MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1nq Structured version   Visualization version   GIF version

Theorem 1nq 10841
Description: The positive fraction 'one'. (Contributed by NM, 29-Oct-1995.) (Revised by Mario Carneiro, 28-Apr-2013.) (New usage is discouraged.)
Assertion
Ref Expression
1nq 1QQ

Proof of Theorem 1nq
StepHypRef Expression
1 df-1nq 10829 . 2 1Q = ⟨1o, 1o
2 1pi 10796 . . 3 1oN
3 pinq 10840 . . 3 (1oN → ⟨1o, 1o⟩ ∈ Q)
42, 3ax-mp 5 . 2 ⟨1o, 1o⟩ ∈ Q
51, 4eqeltri 2824 1 1QQ
Colors of variables: wff setvar class
Syntax hints:  wcel 2109  cop 4585  1oc1o 8388  Ncnpi 10757  Qcnq 10765  1Qc1q 10766
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fv 6494  df-om 7807  df-2nd 7932  df-1o 8395  df-ni 10785  df-lti 10788  df-nq 10825  df-1nq 10829
This theorem is referenced by:  nqerf  10843  mulidnq  10876  recmulnq  10877  recclnq  10879  1lt2nq  10886  halfnq  10889  1pr  10928  prlem934  10946  reclem3pr  10962
  Copyright terms: Public domain W3C validator