| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 1nq | Structured version Visualization version GIF version | ||
| Description: The positive fraction 'one'. (Contributed by NM, 29-Oct-1995.) (Revised by Mario Carneiro, 28-Apr-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| 1nq | ⊢ 1Q ∈ Q |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-1nq 10876 | . 2 ⊢ 1Q = 〈1o, 1o〉 | |
| 2 | 1pi 10843 | . . 3 ⊢ 1o ∈ N | |
| 3 | pinq 10887 | . . 3 ⊢ (1o ∈ N → 〈1o, 1o〉 ∈ Q) | |
| 4 | 2, 3 | ax-mp 5 | . 2 ⊢ 〈1o, 1o〉 ∈ Q |
| 5 | 1, 4 | eqeltri 2825 | 1 ⊢ 1Q ∈ Q |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 〈cop 4598 1oc1o 8430 Ncnpi 10804 Qcnq 10812 1Qc1q 10813 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fv 6522 df-om 7846 df-2nd 7972 df-1o 8437 df-ni 10832 df-lti 10835 df-nq 10872 df-1nq 10876 |
| This theorem is referenced by: nqerf 10890 mulidnq 10923 recmulnq 10924 recclnq 10926 1lt2nq 10933 halfnq 10936 1pr 10975 prlem934 10993 reclem3pr 11009 |
| Copyright terms: Public domain | W3C validator |