Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sticksstones19 Structured version   Visualization version   GIF version

Theorem sticksstones19 40121
Description: Extend sticks and stones to finite sets, bijective builder. (Contributed by metakunt, 23-Oct-2024.)
Hypotheses
Ref Expression
sticksstones19.1 (𝜑𝑁 ∈ ℕ0)
sticksstones19.2 (𝜑𝐾 ∈ ℕ0)
sticksstones19.3 𝐴 = {𝑔 ∣ (𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑖 ∈ (1...𝐾)(𝑔𝑖) = 𝑁)}
sticksstones19.4 𝐵 = { ∣ (:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑖) = 𝑁)}
sticksstones19.5 (𝜑𝑍:(1...𝐾)–1-1-onto𝑆)
sticksstones19.6 𝐹 = (𝑎𝐴 ↦ (𝑥𝑆 ↦ (𝑎‘(𝑍𝑥))))
sticksstones19.7 𝐺 = (𝑏𝐵 ↦ (𝑦 ∈ (1...𝐾) ↦ (𝑏‘(𝑍𝑦))))
Assertion
Ref Expression
sticksstones19 (𝜑𝐹:𝐴1-1-onto𝐵)
Distinct variable groups:   𝐴,𝑎,𝑖,𝑥,𝑦   𝐴,𝑏,𝑖,𝑥,𝑦   𝐵,𝑎,𝑖,𝑥,𝑦   𝐵,𝑏   𝐹,𝑏,𝑦   𝐺,𝑎,𝑥   𝐾,𝑎,𝑔,𝑖,𝑦   𝐾,𝑏,𝑔   𝑥,𝐾   𝑔,𝑁   ,𝑁   𝑆,𝑎,,𝑖,𝑥   𝑆,𝑏,   𝑦,𝑆   𝑍,𝑎,𝑔,𝑖,𝑦   𝑍,𝑏,,𝑥   𝜑,𝑎,𝑖,𝑥,𝑦   𝜑,𝑏
Allowed substitution hints:   𝜑(𝑔,)   𝐴(𝑔,)   𝐵(𝑔,)   𝑆(𝑔)   𝐹(𝑥,𝑔,,𝑖,𝑎)   𝐺(𝑦,𝑔,,𝑖,𝑏)   𝐾()   𝑁(𝑥,𝑦,𝑖,𝑎,𝑏)

Proof of Theorem sticksstones19
Dummy variables 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sticksstones19.1 . . 3 (𝜑𝑁 ∈ ℕ0)
2 sticksstones19.2 . . 3 (𝜑𝐾 ∈ ℕ0)
3 sticksstones19.3 . . 3 𝐴 = {𝑔 ∣ (𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑖 ∈ (1...𝐾)(𝑔𝑖) = 𝑁)}
4 sticksstones19.4 . . 3 𝐵 = { ∣ (:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑖) = 𝑁)}
5 sticksstones19.5 . . 3 (𝜑𝑍:(1...𝐾)–1-1-onto𝑆)
6 sticksstones19.6 . . 3 𝐹 = (𝑎𝐴 ↦ (𝑥𝑆 ↦ (𝑎‘(𝑍𝑥))))
71, 2, 3, 4, 5, 6sticksstones18 40120 . 2 (𝜑𝐹:𝐴𝐵)
8 sticksstones19.7 . . 3 𝐺 = (𝑏𝐵 ↦ (𝑦 ∈ (1...𝐾) ↦ (𝑏‘(𝑍𝑦))))
