MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1nq Structured version   Visualization version   GIF version

Theorem 1nq 10730
Description: The positive fraction 'one'. (Contributed by NM, 29-Oct-1995.) (Revised by Mario Carneiro, 28-Apr-2013.) (New usage is discouraged.)
Assertion
Ref Expression
1nq 1QQ

Proof of Theorem 1nq
StepHypRef Expression
1 df-1nq 10718 . 2 1Q = ⟨1o, 1o
2 1pi 10685 . . 3 1oN
3 pinq 10729 . . 3 (1oN → ⟨1o, 1o⟩ ∈ Q)
42, 3ax-mp 5 . 2 ⟨1o, 1o⟩ ∈ Q
51, 4eqeltri 2833 1 1QQ
Colors of variables: wff setvar class
Syntax hints:  wcel 2104  cop 4571  1oc1o 8321  Ncnpi 10646  Qcnq 10654  1Qc1q 10655
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-sep 5232  ax-nul 5239  ax-pr 5361  ax-un 7620
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3287  df-v 3439  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-br 5082  df-opab 5144  df-mpt 5165  df-tr 5199  df-id 5500  df-eprel 5506  df-po 5514  df-so 5515  df-fr 5555  df-we 5557  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-ord 6284  df-on 6285  df-lim 6286  df-suc 6287  df-iota 6410  df-fun 6460  df-fv 6466  df-om 7745  df-2nd 7864  df-1o 8328  df-ni 10674  df-lti 10677  df-nq 10714  df-1nq 10718
This theorem is referenced by:  nqerf  10732  mulidnq  10765  recmulnq  10766  recclnq  10768  1lt2nq  10775  halfnq  10778  1pr  10817  prlem934  10835  reclem3pr  10851
  Copyright terms: Public domain W3C validator