MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1nq Structured version   Visualization version   GIF version

Theorem 1nq 10927
Description: The positive fraction 'one'. (Contributed by NM, 29-Oct-1995.) (Revised by Mario Carneiro, 28-Apr-2013.) (New usage is discouraged.)
Assertion
Ref Expression
1nq 1QQ

Proof of Theorem 1nq
StepHypRef Expression
1 df-1nq 10915 . 2 1Q = ⟨1o, 1o
2 1pi 10882 . . 3 1oN
3 pinq 10926 . . 3 (1oN → ⟨1o, 1o⟩ ∈ Q)
42, 3ax-mp 5 . 2 ⟨1o, 1o⟩ ∈ Q
51, 4eqeltri 2828 1 1QQ
Colors of variables: wff setvar class
Syntax hints:  wcel 2105  cop 4634  1oc1o 8463  Ncnpi 10843  Qcnq 10851  1Qc1q 10852
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pr 5427  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fv 6551  df-om 7860  df-2nd 7980  df-1o 8470  df-ni 10871  df-lti 10874  df-nq 10911  df-1nq 10915
This theorem is referenced by:  nqerf  10929  mulidnq  10962  recmulnq  10963  recclnq  10965  1lt2nq  10972  halfnq  10975  1pr  11014  prlem934  11032  reclem3pr  11048
  Copyright terms: Public domain W3C validator