91, 2, 3, 4, 5, 8sticksstones17 40119 . 2 (𝜑𝐺:𝐵𝐴)
108a1i 11 . . . . 5 ((𝜑𝑐𝐴) → 𝐺 = (𝑏𝐵 ↦ (𝑦 ∈ (1...𝐾) ↦ (𝑏‘(𝑍𝑦)))))
11 simplr 766 . . . . . . 7 ((((𝜑𝑐𝐴) ∧ 𝑏 = (𝐹𝑐)) ∧ 𝑦 ∈ (1...𝐾)) → 𝑏 = (𝐹𝑐))
1211fveq1d 6776 . . . . . 6 ((((𝜑𝑐𝐴) ∧ 𝑏 = (𝐹𝑐)) ∧ 𝑦 ∈ (1...𝐾)) → (𝑏‘(𝑍𝑦)) = ((𝐹𝑐)‘(𝑍𝑦)))
1312mpteq2dva 5174 . . . . 5 (((𝜑𝑐𝐴) ∧ 𝑏 = (𝐹𝑐)) → (𝑦 ∈ (1...𝐾) ↦ (𝑏‘(𝑍𝑦))) = (𝑦 ∈ (1...𝐾) ↦ ((𝐹𝑐)‘(𝑍𝑦))))
147ffvelrnda 6961 . . . . 5 ((𝜑𝑐𝐴) → (𝐹𝑐) ∈ 𝐵)
15 fzfid 13693 . . . . . 6 ((𝜑𝑐𝐴) → (1...𝐾) ∈ Fin)
1615mptexd 7100 . . . . 5 ((𝜑𝑐𝐴) → (𝑦 ∈ (1...𝐾) ↦ ((𝐹𝑐)‘(𝑍𝑦))) ∈ V)
1710, 13, 14, 16fvmptd 6882 . . . 4 ((𝜑𝑐𝐴) → (𝐺‘(𝐹𝑐)) = (𝑦 ∈ (1...𝐾) ↦ ((𝐹𝑐)‘(𝑍𝑦))))
186a1i 11 . . . . . . . . 9 ((𝜑𝑐𝐴𝑦 ∈ (1...𝐾)) → 𝐹 = (𝑎𝐴 ↦ (𝑥𝑆 ↦ (𝑎‘(𝑍𝑥)))))
1918fveq1d 6776 . . . . . . . 8 ((𝜑𝑐𝐴𝑦 ∈ (1...𝐾)) → (𝐹𝑐) = ((𝑎𝐴 ↦ (𝑥𝑆 ↦ (𝑎‘(𝑍𝑥))))‘𝑐))
2019fveq1d 6776 . . . . . . 7 ((𝜑𝑐𝐴𝑦 ∈ (1...𝐾)) → ((𝐹𝑐)‘(𝑍𝑦)) = (((𝑎𝐴 ↦ (𝑥𝑆 ↦ (𝑎‘(𝑍𝑥))))‘𝑐)‘(𝑍𝑦)))
21203expa 1117 . . . . . 6 (((𝜑𝑐𝐴) ∧ 𝑦 ∈ (1...𝐾)) → ((𝐹𝑐)‘(𝑍𝑦)) = (((𝑎𝐴 ↦ (𝑥𝑆 ↦ (𝑎‘(𝑍𝑥))))‘𝑐)‘(𝑍𝑦)))
2221mpteq2dva 5174 . . . . 5 ((𝜑𝑐𝐴) → (𝑦 ∈ (1...𝐾) ↦ ((𝐹𝑐)‘(𝑍𝑦))) = (𝑦 ∈ (1...𝐾) ↦ (((𝑎𝐴 ↦ (𝑥𝑆 ↦ (𝑎‘(𝑍𝑥))))‘𝑐)‘(𝑍𝑦))))
23 eqidd 2739 . . . . . . . . 9 (((𝜑𝑐𝐴) ∧ 𝑦 ∈ (1...𝐾)) → (𝑎𝐴 ↦ (𝑥𝑆 ↦ (𝑎‘(𝑍𝑥)))) = (𝑎𝐴 ↦ (𝑥𝑆 ↦ (𝑎‘(𝑍𝑥)))))
24 simplr 766 . . . . . . . . . . 11 (((((𝜑𝑐𝐴) ∧ 𝑦 ∈ (1...𝐾)) ∧ 𝑎 = 𝑐) ∧ 𝑥𝑆) → 𝑎 = 𝑐)
2524fveq1d 6776 . . . . . . . . . 10 (((((𝜑𝑐𝐴) ∧ 𝑦 ∈ (1...𝐾)) ∧ 𝑎 = 𝑐) ∧ 𝑥𝑆) → (𝑎‘(𝑍𝑥)) = (𝑐‘(𝑍𝑥)))
2625mpteq2dva 5174 . . . . . . . . 9 ((((𝜑𝑐𝐴) ∧ 𝑦 ∈ (1...𝐾)) ∧ 𝑎 = 𝑐) → (𝑥𝑆 ↦ (𝑎‘(𝑍𝑥))) = (𝑥𝑆 ↦ (𝑐‘(𝑍𝑥))))
27 simplr 766 . . . . . . . . 9 (((𝜑𝑐𝐴) ∧ 𝑦 ∈ (1...𝐾)) → 𝑐𝐴)
28 fzfid 13693 . . . . . . . . . . . . 13 (𝜑 → (1...𝐾) ∈ Fin)
