![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 1nq | Structured version Visualization version GIF version |
Description: The positive fraction 'one'. (Contributed by NM, 29-Oct-1995.) (Revised by Mario Carneiro, 28-Apr-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
1nq | ⊢ 1Q ∈ Q |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-1nq 10915 | . 2 ⊢ 1Q = ⟨1o, 1o⟩ | |
2 | 1pi 10882 | . . 3 ⊢ 1o ∈ N | |
3 | pinq 10926 | . . 3 ⊢ (1o ∈ N → ⟨1o, 1o⟩ ∈ Q) | |
4 | 2, 3 | ax-mp 5 | . 2 ⊢ ⟨1o, 1o⟩ ∈ Q |
5 | 1, 4 | eqeltri 2828 | 1 ⊢ 1Q ∈ Q |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2105 ⟨cop 4634 1oc1o 8463 Ncnpi 10843 Qcnq 10851 1Qc1q 10852 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pr 5427 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fv 6551 df-om 7860 df-2nd 7980 df-1o 8470 df-ni 10871 df-lti 10874 df-nq 10911 df-1nq 10915 |
This theorem is referenced by: nqerf 10929 mulidnq 10962 recmulnq 10963 recclnq 10965 1lt2nq 10972 halfnq 10975 1pr 11014 prlem934 11032 reclem3pr 11048 |
Copyright terms: Public domain | W3C validator |