| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 1nq | Structured version Visualization version GIF version | ||
| Description: The positive fraction 'one'. (Contributed by NM, 29-Oct-1995.) (Revised by Mario Carneiro, 28-Apr-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| 1nq | ⊢ 1Q ∈ Q |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-1nq 10829 | . 2 ⊢ 1Q = 〈1o, 1o〉 | |
| 2 | 1pi 10796 | . . 3 ⊢ 1o ∈ N | |
| 3 | pinq 10840 | . . 3 ⊢ (1o ∈ N → 〈1o, 1o〉 ∈ Q) | |
| 4 | 2, 3 | ax-mp 5 | . 2 ⊢ 〈1o, 1o〉 ∈ Q |
| 5 | 1, 4 | eqeltri 2824 | 1 ⊢ 1Q ∈ Q |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 〈cop 4585 1oc1o 8388 Ncnpi 10757 Qcnq 10765 1Qc1q 10766 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fv 6494 df-om 7807 df-2nd 7932 df-1o 8395 df-ni 10785 df-lti 10788 df-nq 10825 df-1nq 10829 |
| This theorem is referenced by: nqerf 10843 mulidnq 10876 recmulnq 10877 recclnq 10879 1lt2nq 10886 halfnq 10889 1pr 10928 prlem934 10946 reclem3pr 10962 |
| Copyright terms: Public domain | W3C validator |