29 f1oenfi 8965 . . . . . . . . . . . . . . 15 (((1...𝐾) ∈ Fin ∧ 𝑍:(1...𝐾)–1-1-onto𝑆) → (1...𝐾) ≈ 𝑆)
3028, 5, 29syl2anc 584 . . . . . . . . . . . . . 14 (𝜑 → (1...𝐾) ≈ 𝑆)
3130ensymd 8791 . . . . . . . . . . . . 13 (𝜑𝑆 ≈ (1...𝐾))
32 enfii 8972 . . . . . . . . . . . . 13 (((1...𝐾) ∈ Fin ∧ 𝑆 ≈ (1...𝐾)) → 𝑆 ∈ Fin)
3328, 31, 32syl2anc 584 . . . . . . . . . . . 12 (𝜑𝑆 ∈ Fin)
3433adantr 481 . . . . . . . . . . 11 ((𝜑𝑐𝐴) → 𝑆 ∈ Fin)
3534adantr 481 . . . . . . . . . 10 (((𝜑𝑐𝐴) ∧ 𝑦 ∈ (1...𝐾)) → 𝑆 ∈ Fin)
3635mptexd 7100 . . . . . . . . 9 (((𝜑𝑐𝐴) ∧ 𝑦 ∈ (1...𝐾)) → (𝑥𝑆 ↦ (𝑐‘(𝑍𝑥))) ∈ V)
3723, 26, 27, 36fvmptd 6882 . . . . . . . 8 (((𝜑𝑐𝐴) ∧ 𝑦 ∈ (1...𝐾)) → ((𝑎𝐴 ↦ (𝑥𝑆 ↦ (𝑎‘(𝑍𝑥))))‘𝑐) = (𝑥𝑆 ↦ (𝑐‘(𝑍𝑥))))
3837fveq1d 6776 . . . . . . 7 (((𝜑𝑐𝐴) ∧ 𝑦 ∈ (1...𝐾)) → (((𝑎𝐴 ↦ (𝑥𝑆 ↦ (𝑎‘(𝑍𝑥))))‘𝑐)‘(𝑍𝑦)) = ((𝑥𝑆 ↦ (𝑐‘(𝑍𝑥)))‘(𝑍𝑦)))
3938mpteq2dva 5174 . . . . . 6 ((𝜑𝑐𝐴) → (𝑦 ∈ (1...𝐾) ↦ (((𝑎𝐴 ↦ (𝑥𝑆 ↦ (𝑎‘(𝑍𝑥))))‘𝑐)‘(𝑍𝑦))) = (𝑦 ∈ (1...𝐾) ↦ ((𝑥𝑆 ↦ (𝑐‘(𝑍𝑥)))‘(𝑍𝑦))))
40 eqidd 2739 . . . . . . . . 9 (((𝜑𝑐𝐴) ∧ 𝑦 ∈ (1...𝐾)) → (𝑥𝑆 ↦ (𝑐‘(𝑍𝑥))) = (𝑥𝑆 ↦ (𝑐‘(𝑍𝑥))))
41 simpr 485 . . . . . . . . . . 11 ((((𝜑𝑐𝐴) ∧ 𝑦 ∈ (1...𝐾)) ∧ 𝑥 = (𝑍𝑦)) → 𝑥 = (𝑍𝑦))
4241fveq2d 6778 . . . . . . . . . 10 ((((𝜑𝑐𝐴) ∧ 𝑦 ∈ (1...𝐾)) ∧ 𝑥 = (𝑍𝑦)) → (𝑍𝑥) = (𝑍‘(𝑍𝑦)))
4342fveq2d 6778 . . . . . . . . 9 ((((𝜑𝑐𝐴) ∧ 𝑦 ∈ (1...𝐾)) ∧ 𝑥 = (𝑍𝑦)) → (𝑐‘(𝑍𝑥)) = (𝑐‘(𝑍‘(𝑍𝑦))))
44 f1of 6716 . . . . . . . . . . . 12 (𝑍:(1...𝐾)–1-1-onto𝑆𝑍:(1...𝐾)⟶𝑆)
455, 44syl 17 . . . . . . . . . . 11 (𝜑𝑍:(1...𝐾)⟶𝑆)
4645adantr 481 . . . . . . . . . 10 ((𝜑𝑐𝐴) → 𝑍:(1...𝐾)⟶𝑆)
4746ffvelrnda 6961 . . . . . . . . 9 (((𝜑𝑐𝐴) ∧ 𝑦 ∈ (1...𝐾)) → (𝑍𝑦) ∈ 𝑆)
48 fvexd 6789 . . . . . . . . 9 (((𝜑𝑐𝐴) ∧ 𝑦 ∈ (1...𝐾)) → (𝑐‘(𝑍‘(𝑍𝑦))) ∈ V)
4940, 43, 47, 48fvmptd 6882 . . . . . . . 8 (((𝜑𝑐𝐴) ∧ 𝑦 ∈ (1...𝐾)) → ((𝑥𝑆 ↦ (𝑐‘(𝑍𝑥)))‘(𝑍𝑦)) = (𝑐‘(𝑍‘(𝑍𝑦))))
5049mpteq2dva 5174 . . . . . . 7 ((𝜑𝑐𝐴) → (𝑦 ∈ (1...𝐾) ↦ ((𝑥𝑆 ↦ (𝑐‘(𝑍𝑥)))‘(𝑍𝑦))) = (𝑦 ∈ (1...𝐾) ↦ (𝑐‘(𝑍‘(𝑍𝑦)))))
515ad2antrr 723 . . . . . . . . . . 11 (((𝜑𝑐𝐴) ∧ 𝑦 ∈ (1...𝐾)) → 𝑍:(1...𝐾)–1-1-onto𝑆)
52 simpr 485 . . . . . . . . . . 11 (((𝜑𝑐𝐴) ∧ 𝑦 ∈ (1...𝐾)) → 𝑦 ∈ (1...𝐾))
53 f1ocnvfv1 7148 . . . . . . . . . . 11 ((𝑍:(1...𝐾)–1-1-onto𝑆𝑦 ∈ (1...𝐾)) → (𝑍‘(𝑍𝑦)) = 𝑦)
5451, 52, 53syl2anc 584 . . . . . . . . . 10 (((𝜑𝑐𝐴) ∧ 𝑦 ∈ (1...𝐾)) → (𝑍‘(𝑍𝑦)) = 𝑦)
5554fveq2d 6778 . . . . . . . . 9 (((𝜑𝑐𝐴) ∧ 𝑦 ∈ (1...𝐾)) → (𝑐‘(𝑍‘(𝑍𝑦))) = (𝑐𝑦))
5655mpteq2dva 5174 . . . . . . . 8 ((𝜑𝑐𝐴) → (𝑦 ∈ (1...𝐾) ↦ (𝑐‘(𝑍‘(𝑍𝑦)))) = (𝑦 ∈ (1...𝐾) ↦ (𝑐𝑦)))
57 simpr 485 . . . . . . . . . . . . . 14 ((𝜑𝑐𝐴) → 𝑐𝐴)
583a1i 11 . . . . . . . . . . . . . 14 ((𝜑𝑐𝐴) → 𝐴 = {𝑔 ∣ (𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑖 ∈ (1...𝐾)(𝑔𝑖) = 𝑁)})
5957, 58eleqtrd 2841 . . . . . . . . . . . . 13 ((𝜑𝑐𝐴) → 𝑐 ∈ {𝑔 ∣ (𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑖 ∈ (1...𝐾)(𝑔𝑖) = 𝑁)})
60 vex 3436 . . . . . . . . . . . . . 14 𝑐 ∈ V
61 feq1 6581 . . . . . . . . . . . . . . 15 (𝑔 = 𝑐 → (𝑔:(1...𝐾)⟶ℕ0𝑐:(1...𝐾)⟶ℕ0))
62 simpl 483 . . . . . . . . . . . . . . . . . 18 ((𝑔 = 𝑐𝑖 ∈ (1...𝐾)) → 𝑔 = 𝑐)
6362fveq1d 6776 . . . . . . . . . . . . . . . . 17 ((𝑔 = 𝑐𝑖 ∈ (1...𝐾)) → (𝑔𝑖) = (𝑐𝑖))
6463sumeq2dv 15415 . . . . . . . . . . . . . . . 16 (𝑔 = 𝑐 → Σ𝑖 ∈ (1...𝐾)(𝑔𝑖) = Σ𝑖 ∈ (1...𝐾)(𝑐𝑖))
6564eqeq1d 2740 . . . . . . . . . . . . . . 15 (𝑔 = 𝑐 → (Σ𝑖 ∈ (1...𝐾)(𝑔𝑖) = 𝑁 ↔ Σ𝑖 ∈ (1...𝐾)(𝑐𝑖) = 𝑁))
