Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 1nq | Structured version Visualization version GIF version |
Description: The positive fraction 'one'. (Contributed by NM, 29-Oct-1995.) (Revised by Mario Carneiro, 28-Apr-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
1nq | ⊢ 1Q ∈ Q |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-1nq 10718 | . 2 ⊢ 1Q = 〈1o, 1o〉 | |
2 | 1pi 10685 | . . 3 ⊢ 1o ∈ N | |
3 | pinq 10729 | . . 3 ⊢ (1o ∈ N → 〈1o, 1o〉 ∈ Q) | |
4 | 2, 3 | ax-mp 5 | . 2 ⊢ 〈1o, 1o〉 ∈ Q |
5 | 1, 4 | eqeltri 2833 | 1 ⊢ 1Q ∈ Q |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2104 〈cop 4571 1oc1o 8321 Ncnpi 10646 Qcnq 10654 1Qc1q 10655 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pr 5361 ax-un 7620 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3287 df-v 3439 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fv 6466 df-om 7745 df-2nd 7864 df-1o 8328 df-ni 10674 df-lti 10677 df-nq 10714 df-1nq 10718 |
This theorem is referenced by: nqerf 10732 mulidnq 10765 recmulnq 10766 recclnq 10768 1lt2nq 10775 halfnq 10778 1pr 10817 prlem934 10835 reclem3pr 10851 |
Copyright terms: Public domain | W3C validator |