Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sticksstones19 Structured version   Visualization version   GIF version

Theorem sticksstones19 42166
Description: Extend sticks and stones to finite sets, bijective builder. (Contributed by metakunt, 23-Oct-2024.)
Hypotheses
Ref Expression
sticksstones19.1 (𝜑𝑁 ∈ ℕ0)
sticksstones19.2 (𝜑𝐾 ∈ ℕ0)
sticksstones19.3 𝐴 = {𝑔 ∣ (𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑖 ∈ (1...𝐾)(𝑔𝑖) = 𝑁)}
sticksstones19.4 𝐵 = { ∣ (:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑖) = 𝑁)}
sticksstones19.5 (𝜑𝑍:(1...𝐾)–1-1-onto𝑆)
sticksstones19.6 𝐹 = (𝑎𝐴 ↦ (𝑥𝑆 ↦ (𝑎‘(𝑍𝑥))))
sticksstones19.7 𝐺 = (𝑏𝐵 ↦ (𝑦 ∈ (1...𝐾) ↦ (𝑏‘(𝑍𝑦))))
Assertion
Ref Expression
sticksstones19 (𝜑𝐹:𝐴1-1-onto𝐵)
Distinct variable groups:   𝐴,𝑎,𝑖,𝑥,𝑦   𝐴,𝑏,𝑖,𝑥,𝑦   𝐵,𝑎,𝑖,𝑥,𝑦   𝐵,𝑏   𝐹,𝑏,𝑦   𝐺,𝑎,𝑥   𝐾,𝑎,𝑔,𝑖,𝑦   𝐾,𝑏,𝑔   𝑥,𝐾   𝑔,𝑁   ,𝑁   𝑆,𝑎,,𝑖,𝑥   𝑆,𝑏,   𝑦,𝑆   𝑍,𝑎,𝑔,𝑖,𝑦   𝑍,𝑏,,𝑥   𝜑,𝑎,𝑖,𝑥,𝑦   𝜑,𝑏
Allowed substitution hints:   𝜑(𝑔,)   𝐴(𝑔,)   𝐵(𝑔,)   𝑆(𝑔)   𝐹(𝑥,𝑔,,𝑖,𝑎)   𝐺(𝑦,𝑔,,𝑖,𝑏)   𝐾()   𝑁(𝑥,𝑦,𝑖,𝑎,𝑏)

Proof of Theorem sticksstones19
Dummy variables 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sticksstones19.1 . . 3 (𝜑𝑁 ∈ ℕ0)
2 sticksstones19.2 . . 3 (𝜑𝐾 ∈ ℕ0)
3 sticksstones19.3 . . 3 𝐴 = {𝑔 ∣ (𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑖 ∈ (1...𝐾)(𝑔𝑖) = 𝑁)}
4 sticksstones19.4 . . 3 𝐵 = { ∣ (:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑖) = 𝑁)}
5 sticksstones19.5 . . 3 (𝜑𝑍:(1...𝐾)–1-1-onto𝑆)
6 sticksstones19.6 . . 3 𝐹 = (𝑎𝐴 ↦ (𝑥𝑆 ↦ (𝑎‘(𝑍𝑥))))
71, 2, 3, 4, 5, 6sticksstones18 42165 . 2 (𝜑𝐹:𝐴𝐵)
8 sticksstones19.7 . . 3 𝐺 = (𝑏𝐵 ↦ (𝑦 ∈ (1...𝐾) ↦ (𝑏‘(𝑍𝑦))))
91, 2, 3, 4, 5, 8sticksstones17 42164 . 2 (𝜑𝐺:𝐵𝐴)