6661, 65anbi12d 631 . . . . . . . . . . . . . 14 (𝑔 = 𝑐 → ((𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑖 ∈ (1...𝐾)(𝑔𝑖) = 𝑁) ↔ (𝑐:(1...𝐾)⟶ℕ0 ∧ Σ𝑖 ∈ (1...𝐾)(𝑐𝑖) = 𝑁)))
6760, 66elab 3609 . . . . . . . . . . . . 13 (𝑐 ∈ {𝑔 ∣ (𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑖 ∈ (1...𝐾)(𝑔𝑖) = 𝑁)} ↔ (𝑐:(1...𝐾)⟶ℕ0 ∧ Σ𝑖 ∈ (1...𝐾)(𝑐𝑖) = 𝑁))
6859, 67sylib 217 . . . . . . . . . . . 12 ((𝜑𝑐𝐴) → (𝑐:(1...𝐾)⟶ℕ0 ∧ Σ𝑖 ∈ (1...𝐾)(𝑐𝑖) = 𝑁))
6968simpld 495 . . . . . . . . . . 11 ((𝜑𝑐𝐴) → 𝑐:(1...𝐾)⟶ℕ0)
70 ffn 6600 . . . . . . . . . . 11 (𝑐:(1...𝐾)⟶ℕ0𝑐 Fn (1...𝐾))
7169, 70syl 17 . . . . . . . . . 10 ((𝜑𝑐𝐴) → 𝑐 Fn (1...𝐾))
72 dffn5 6828 . . . . . . . . . 10 (𝑐 Fn (1...𝐾) ↔ 𝑐 = (𝑦 ∈ (1...𝐾) ↦ (𝑐𝑦)))
7371, 72sylib 217 . . . . . . . . 9 ((𝜑𝑐𝐴) → 𝑐 = (𝑦 ∈ (1...𝐾) ↦ (𝑐𝑦)))
7473eqcomd 2744 . . . . . . . 8 ((𝜑𝑐𝐴) → (𝑦 ∈ (1...𝐾) ↦ (𝑐𝑦)) = 𝑐)
7556, 74eqtrd 2778 . . . . . . 7 ((𝜑𝑐𝐴) → (𝑦 ∈ (1...𝐾) ↦ (𝑐‘(𝑍‘(𝑍𝑦)))) = 𝑐)
7650, 75eqtrd 2778 . . . . . 6 ((𝜑𝑐𝐴) → (𝑦 ∈ (1...𝐾) ↦ ((𝑥𝑆 ↦ (𝑐‘(𝑍𝑥)))‘(𝑍𝑦))) = 𝑐)
7739, 76eqtrd 2778 . . . . 5 ((𝜑𝑐𝐴) → (𝑦 ∈ (1...𝐾) ↦ (((𝑎𝐴 ↦ (𝑥𝑆 ↦ (𝑎‘(𝑍𝑥))))‘𝑐)‘(𝑍𝑦))) = 𝑐)
7822, 77eqtrd 2778 . . . 4 ((𝜑𝑐𝐴) → (𝑦 ∈ (1...𝐾) ↦ ((𝐹𝑐)‘(𝑍𝑦))) = 𝑐)
7917, 78eqtrd 2778 . . 3 ((𝜑𝑐𝐴) → (𝐺‘(𝐹𝑐)) = 𝑐)
8079ralrimiva 3103 . 2 (𝜑 → ∀𝑐𝐴 (𝐺‘(𝐹𝑐)) = 𝑐)
816a1i 11 . . . . 5 ((𝜑𝑑𝐵) → 𝐹 = (𝑎𝐴 ↦ (𝑥𝑆 ↦ (𝑎‘(𝑍𝑥)))))
82 simplr 766 . . . . . . 7 ((((𝜑𝑑𝐵) ∧ 𝑎 = (𝐺𝑑)) ∧ 𝑥𝑆) → 𝑎 = (𝐺𝑑))
8382fveq1d 6776 . . . . . 6 ((((𝜑𝑑𝐵) ∧ 𝑎 = (𝐺𝑑)) ∧ 𝑥𝑆) → (𝑎‘(𝑍𝑥)) = ((𝐺𝑑)‘(𝑍𝑥)))
8483mpteq2dva 5174 . . . . 5 (((𝜑𝑑𝐵) ∧ 𝑎 = (𝐺𝑑)) → (𝑥𝑆 ↦ (𝑎‘(𝑍𝑥))) = (𝑥𝑆 ↦ ((𝐺𝑑)‘(𝑍𝑥))))
859ffvelrnda 6961 . . . . 5 ((𝜑𝑑𝐵) → (𝐺𝑑) ∈ 𝐴)
8633adantr 481 . . . . . 6 ((𝜑𝑑𝐵) → 𝑆 ∈ Fin)
8786mptexd 7100 . . . . 5 ((𝜑𝑑𝐵) → (𝑥𝑆 ↦ ((𝐺𝑑)‘(𝑍𝑥))) ∈ V)
