![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 1nq | Structured version Visualization version GIF version |
Description: The positive fraction 'one'. (Contributed by NM, 29-Oct-1995.) (Revised by Mario Carneiro, 28-Apr-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
1nq | ⊢ 1Q ∈ Q |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-1nq 10073 | . 2 ⊢ 1Q = 〈1o, 1o〉 | |
2 | 1pi 10040 | . . 3 ⊢ 1o ∈ N | |
3 | pinq 10084 | . . 3 ⊢ (1o ∈ N → 〈1o, 1o〉 ∈ Q) | |
4 | 2, 3 | ax-mp 5 | . 2 ⊢ 〈1o, 1o〉 ∈ Q |
5 | 1, 4 | eqeltri 2854 | 1 ⊢ 1Q ∈ Q |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 〈cop 4403 1oc1o 7836 Ncnpi 10001 Qcnq 10009 1Qc1q 10010 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2054 ax-8 2108 ax-9 2115 ax-10 2134 ax-11 2149 ax-12 2162 ax-13 2333 ax-ext 2753 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2550 df-eu 2586 df-clab 2763 df-cleq 2769 df-clel 2773 df-nfc 2920 df-ne 2969 df-ral 3094 df-rex 3095 df-rab 3098 df-v 3399 df-sbc 3652 df-dif 3794 df-un 3796 df-in 3798 df-ss 3805 df-pss 3807 df-nul 4141 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-tp 4402 df-op 4404 df-uni 4672 df-br 4887 df-opab 4949 df-mpt 4966 df-tr 4988 df-id 5261 df-eprel 5266 df-po 5274 df-so 5275 df-fr 5314 df-we 5316 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-ord 5979 df-on 5980 df-lim 5981 df-suc 5982 df-iota 6099 df-fun 6137 df-fv 6143 df-om 7344 df-2nd 7446 df-1o 7843 df-ni 10029 df-lti 10032 df-nq 10069 df-1nq 10073 |
This theorem is referenced by: nqerf 10087 mulidnq 10120 recmulnq 10121 recclnq 10123 1lt2nq 10130 halfnq 10133 1pr 10172 prlem934 10190 reclem3pr 10206 |
Copyright terms: Public domain | W3C validator |