108a1i 11 . . . . 5 ((𝜑𝑐𝐴) → 𝐺 = (𝑏𝐵 ↦ (𝑦 ∈ (1...𝐾) ↦ (𝑏‘(𝑍𝑦)))))
11 simplr 769 . . . . . . 7 ((((𝜑𝑐𝐴) ∧ 𝑏 = (𝐹𝑐)) ∧ 𝑦 ∈ (1...𝐾)) → 𝑏 = (𝐹𝑐))
1211fveq1d 6908 . . . . . 6 ((((𝜑𝑐𝐴) ∧ 𝑏 = (𝐹𝑐)) ∧ 𝑦 ∈ (1...𝐾)) → (𝑏‘(𝑍𝑦)) = ((𝐹𝑐)‘(𝑍𝑦)))
1312mpteq2dva 5242 . . . . 5 (((𝜑𝑐𝐴) ∧ 𝑏 = (𝐹𝑐)) → (𝑦 ∈ (1...𝐾) ↦ (𝑏‘(𝑍𝑦))) = (𝑦 ∈ (1...𝐾) ↦ ((𝐹𝑐)‘(𝑍𝑦))))
147ffvelcdmda 7104 . . . . 5 ((𝜑𝑐𝐴) → (𝐹𝑐) ∈ 𝐵)
15 fzfid 14014 . . . . . 6 ((𝜑𝑐𝐴) → (1...𝐾) ∈ Fin)
1615mptexd 7244 . . . . 5 ((𝜑𝑐𝐴) → (𝑦 ∈ (1...𝐾) ↦ ((𝐹𝑐)‘(𝑍𝑦))) ∈ V)
1710, 13, 14, 16fvmptd 7023 . . . 4 ((𝜑𝑐𝐴) → (𝐺‘(𝐹𝑐)) = (𝑦 ∈ (1...𝐾) ↦ ((𝐹𝑐)‘(𝑍𝑦))))
186a1i 11 . . . . . . . . 9 ((𝜑𝑐𝐴𝑦 ∈ (1...𝐾)) → 𝐹 = (𝑎𝐴 ↦ (𝑥𝑆 ↦ (𝑎‘(𝑍𝑥)))))
1918fveq1d 6908 . . . . . . . 8 ((𝜑𝑐𝐴𝑦 ∈ (1...𝐾)) → (𝐹𝑐) = ((𝑎𝐴 ↦ (𝑥𝑆 ↦ (𝑎‘(𝑍𝑥))))‘𝑐))
2019fveq1d 6908 . . . . . . 7 ((𝜑𝑐𝐴𝑦 ∈ (1...𝐾)) → ((𝐹𝑐)‘(𝑍𝑦)) = (((𝑎𝐴 ↦ (𝑥𝑆 ↦ (𝑎‘(𝑍𝑥))))‘𝑐)‘(𝑍𝑦)))
21203expa 1119 . . . . . 6 (((𝜑𝑐𝐴) ∧ 𝑦 ∈ (1...𝐾)) → ((𝐹𝑐)‘(𝑍𝑦)) = (((𝑎𝐴 ↦ (𝑥𝑆 ↦ (𝑎‘(𝑍𝑥))))‘𝑐)‘(𝑍𝑦)))
2221mpteq2dva 5242 . . . . 5 ((𝜑𝑐𝐴) → (𝑦 ∈ (1...𝐾) ↦ ((𝐹𝑐)‘(𝑍𝑦))) = (𝑦 ∈ (1...𝐾) ↦ (((𝑎𝐴 ↦ (𝑥𝑆 ↦ (𝑎‘(𝑍𝑥))))‘𝑐)‘(𝑍𝑦))))
23 eqidd 2738 . . . . . . . . 9 (((𝜑𝑐𝐴) ∧ 𝑦 ∈ (1...𝐾)) → (𝑎𝐴 ↦ (𝑥𝑆 ↦ (𝑎‘(𝑍𝑥)))) = (𝑎𝐴 ↦ (𝑥𝑆 ↦ (𝑎‘(𝑍𝑥)))))
24 simplr 769 . . . . . . . . . . 11 (((((𝜑𝑐𝐴) ∧ 𝑦 ∈ (1...𝐾)) ∧ 𝑎 = 𝑐) ∧ 𝑥𝑆) → 𝑎 = 𝑐)
2524fveq1d 6908 . . . . . . . . . 10 (((((𝜑𝑐𝐴) ∧ 𝑦 ∈ (1...𝐾)) ∧ 𝑎 = 𝑐) ∧ 𝑥𝑆) → (𝑎‘(𝑍𝑥)) = (𝑐‘(𝑍𝑥)))
2625mpteq2dva 5242 . . . . . . . . 9 ((((𝜑𝑐𝐴) ∧ 𝑦 ∈ (1...𝐾)) ∧ 𝑎 = 𝑐) → (𝑥𝑆 ↦ (𝑎‘(𝑍𝑥))) = (𝑥𝑆 ↦ (𝑐‘(𝑍𝑥))))
27 simplr 769 . . . . . . . . 9 (((𝜑𝑐𝐴) ∧ 𝑦 ∈ (1...𝐾)) → 𝑐𝐴)
28 fzfid 14014 . . . . . . . . . . . . 13 (𝜑 → (1...𝐾) ∈ Fin)
29 f1oenfi 9219 . . . . . . . . . . . . . . 15 (((1...𝐾) ∈ Fin ∧ 𝑍:(1...𝐾)–1-1-onto𝑆) → (1...𝐾) ≈ 𝑆)
3028, 5, 29syl2anc 584 . . . . . . . . . . . . . 14 (𝜑 → (1...𝐾) ≈ 𝑆)
3130ensymd 9045 . . . . . . . . . . . . 13 (𝜑𝑆 ≈ (1...𝐾))
32 enfii 9226 . . . . . . . . . . . . 13 (((1...𝐾) ∈ Fin ∧ 𝑆 ≈ (1...𝐾)) → 𝑆 ∈ Fin)
3328, 31, 32syl2anc 584 . . . . . . . . . . . 12 (𝜑𝑆 ∈ Fin)
3433adantr 480 . . . . . . . . . . 11 ((𝜑𝑐𝐴) → 𝑆 ∈ Fin)
3534adantr 480 . . . . . . . . . 10 (((𝜑𝑐𝐴) ∧ 𝑦 ∈ (1...𝐾)) → 𝑆 ∈ Fin)
3635mptexd 7244 . . . . . . . . 9 (((𝜑𝑐𝐴) ∧ 𝑦 ∈ (1...𝐾)) → (𝑥𝑆 ↦ (𝑐‘(𝑍𝑥))) ∈ V)
3723, 26, 27, 36fvmptd 7023 . . . . . . . 8 (((𝜑𝑐𝐴) ∧ 𝑦 ∈ (1...𝐾)) → ((𝑎𝐴 ↦ (𝑥𝑆 ↦ (𝑎‘(𝑍𝑥))))‘𝑐) = (𝑥𝑆 ↦ (𝑐‘(𝑍𝑥))))
3837fveq1d 6908 . . . . . . 7 (((𝜑𝑐𝐴) ∧ 𝑦 ∈ (1...𝐾)) → (((𝑎𝐴 ↦ (𝑥𝑆 ↦ (𝑎‘(𝑍𝑥))))‘𝑐)‘(𝑍𝑦)) = ((𝑥𝑆 ↦ (𝑐‘(𝑍𝑥)))‘(𝑍𝑦)))
3938mpteq2dva 5242 . . . . . 6 ((𝜑𝑐𝐴) → (𝑦 ∈ (1...𝐾) ↦ (((𝑎𝐴 ↦ (𝑥𝑆 ↦ (𝑎‘(𝑍𝑥))))‘𝑐)‘(𝑍𝑦))) = (𝑦 ∈ (1...𝐾) ↦ ((𝑥𝑆 ↦ (𝑐‘(𝑍𝑥)))‘(𝑍𝑦))))
40 eqidd 2738 . . . . . . . . 9 (((𝜑𝑐𝐴) ∧ 𝑦 ∈ (1...𝐾)) → (𝑥𝑆 ↦ (𝑐‘(𝑍𝑥))) = (𝑥𝑆 ↦ (𝑐‘(𝑍𝑥))))
41 simpr 484 . . . . . . . . . . 11 ((((𝜑𝑐𝐴) ∧ 𝑦 ∈ (1...𝐾)) ∧ 𝑥 = (𝑍𝑦)) → 𝑥 = (𝑍𝑦))
4241fveq2d 6910 . . . . . . . . . 10 ((((𝜑𝑐𝐴) ∧ 𝑦 ∈ (1...𝐾)) ∧ 𝑥 = (𝑍𝑦)) → (𝑍𝑥) = (𝑍‘(𝑍𝑦)))
4342fveq2d 6910 . . . . . . . . 9 ((((𝜑𝑐𝐴) ∧ 𝑦 ∈ (1...𝐾)) ∧ 𝑥 = (𝑍𝑦)) → (𝑐‘(𝑍𝑥)) = (𝑐‘(𝑍‘(𝑍𝑦))))
44 f1of 6848 . . . . . . . . . . . 12 (𝑍:(1...𝐾)–1-1-onto𝑆𝑍:(1...𝐾)⟶𝑆)
455, 44syl 17 . . . . . . . . . . 11 (𝜑𝑍:(1...𝐾)⟶𝑆)
4645adantr 480 . . . . . . . . . 10 ((𝜑𝑐𝐴) → 𝑍:(1...𝐾)⟶𝑆)
4746ffvelcdmda 7104 . . . . . . . . 9 (((𝜑𝑐𝐴) ∧ 𝑦 ∈ (1...𝐾)) → (𝑍𝑦) ∈ 𝑆)
48 fvexd 6921 . . . . . . . . 9 (((𝜑𝑐𝐴) ∧ 𝑦 ∈ (1...𝐾)) → (𝑐‘(𝑍‘(𝑍𝑦))) ∈ V)
4940, 43, 47, 48fvmptd 7023 . . . . . . . 8 (((𝜑𝑐𝐴) ∧ 𝑦 ∈ (1...𝐾)) → ((𝑥𝑆 ↦ (𝑐‘(𝑍𝑥)))‘(𝑍𝑦)) = (𝑐‘(𝑍‘(𝑍𝑦))))
5049mpteq2dva 5242 . . . . . . 7 ((𝜑𝑐𝐴) → (𝑦 ∈ (1...𝐾) ↦ ((𝑥𝑆 ↦ (𝑐‘(𝑍𝑥)))‘(𝑍𝑦))) = (𝑦 ∈ (1...𝐾) ↦ (𝑐‘(𝑍‘(𝑍𝑦)))))
515ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑐𝐴) ∧ 𝑦 ∈ (1...𝐾)) → 𝑍:(1...𝐾)–1-1-onto𝑆)
52 simpr 484 . . . . . . . . . . 11 (((𝜑𝑐𝐴) ∧ 𝑦 ∈ (1...𝐾)) → 𝑦 ∈ (1...𝐾))
53 f1ocnvfv1 7296 . . . . . . . . . . 11 ((𝑍:(1...𝐾)–1-1-onto𝑆𝑦 ∈ (1...𝐾)) → (𝑍‘(𝑍𝑦)) = 𝑦)
5451, 52, 53syl2anc 584 . . . . . . . . . 10 (((𝜑𝑐𝐴) ∧ 𝑦 ∈ (1...𝐾)) → (𝑍‘(𝑍𝑦)) = 𝑦)
5554fveq2d 6910 . . . . . . . . 9 (((𝜑𝑐𝐴) ∧ 𝑦 ∈ (1...𝐾)) → (𝑐‘(𝑍‘(𝑍𝑦))) = (𝑐𝑦))
5655mpteq2dva 5242 . . . . . . . 8 ((𝜑𝑐𝐴) → (𝑦 ∈ (1...𝐾) ↦ (𝑐‘(𝑍‘(𝑍𝑦)))) = (𝑦 ∈ (1...𝐾) ↦ (𝑐𝑦)))
57 simpr 484 . . . . . . . . . . . . . 14 ((𝜑𝑐𝐴) → 𝑐𝐴)
583a1i 11 . . . . . . . . . . . . . 14 ((𝜑𝑐𝐴) → 𝐴 = {𝑔 ∣ (𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑖 ∈ (1...𝐾)(𝑔𝑖) = 𝑁)})
5957, 58eleqtrd 2843 . . . . . . . . . . . . 13 ((𝜑𝑐𝐴) → 𝑐 ∈ {𝑔 ∣ (𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑖 ∈ (1...𝐾)(𝑔𝑖) = 𝑁)})
60 vex 3484 . . . . . . . . . . . . . 14 𝑐 ∈ V
61 feq1 6716 . . . . . . . . . . . . . . 15 (𝑔 = 𝑐 → (𝑔:(1...𝐾)⟶ℕ0𝑐:(1...𝐾)⟶ℕ0))
62 simpl 482 . . . . . . . . . . . . . . . . . 18 ((𝑔 = 𝑐𝑖 ∈ (1...𝐾)) → 𝑔 = 𝑐)
6362fveq1d 6908 . . . . . . . . . . . . . . . . 17 ((𝑔 = 𝑐𝑖 ∈ (1...𝐾)) → (𝑔𝑖) = (𝑐𝑖))
6463sumeq2dv 15738 . . . . . . . . . . . . . . . 16 (𝑔 = 𝑐 → Σ𝑖 ∈ (1...𝐾)(𝑔𝑖) = Σ𝑖 ∈ (1...𝐾)(𝑐𝑖))
6564eqeq1d 2739 . . . . . . . . . . . . . . 15 (𝑔 = 𝑐 → (Σ𝑖 ∈ (1...𝐾)(𝑔𝑖) = 𝑁 ↔ Σ𝑖 ∈ (1...𝐾)(𝑐𝑖) = 𝑁))
6661, 65anbi12d 632 . . . . . . . . . . . . . 14 (𝑔 = 𝑐 → ((𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑖 ∈ (1...𝐾)(𝑔𝑖) = 𝑁) ↔ (𝑐:(1...𝐾)⟶ℕ0 ∧ Σ𝑖 ∈ (1...𝐾)(𝑐𝑖) = 𝑁)))
6760, 66elab 3679 . . . . . . . . . . . . 13 (𝑐 ∈ {𝑔 ∣ (𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑖 ∈ (1...𝐾)(𝑔𝑖) = 𝑁)} ↔ (𝑐:(1...𝐾)⟶ℕ0 ∧ Σ𝑖 ∈ (1...𝐾)(𝑐𝑖) = 𝑁))
6859, 67sylib 218 . . . . . . . . . . . 12 ((𝜑𝑐𝐴) → (𝑐:(1...𝐾)⟶ℕ0 ∧ Σ𝑖 ∈ (1...𝐾)(𝑐𝑖) = 𝑁))
6968simpld 494 . . . . . . . . . . 11 ((𝜑𝑐𝐴) → 𝑐:(1...𝐾)⟶ℕ0)
70 ffn 6736 . . . . . . . . . . 11 (𝑐:(1...𝐾)⟶ℕ0𝑐 Fn (1...𝐾))
7169, 70syl 17 . . . . . . . . . 10 ((𝜑𝑐𝐴) → 𝑐 Fn (1...𝐾))
72 dffn5 6967 . . . . . . . . . 10 (𝑐 Fn (1...𝐾) ↔ 𝑐 = (𝑦 ∈ (1...𝐾) ↦ (𝑐𝑦)))
7371, 72sylib 218 . . . . . . . . 9 ((𝜑𝑐𝐴) → 𝑐 = (𝑦 ∈ (1...𝐾) ↦ (𝑐𝑦)))
7473eqcomd 2743 . . . . . . . 8 ((𝜑𝑐𝐴) → (𝑦 ∈ (1...𝐾) ↦ (𝑐𝑦)) = 𝑐)
7556, 74eqtrd 2777 . . . . . . 7 ((𝜑𝑐𝐴) → (𝑦 ∈ (1...𝐾) ↦ (𝑐‘(𝑍‘(𝑍𝑦)))) = 𝑐)
7650, 75eqtrd 2777 . . . . . 6 ((𝜑𝑐𝐴) → (𝑦 ∈ (1...𝐾) ↦ ((𝑥𝑆 ↦ (𝑐‘(𝑍𝑥)))‘(𝑍𝑦))) = 𝑐)
7739, 76eqtrd 2777 . . . . 5 ((𝜑𝑐𝐴) → (𝑦 ∈ (1...𝐾) ↦ (((𝑎𝐴 ↦ (𝑥𝑆 ↦ (𝑎‘(𝑍𝑥))))‘𝑐)‘(𝑍𝑦))) = 𝑐)
7822, 77eqtrd 2777 . . . 4 ((𝜑𝑐𝐴) → (𝑦 ∈ (1...𝐾) ↦ ((𝐹𝑐)‘(𝑍𝑦))) = 𝑐)
7917, 78eqtrd 2777 . . 3 ((𝜑𝑐𝐴) → (𝐺‘(𝐹𝑐)) = 𝑐)
8079ralrimiva 3146 . 2 (𝜑 → ∀𝑐𝐴 (𝐺‘(𝐹𝑐)) = 𝑐)
816a1i 11 . . . . 5 ((𝜑𝑑𝐵) → 𝐹 = (𝑎𝐴 ↦ (𝑥𝑆 ↦ (𝑎‘(𝑍𝑥)))))
82 simplr 769 . . . . . . 7 ((((𝜑𝑑𝐵) ∧ 𝑎 = (𝐺𝑑)) ∧ 𝑥𝑆) → 𝑎 = (𝐺𝑑))
8382fveq1d 6908 . . . . . 6 ((((𝜑𝑑𝐵) ∧ 𝑎 = (𝐺𝑑)) ∧ 𝑥𝑆) → (𝑎‘(𝑍𝑥)) = ((𝐺𝑑)‘(𝑍𝑥)))
8483mpteq2dva 5242 . . . . 5 (((𝜑𝑑𝐵) ∧ 𝑎 = (𝐺𝑑)) → (𝑥𝑆 ↦ (𝑎‘(𝑍𝑥))) = (𝑥𝑆 ↦ ((𝐺𝑑)‘(𝑍𝑥))))
859ffvelcdmda 7104 . . . . 5 ((𝜑𝑑𝐵) → (𝐺𝑑) ∈ 𝐴)
8633adantr 480 . . . . . 6 ((𝜑𝑑𝐵) → 𝑆 ∈ Fin)
8786mptexd 7244 . . . . 5 ((𝜑𝑑𝐵) → (𝑥𝑆 ↦ ((𝐺𝑑)‘(𝑍𝑥))) ∈ V)
8881, 84, 85, 87fvmptd 7023 . . . 4 ((𝜑𝑑𝐵) → (𝐹‘(𝐺𝑑)) = (𝑥𝑆 ↦ ((𝐺𝑑)‘(𝑍𝑥))))
898a1i 11 . . . . . . . 8 (((𝜑𝑑𝐵) ∧ 𝑥𝑆) → 𝐺 = (𝑏𝐵 ↦ (𝑦 ∈ (1...𝐾) ↦ (𝑏‘(𝑍𝑦)))))
90 simplr 769 . . . . . . . . . 10 (((((𝜑𝑑𝐵) ∧ 𝑥𝑆) ∧ 𝑏 = 𝑑) ∧ 𝑦 ∈ (1...𝐾)) → 𝑏 = 𝑑)
9190fveq1d 6908 . . . . . . . . 9 (((((𝜑𝑑𝐵) ∧ 𝑥𝑆) ∧ 𝑏 = 𝑑) ∧ 𝑦 ∈ (1...𝐾)) → (𝑏‘(𝑍𝑦)) = (𝑑‘(𝑍𝑦)))
9291mpteq2dva 5242 . . . . . . . 8 ((((𝜑𝑑𝐵) ∧ 𝑥𝑆) ∧ 𝑏 = 𝑑) → (𝑦 ∈ (1...𝐾) ↦ (𝑏‘(𝑍𝑦))) = (𝑦 ∈ (1...𝐾) ↦ (𝑑‘(𝑍𝑦))))
93 simplr 769 . . . . . . . 8 (((𝜑𝑑𝐵) ∧ 𝑥𝑆) → 𝑑𝐵)
94 fzfid 14014 . . . . . . . . 9 (((𝜑𝑑𝐵) ∧ 𝑥𝑆) → (1...𝐾) ∈ Fin)
9594mptexd 7244 . . . . . . . 8 (((𝜑𝑑𝐵) ∧ 𝑥𝑆) → (𝑦 ∈ (1...𝐾) ↦ (𝑑‘(𝑍𝑦))) ∈ V)
9689, 92, 93, 95fvmptd 7023 . . . . . . 7 (((𝜑𝑑𝐵) ∧ 𝑥𝑆) → (𝐺𝑑) = (𝑦 ∈ (1...𝐾) ↦ (𝑑‘(𝑍𝑦))))
9796fveq1d 6908 . . . . . 6 (((𝜑𝑑𝐵) ∧ 𝑥𝑆) → ((𝐺𝑑)‘(𝑍𝑥)) = ((𝑦 ∈ (1...𝐾) ↦ (𝑑‘(𝑍𝑦)))‘(𝑍𝑥)))
9897mpteq2dva 5242 . . . . 5 ((𝜑𝑑𝐵) → (𝑥𝑆 ↦ ((𝐺𝑑)‘(𝑍𝑥))) = (𝑥𝑆 ↦ ((𝑦 ∈ (1...𝐾) ↦ (𝑑‘(𝑍𝑦)))‘(𝑍𝑥))))
99 eqidd 2738 . . . . . . . 8 (((𝜑𝑑𝐵) ∧ 𝑥𝑆) → (𝑦 ∈ (1...𝐾) ↦ (𝑑‘(𝑍𝑦))) = (𝑦 ∈ (1...𝐾) ↦ (𝑑‘(𝑍𝑦))))
100 simpr 484 . . . . . . . . . 10 ((((𝜑𝑑𝐵) ∧ 𝑥𝑆) ∧ 𝑦 = (𝑍𝑥)) → 𝑦 = (𝑍𝑥))
101100fveq2d 6910 . . . . . . . . 9 ((((𝜑𝑑𝐵) ∧ 𝑥𝑆) ∧ 𝑦 = (𝑍𝑥)) → (𝑍𝑦) = (𝑍‘(𝑍𝑥)))
102101fveq2d 6910 . . . . . . . 8 ((((𝜑𝑑𝐵) ∧ 𝑥𝑆) ∧ 𝑦 = (𝑍𝑥)) → (𝑑‘(𝑍𝑦)) = (𝑑‘(𝑍‘(𝑍𝑥))))
103 f1ocnv 6860 . . . . . . . . . . . 12 (𝑍:(1...𝐾)–1-1-onto𝑆𝑍:𝑆1-1-onto→(1...𝐾))
1045, 103syl 17 . . . . . . . . . . 11 (𝜑𝑍:𝑆1-1-onto→(1...𝐾))
105 f1of 6848 . . . . . . . . . . 11 (𝑍:𝑆1-1-onto→(1...𝐾) → 𝑍:𝑆⟶(1...𝐾))
106104, 105syl 17 . . . . . . . . . 10 (𝜑𝑍:𝑆⟶(1...𝐾))
107106adantr 480 . . . . . . . . 9 ((𝜑𝑑𝐵) → 𝑍:𝑆⟶(1...𝐾))
108107ffvelcdmda 7104 . . . . . . . 8 (((𝜑𝑑𝐵) ∧ 𝑥𝑆) → (𝑍𝑥) ∈ (1...𝐾))
109 fvexd 6921 . . . . . . . 8 (((𝜑𝑑𝐵) ∧ 𝑥𝑆) → (𝑑‘(𝑍‘(𝑍𝑥))) ∈ V)
11099, 102, 108, 109fvmptd 7023 . . . . . . 7 (((𝜑𝑑𝐵) ∧ 𝑥𝑆) → ((𝑦 ∈ (1...𝐾) ↦ (𝑑‘(𝑍𝑦)))‘(𝑍𝑥)) = (𝑑‘(𝑍‘(𝑍𝑥))))
111110mpteq2dva 5242 . . . . . 6 ((𝜑𝑑𝐵) → (𝑥𝑆 ↦ ((𝑦 ∈ (1...𝐾) ↦ (𝑑‘(𝑍𝑦)))‘(𝑍𝑥))) = (𝑥𝑆 ↦ (𝑑‘(𝑍‘(𝑍𝑥)))))
1125ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑑𝐵) ∧ 𝑥𝑆) → 𝑍:(1...𝐾)–1-1-onto𝑆)
113 simpr 484 . . . . . . . . . 10 (((𝜑𝑑𝐵) ∧ 𝑥𝑆) → 𝑥𝑆)
114 f1ocnvfv2 7297 . . . . . . . . . 10 ((𝑍:(1...𝐾)–1-1-onto𝑆𝑥𝑆) → (𝑍‘(𝑍𝑥)) = 𝑥)
115112, 113, 114syl2anc 584 . . . . . . . . 9 (((𝜑𝑑𝐵) ∧ 𝑥𝑆) → (𝑍‘(𝑍𝑥)) = 𝑥)
116115fveq2d 6910 . . . . . . . 8 (((𝜑𝑑𝐵) ∧ 𝑥𝑆) → (𝑑‘(𝑍‘(𝑍𝑥))) = (𝑑𝑥))
117116mpteq2dva 5242 . . . . . . 7 ((𝜑𝑑𝐵) → (𝑥𝑆 ↦ (𝑑‘(𝑍‘(𝑍𝑥)))) = (𝑥𝑆 ↦ (𝑑𝑥)))
118 simpr 484 . . . . . . . . . . . . 13 ((𝜑𝑑𝐵) → 𝑑𝐵)
1194a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑑𝐵) → 𝐵 = { ∣ (:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑖) = 𝑁)})
120118, 119eleqtrd 2843 . . . . . . . . . . . 12 ((𝜑𝑑𝐵) → 𝑑 ∈ { ∣ (:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑖) = 𝑁)})
121 vex 3484 . . . . . . . . . . . . 13 𝑑 ∈ V
122 feq1 6716 . . . . . . . . . . . . . 14 ( = 𝑑 → (:𝑆⟶ℕ0𝑑:𝑆⟶ℕ0))
123 simpl 482 . . . . . . . . . . . . . . . . 17 (( = 𝑑𝑖𝑆) → = 𝑑)
124123fveq1d 6908 . . . . . . . . . . . . . . . 16 (( = 𝑑𝑖𝑆) → (𝑖) = (𝑑𝑖))
125124sumeq2dv 15738 . . . . . . . . . . . . . . 15 ( = 𝑑 → Σ𝑖𝑆 (𝑖) = Σ𝑖𝑆 (𝑑𝑖))
126125eqeq1d 2739 . . . . . . . . . . . . . 14 ( = 𝑑 → (Σ𝑖𝑆 (𝑖) = 𝑁 ↔ Σ𝑖𝑆 (𝑑𝑖) = 𝑁))
127122, 126anbi12d 632 . . . . . . . . . . . . 13 ( = 𝑑 → ((:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑖) = 𝑁) ↔ (𝑑:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑑𝑖) = 𝑁)))
128121, 127elab 3679 . . . . . . . . . . . 12 (𝑑 ∈ { ∣ (:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑖) = 𝑁)} ↔ (𝑑:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑑𝑖) = 𝑁))
129120, 128sylib 218 . . . . . . . . . . 11 ((𝜑𝑑𝐵) → (𝑑:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑑𝑖) = 𝑁))
130129simpld 494 . . . . . . . . . 10 ((𝜑𝑑𝐵) → 𝑑:𝑆⟶ℕ0)
131 ffn 6736 . . . . . . . . . 10 (𝑑:𝑆⟶ℕ0𝑑 Fn 𝑆)
132130, 131syl 17 . . . . . . . . 9 ((𝜑𝑑𝐵) → 𝑑 Fn 𝑆)
133 dffn5 6967 . . . . . . . . 9 (𝑑 Fn 𝑆𝑑 = (𝑥𝑆 ↦ (𝑑𝑥)))
134132, 133sylib 218 . . . . . . . 8 ((𝜑𝑑𝐵) → 𝑑 = (𝑥𝑆 ↦ (𝑑𝑥)))
135134eqcomd 2743 . . . . . . 7 ((𝜑𝑑𝐵) → (𝑥𝑆 ↦ (𝑑𝑥)) = 𝑑)
136117, 135eqtrd 2777 . . . . . 6 ((𝜑𝑑𝐵) → (𝑥𝑆 ↦ (𝑑‘(𝑍‘(𝑍𝑥)))) = 𝑑)
137111, 136eqtrd 2777 . . . . 5 ((𝜑𝑑𝐵) → (𝑥𝑆 ↦ ((𝑦 ∈ (1...𝐾) ↦ (𝑑‘(𝑍𝑦)))‘(𝑍𝑥))) = 𝑑)
13898, 137eqtrd 2777 . . . 4 ((𝜑𝑑𝐵) → (𝑥𝑆 ↦ ((𝐺𝑑)‘(𝑍𝑥))) = 𝑑)
13988, 138eqtrd 2777 . . 3 ((𝜑𝑑𝐵) → (𝐹‘(𝐺𝑑)) = 𝑑)
140139ralrimiva 3146 . 2 (𝜑 → ∀𝑑𝐵 (𝐹‘(𝐺𝑑)) = 𝑑)
1417, 9, 80, 1402fvidf1od 7318 1 (𝜑𝐹:𝐴1-1-onto𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1540  wcel 2108  {cab 2714  Vcvv 3480   class class class wbr 5143  cmpt 5225  ccnv 5684   Fn wfn 6556  wf 6557  1-1-ontowf1o 6560  cfv 6561  (class class class)co 7431  cen 8982  Fincfn 8985  1c1 11156  0cn0 12526  ...cfz 13547  Σcsu 15722
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-sup 9482  df-oi 9550  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-n0 12527  df-z 12614  df-uz 12879  df-rp 13035  df-fz 13548  df-fzo 13695  df-seq 14043  df-exp 14103  df-hash 14370  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-clim 15524  df-sum 15723
This theorem is referenced by:  sticksstones20  42167
  Copyright terms: Public domain W3C validator