8881, 84, 85, 87fvmptd 6882 . . . 4 ((𝜑𝑑𝐵) → (𝐹‘(𝐺𝑑)) = (𝑥𝑆 ↦ ((𝐺𝑑)‘(𝑍𝑥))))
898a1i 11 . . . . . . . 8 (((𝜑𝑑𝐵) ∧ 𝑥𝑆) → 𝐺 = (𝑏𝐵 ↦ (𝑦 ∈ (1...𝐾) ↦ (𝑏‘(𝑍𝑦)))))
90 simplr 766 . . . . . . . . . 10 (((((𝜑𝑑𝐵) ∧ 𝑥𝑆) ∧ 𝑏 = 𝑑) ∧ 𝑦 ∈ (1...𝐾)) → 𝑏 = 𝑑)
9190fveq1d 6776 . . . . . . . . 9 (((((𝜑𝑑𝐵) ∧ 𝑥𝑆) ∧ 𝑏 = 𝑑) ∧ 𝑦 ∈ (1...𝐾)) → (𝑏‘(𝑍𝑦)) = (𝑑‘(𝑍𝑦)))
9291mpteq2dva 5174 . . . . . . . 8 ((((𝜑𝑑𝐵) ∧ 𝑥𝑆) ∧ 𝑏 = 𝑑) → (𝑦 ∈ (1...𝐾) ↦ (𝑏‘(𝑍𝑦))) = (𝑦 ∈ (1...𝐾) ↦ (𝑑‘(𝑍𝑦))))
93 simplr 766 . . . . . . . 8 (((𝜑𝑑𝐵) ∧ 𝑥𝑆) → 𝑑𝐵)
94 fzfid 13693 . . . . . . . . 9 (((𝜑𝑑𝐵) ∧ 𝑥𝑆) → (1...𝐾) ∈ Fin)
9594mptexd 7100 . . . . . . . 8 (((𝜑𝑑𝐵) ∧ 𝑥𝑆) → (𝑦 ∈ (1...𝐾) ↦ (𝑑‘(𝑍𝑦))) ∈ V)
9689, 92, 93, 95fvmptd 6882 . . . . . . 7 (((𝜑𝑑𝐵) ∧ 𝑥𝑆) → (𝐺𝑑) = (𝑦 ∈ (1...𝐾) ↦ (𝑑‘(𝑍𝑦))))
9796fveq1d 6776 . . . . . 6 (((𝜑𝑑𝐵) ∧ 𝑥𝑆) → ((𝐺𝑑)‘(𝑍𝑥)) = ((𝑦 ∈ (1...𝐾) ↦ (𝑑‘(𝑍𝑦)))‘(𝑍𝑥)))
9897mpteq2dva 5174 . . . . 5 ((𝜑𝑑𝐵) → (𝑥𝑆 ↦ ((𝐺𝑑)‘(𝑍𝑥))) = (𝑥𝑆 ↦ ((𝑦 ∈ (1...𝐾) ↦ (𝑑‘(𝑍𝑦)))‘(𝑍𝑥))))
99 eqidd 2739 . . . . . . . 8 (((𝜑𝑑𝐵) ∧ 𝑥𝑆) → (𝑦 ∈ (1...𝐾) ↦ (𝑑‘(𝑍𝑦))) = (𝑦 ∈ (1...𝐾) ↦ (𝑑‘(𝑍𝑦))))
100 simpr 485 . . . . . . . . . 10 ((((𝜑𝑑𝐵) ∧ 𝑥𝑆) ∧ 𝑦 = (𝑍𝑥)) → 𝑦 = (𝑍𝑥))
101100fveq2d 6778 . . . . . . . . 9 ((((𝜑𝑑𝐵) ∧ 𝑥𝑆) ∧ 𝑦 = (𝑍𝑥)) → (𝑍𝑦) = (𝑍‘(𝑍𝑥)))
102101fveq2d 6778 . . . . . . . 8 ((((𝜑𝑑𝐵) ∧ 𝑥𝑆) ∧ 𝑦 = (𝑍𝑥)) → (𝑑‘(𝑍𝑦)) = (𝑑‘(𝑍‘(𝑍𝑥))))
103 f1ocnv 6728 . . . . . . . . . . . 12 (𝑍:(1...𝐾)–1-1-onto𝑆𝑍:𝑆1-1-onto→(1...𝐾))
1045, 103syl 17 . . . . . . . . . . 11 (𝜑𝑍:𝑆1-1-onto→(1...𝐾))
105 f1of 6716 . . . . . . . . . . 11 (𝑍:𝑆1-1-onto→(1...𝐾) → 𝑍:𝑆⟶(1...𝐾))
106104, 105syl 17 . . . . . . . . . 10 (𝜑𝑍:𝑆⟶(1...𝐾))
107106adantr 481 . . . . . . . . 9 ((𝜑𝑑𝐵) → 𝑍:𝑆⟶(1...𝐾))
108107ffvelrnda 6961 . . . . . . . 8 (((𝜑𝑑𝐵) ∧ 𝑥𝑆) → (𝑍𝑥) ∈ (1...𝐾))
