → (1 / (𝐴 / 𝐵)) = (𝐵 / 𝐴)) | ||
| Theorem | divcan6 11889 | Cancellation of inverted fractions. (Contributed by NM, 28-Dec-2007.) |
| ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) → ((𝐴 / 𝐵) · (𝐵 / 𝐴)) = 1) | ||
| Theorem | divdiv32 11890 | Swap denominators in a division. (Contributed by NM, 2-Aug-2004.) |
| ⊢ ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((𝐴 / 𝐵) / 𝐶) = ((𝐴 / 𝐶) / 𝐵)) | ||
| Theorem | divcan7 11891 | Cancel equal divisors in a division. (Contributed by Jeff Hankins, 29-Sep-2013.) |
| ⊢ ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((𝐴 / 𝐶) / (𝐵 / 𝐶)) = (𝐴 / 𝐵)) | ||
| Theorem | dmdcan 11892 | Cancellation law for division and multiplication. (Contributed by Scott Fenton, 7-Jun-2013.) (Proof shortened by Fan Zheng, 3-Jul-2016.) |
| ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℂ) → ((𝐴 / 𝐵) · (𝐶 / 𝐴)) = (𝐶 / 𝐵)) | ||
| Theorem | divdiv1 11893 | Division into a fraction. (Contributed by NM, 31-Dec-2007.) |
| ⊢ ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((𝐴 / 𝐵) / 𝐶) = (𝐴 / (𝐵 · 𝐶))) | ||
| Theorem | divdiv2 11894 | Division by a fraction. (Contributed by NM, 27-Dec-2008.) |
| ⊢ ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → (𝐴 / (𝐵 / 𝐶)) = ((𝐴 · 𝐶) / 𝐵)) | ||
| Theorem | recdiv2 11895 | Division into a reciprocal. (Contributed by NM, 19-Oct-2007.) |
| ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) → ((1 / 𝐴) / 𝐵) = (1 / (𝐴 · 𝐵))) | ||
| Theorem | ddcan 11896 | Cancellation in a double division. (Contributed by Mario Carneiro, 26-Apr-2015.) |
| ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) → (𝐴 / (𝐴 / 𝐵)) = 𝐵) | ||
| Theorem | divadddiv 11897 | Addition of two ratios. Theorem I.13 of [Apostol] p. 18. (Contributed by NM, 1-Aug-2004.) (Revised by Mario Carneiro, 2-May-2016.) |
| ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 ≠ 0))) → ((𝐴 / 𝐶) + (𝐵 / 𝐷)) = (((𝐴 · 𝐷) + (𝐵 · 𝐶)) / (𝐶 · 𝐷))) | ||
| Theorem | divsubdiv 11898 | Subtraction of two ratios. (Contributed by Scott Fenton, 22-Apr-2014.) (Revised by Mario Carneiro, 2-May-2016.) |
| ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 ≠ 0))) → ((𝐴 / 𝐶) − (𝐵 / 𝐷)) = (((𝐴 · 𝐷) − (𝐵 · 𝐶)) / (𝐶 · 𝐷))) | ||
| Theorem | conjmul 11899 | Two numbers whose reciprocals sum to 1 are called "conjugates" and satisfy this relationship. Equation 5 of [Kreyszig] p. 12. (Contributed by NM, 12-Nov-2006.) |
| ⊢ (((𝑃 ∈ ℂ ∧ 𝑃 ≠ 0) ∧ (𝑄 ∈ ℂ ∧ 𝑄 ≠ 0)) → (((1 / 𝑃) + (1 / 𝑄)) = 1 ↔ ((𝑃 − 1) · (𝑄 − 1)) = 1)) | ||
| Theorem | rereccl 11900 | Closure law for reciprocal. (Contributed by NM, 30-Apr-2005.) (Revised by Mario Carneiro, 27-May-2016.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → (1 / 𝐴) ∈ ℝ) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |