Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 1nq | Structured version Visualization version GIF version |
Description: The positive fraction 'one'. (Contributed by NM, 29-Oct-1995.) (Revised by Mario Carneiro, 28-Apr-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
1nq | ⊢ 1Q ∈ Q |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-1nq 10656 | . 2 ⊢ 1Q = 〈1o, 1o〉 | |
2 | 1pi 10623 | . . 3 ⊢ 1o ∈ N | |
3 | pinq 10667 | . . 3 ⊢ (1o ∈ N → 〈1o, 1o〉 ∈ Q) | |
4 | 2, 3 | ax-mp 5 | . 2 ⊢ 〈1o, 1o〉 ∈ Q |
5 | 1, 4 | eqeltri 2836 | 1 ⊢ 1Q ∈ Q |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2109 〈cop 4572 1oc1o 8274 Ncnpi 10584 Qcnq 10592 1Qc1q 10593 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pr 5355 ax-un 7579 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-uni 4845 df-br 5079 df-opab 5141 df-mpt 5162 df-tr 5196 df-id 5488 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-we 5545 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-ord 6266 df-on 6267 df-lim 6268 df-suc 6269 df-iota 6388 df-fun 6432 df-fv 6438 df-om 7701 df-2nd 7818 df-1o 8281 df-ni 10612 df-lti 10615 df-nq 10652 df-1nq 10656 |
This theorem is referenced by: nqerf 10670 mulidnq 10703 recmulnq 10704 recclnq 10706 1lt2nq 10713 halfnq 10716 1pr 10755 prlem934 10773 reclem3pr 10789 |
Copyright terms: Public domain | W3C validator |