| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 1nq | Structured version Visualization version GIF version | ||
| Description: The positive fraction 'one'. (Contributed by NM, 29-Oct-1995.) (Revised by Mario Carneiro, 28-Apr-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| 1nq | ⊢ 1Q ∈ Q |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-1nq 10804 | . 2 ⊢ 1Q = 〈1o, 1o〉 | |
| 2 | 1pi 10771 | . . 3 ⊢ 1o ∈ N | |
| 3 | pinq 10815 | . . 3 ⊢ (1o ∈ N → 〈1o, 1o〉 ∈ Q) | |
| 4 | 2, 3 | ax-mp 5 | . 2 ⊢ 〈1o, 1o〉 ∈ Q |
| 5 | 1, 4 | eqeltri 2827 | 1 ⊢ 1Q ∈ Q |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2111 〈cop 4582 1oc1o 8378 Ncnpi 10732 Qcnq 10740 1Qc1q 10741 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fv 6489 df-om 7797 df-2nd 7922 df-1o 8385 df-ni 10760 df-lti 10763 df-nq 10800 df-1nq 10804 |
| This theorem is referenced by: nqerf 10818 mulidnq 10851 recmulnq 10852 recclnq 10854 1lt2nq 10861 halfnq 10864 1pr 10903 prlem934 10921 reclem3pr 10937 |
| Copyright terms: Public domain | W3C validator |