MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1nq Structured version   Visualization version   GIF version

Theorem 1nq 10966
Description: The positive fraction 'one'. (Contributed by NM, 29-Oct-1995.) (Revised by Mario Carneiro, 28-Apr-2013.) (New usage is discouraged.)
Assertion
Ref Expression
1nq 1QQ

Proof of Theorem 1nq
StepHypRef Expression
1 df-1nq 10954 . 2 1Q = ⟨1o, 1o
2 1pi 10921 . . 3 1oN
3 pinq 10965 . . 3 (1oN → ⟨1o, 1o⟩ ∈ Q)
42, 3ax-mp 5 . 2 ⟨1o, 1o⟩ ∈ Q
51, 4eqeltri 2835 1 1QQ
Colors of variables: wff setvar class
Syntax hints:  wcel 2106  cop 4637  1oc1o 8498  Ncnpi 10882  Qcnq 10890  1Qc1q 10891
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fv 6571  df-om 7888  df-2nd 8014  df-1o 8505  df-ni 10910  df-lti 10913  df-nq 10950  df-1nq 10954
This theorem is referenced by:  nqerf  10968  mulidnq  11001  recmulnq  11002  recclnq  11004  1lt2nq  11011  halfnq  11014  1pr  11053  prlem934  11071  reclem3pr  11087
  Copyright terms: Public domain W3C validator