109 fvexd 6789 . . . . . . . 8 (((𝜑𝑑𝐵) ∧ 𝑥𝑆) → (𝑑‘(𝑍‘(𝑍𝑥))) ∈ V)
11099, 102, 108, 109fvmptd 6882 . . . . . . 7 (((𝜑𝑑𝐵) ∧ 𝑥𝑆) → ((𝑦 ∈ (1...𝐾) ↦ (𝑑‘(𝑍𝑦)))‘(𝑍𝑥)) = (𝑑‘(𝑍‘(𝑍𝑥))))
111110mpteq2dva 5174 . . . . . 6 ((𝜑𝑑𝐵) → (𝑥𝑆 ↦ ((𝑦 ∈ (1...𝐾) ↦ (𝑑‘(𝑍𝑦)))‘(𝑍𝑥))) = (𝑥𝑆 ↦ (𝑑‘(𝑍‘(𝑍𝑥)))))
1125ad2antrr 723 . . . . . . . . . 10 (((𝜑𝑑𝐵) ∧ 𝑥𝑆) → 𝑍:(1...𝐾)–1-1-onto𝑆)
113 simpr 485 . . . . . . . . . 10 (((𝜑𝑑𝐵) ∧ 𝑥𝑆) → 𝑥𝑆)
114 f1ocnvfv2 7149 . . . . . . . . . 10 ((𝑍:(1...𝐾)–1-1-onto𝑆𝑥𝑆) → (𝑍‘(𝑍𝑥)) = 𝑥)
115112, 113, 114syl2anc 584 . . . . . . . . 9 (((𝜑𝑑𝐵) ∧ 𝑥𝑆) → (𝑍‘(𝑍𝑥)) = 𝑥)
116115fveq2d 6778 . . . . . . . 8 (((𝜑𝑑𝐵) ∧ 𝑥𝑆) → (𝑑‘(𝑍‘(𝑍𝑥))) = (𝑑𝑥))
117116mpteq2dva 5174 . . . . . . 7 ((𝜑𝑑𝐵) → (𝑥𝑆 ↦ (𝑑‘(𝑍‘(𝑍𝑥)))) = (𝑥𝑆 ↦ (𝑑𝑥)))
118 simpr 485 . . . . . . . . . . . . 13 ((𝜑𝑑𝐵) → 𝑑𝐵)
1194a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑑𝐵) → 𝐵 = { ∣ (:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑖) = 𝑁)})
120118, 119eleqtrd 2841 . . . . . . . . . . . 12 ((𝜑𝑑𝐵) → 𝑑 ∈ { ∣ (:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑖) = 𝑁)})
121 vex 3436 . . . . . . . . . . . . 13 𝑑 ∈ V
122 feq1 6581 . . . . . . . . . . . . . 14 ( = 𝑑 → (:𝑆⟶ℕ0𝑑:𝑆⟶ℕ0))
123 simpl 483 . . . . . . . . . . . . . . . . 17 (( = 𝑑𝑖𝑆) → = 𝑑)
124123fveq1d 6776 . . . . . . . . . . . . . . . 16 (( = 𝑑𝑖𝑆) → (𝑖) = (𝑑𝑖))
125124sumeq2dv 15415 . . . . . . . . . . . . . . 15 ( = 𝑑 → Σ𝑖𝑆 (𝑖) = Σ𝑖𝑆 (𝑑𝑖))
126125eqeq1d 2740 . . . . . . . . . . . . . 14 ( = 𝑑 → (Σ𝑖𝑆 (𝑖) = 𝑁 ↔ Σ𝑖𝑆 (𝑑𝑖) = 𝑁))
127122, 126anbi12d 631 . . . . . . . . . . . . 13 ( = 𝑑 → ((:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑖) = 𝑁) ↔ (𝑑:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑑𝑖) = 𝑁)))
128121, 127elab 3609 . . . . . . . . . . . 12 (𝑑 ∈ { ∣ (:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑖) = 𝑁)} ↔ (𝑑:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑑𝑖) = 𝑁))
129120, 128sylib 217 . . . . . . . . . . 11 ((𝜑𝑑𝐵) → (𝑑:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑑𝑖) = 𝑁))
130129simpld 495 . . . . . . . . . 10 ((𝜑𝑑𝐵) → 𝑑:𝑆⟶ℕ0)
131 ffn 6600 . . . . . . . . . 10 (𝑑:𝑆⟶ℕ0𝑑 Fn 𝑆)
132130, 131syl 17 . . . . . . . . 9 ((𝜑𝑑𝐵) → 𝑑 Fn 𝑆)
133 dffn5 6828 . . . . . . . . 9 (𝑑 Fn 𝑆𝑑 = (𝑥𝑆 ↦ (𝑑𝑥)))
134132, 133sylib 217 . . . . . . . 8 ((𝜑𝑑𝐵) → 𝑑 = (𝑥𝑆 ↦ (𝑑𝑥)))
135134eqcomd 2744 . . . . . . 7 ((𝜑𝑑𝐵) → (𝑥𝑆 ↦ (𝑑𝑥)) = 𝑑)
136117, 135eqtrd 2778 . . . . . 6 ((𝜑𝑑𝐵) → (𝑥𝑆 ↦ (𝑑‘(𝑍‘(𝑍𝑥)))) = 𝑑)
137111, 136eqtrd 2778 . . . . 5 ((𝜑𝑑𝐵) → (𝑥𝑆 ↦ ((𝑦 ∈ (1...𝐾) ↦ (𝑑‘(𝑍𝑦)))‘(𝑍𝑥))) = 𝑑)
13898, 137eqtrd 2778 . . . 4 ((𝜑𝑑𝐵) → (𝑥𝑆 ↦ ((𝐺𝑑)‘(𝑍𝑥))) = 𝑑)
13988, 138eqtrd 2778 . . 3 ((𝜑𝑑𝐵) → (𝐹‘(𝐺𝑑)) = 𝑑)
140139ralrimiva 3103 . 2 (𝜑 → ∀𝑑𝐵 (𝐹‘(𝐺𝑑)) = 𝑑)
1417, 9, 80, 1402fvidf1od 7170 1 (𝜑𝐹:𝐴1-1-onto𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  {cab 2715  Vcvv 3432   class class class wbr 5074  cmpt 5157  ccnv 5588   Fn wfn 6428  wf 6429  1-1-ontowf1o 6432  cfv 6433  (class class class)co 7275  cen 8730  Fincfn 8733  1c1 10872  0cn0 12233  ...cfz 13239  Σcsu 15397
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12583  df-rp 12731  df-fz 13240  df-fzo 13383  df-seq 13722  df-exp 13783  df-hash 14045  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-clim 15197  df-sum 15398
This theorem is referenced by:  sticksstones20  40122
  Copyright terms: Public domain W3C validator