MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addscut Structured version   Visualization version   GIF version

Theorem addscut 27845
Description: Demonstrate the cut properties of surreal addition. This gives us closure together with a pair of set-less-than relationships for surreal addition. (Contributed by Scott Fenton, 21-Jan-2025.)
Hypotheses
Ref Expression
addscut.1 (𝜑𝑋 No )
addscut.2 (𝜑𝑌 No )
Assertion
Ref Expression
addscut (𝜑 → ((𝑋 +s 𝑌) ∈ No ∧ ({𝑝 ∣ ∃𝑙 ∈ ( L ‘𝑋)𝑝 = (𝑙 +s 𝑌)} ∪ {𝑞 ∣ ∃𝑚 ∈ ( L ‘𝑌)𝑞 = (𝑋 +s 𝑚)}) <<s {(𝑋 +s 𝑌)} ∧ {(𝑋 +s 𝑌)} <<s ({𝑤 ∣ ∃𝑟 ∈ ( R ‘𝑋)𝑤 = (𝑟 +s 𝑌)} ∪ {𝑡 ∣ ∃𝑠 ∈ ( R ‘𝑌)𝑡 = (𝑋 +s 𝑠)})))
Distinct variable groups:   𝑋,𝑝,𝑙   𝑋,𝑞,𝑚   𝑤,𝑋,𝑟   𝑡,𝑋,𝑠   𝑌,𝑝,𝑙   𝑌,𝑞,𝑚   𝑤,𝑌,𝑟   𝑡,𝑌,𝑠
Allowed substitution hints:   𝜑(𝑤,𝑡,𝑚,𝑠,𝑟,𝑞,𝑝,𝑙)

Proof of Theorem addscut
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑒 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 addscut.1 . . 3 (𝜑𝑋 No )
2 addscut.2 . . 3 (𝜑𝑌 No )
31, 2addscutlem 27844 . 2 (𝜑 → ((𝑋 +s 𝑌) ∈ No ∧ ({𝑎 ∣ ∃𝑏 ∈ ( L ‘𝑋)𝑎 = (𝑏 +s 𝑌)} ∪ {𝑐 ∣ ∃𝑑 ∈ ( L ‘𝑌)𝑐 = (𝑋 +s 𝑑)}) <<s {(𝑋 +s 𝑌)} ∧ {(𝑋 +s 𝑌)} <<s ({𝑒 ∣ ∃𝑓 ∈ ( R ‘𝑋)𝑒 = (𝑓 +s 𝑌)} ∪ {𝑔 ∣ ∃ ∈ ( R ‘𝑌)𝑔 = (𝑋 +s )})))
4 biid 261 . . 3 ((𝑋 +s 𝑌) ∈ No ↔ (𝑋 +s 𝑌) ∈ No )
5 oveq1 7411 . . . . . . . . 9 (𝑙 = 𝑏 → (𝑙 +s 𝑌) = (𝑏 +s 𝑌))
65eqeq2d 2737 . . . . . . . 8 (𝑙 = 𝑏 → (𝑝 = (𝑙 +s 𝑌) ↔ 𝑝 = (𝑏 +s 𝑌)))
76cbvrexvw 3229 . . . . . . 7 (∃𝑙 ∈ ( L ‘𝑋)𝑝 = (𝑙 +s 𝑌) ↔ ∃𝑏 ∈ ( L ‘𝑋)𝑝 = (𝑏 +s 𝑌))
8 eqeq1 2730 . . . . . . . 8 (𝑝 = 𝑎 → (𝑝 = (𝑏 +s 𝑌) ↔ 𝑎 = (𝑏 +s 𝑌)))
98rexbidv 3172 . . . . . . 7 (𝑝 = 𝑎 → (∃𝑏 ∈ ( L ‘𝑋)𝑝 = (𝑏 +s 𝑌) ↔ ∃𝑏 ∈ ( L ‘𝑋)𝑎 = (𝑏 +s 𝑌)))
107, 9bitrid 283 . . . . . 6 (𝑝 = 𝑎 → (∃𝑙 ∈ ( L ‘𝑋)𝑝 = (𝑙 +s 𝑌) ↔ ∃𝑏 ∈ ( L ‘𝑋)𝑎 = (𝑏 +s 𝑌)))
1110cbvabv 2799 . . . . 5 {𝑝 ∣ ∃𝑙 ∈ ( L ‘𝑋)𝑝 = (𝑙 +s 𝑌)} = {𝑎 ∣ ∃𝑏 ∈ ( L ‘𝑋)𝑎 = (𝑏 +s 𝑌)}
12 oveq2 7412 . . . . . . . . 9 (𝑚 = 𝑑 → (𝑋 +s 𝑚) = (𝑋 +s 𝑑))
1312eqeq2d 2737 . . . . . . . 8 (𝑚 = 𝑑 → (𝑞 = (𝑋 +s 𝑚) ↔ 𝑞 = (𝑋 +s 𝑑)))
1413cbvrexvw 3229 . . . . . . 7 (∃𝑚 ∈ ( L ‘𝑌)𝑞 = (𝑋 +s 𝑚) ↔ ∃𝑑 ∈ ( L ‘𝑌)𝑞 = (𝑋 +s 𝑑))
15 eqeq1 2730 . . . . . . . 8 (𝑞 = 𝑐 → (𝑞 = (𝑋 +s 𝑑) ↔ 𝑐 = (𝑋 +s 𝑑)))
1615rexbidv 3172 . . . . . . 7 (𝑞 = 𝑐 → (∃𝑑 ∈ ( L ‘𝑌)𝑞 = (𝑋 +s 𝑑) ↔ ∃𝑑 ∈ ( L ‘𝑌)𝑐 = (𝑋 +s 𝑑)))
1714, 16bitrid 283 . . . . . 6 (𝑞 = 𝑐 → (∃𝑚 ∈ ( L ‘𝑌)𝑞 = (𝑋 +s 𝑚) ↔ ∃𝑑 ∈ ( L ‘𝑌)𝑐 = (𝑋 +s 𝑑)))
1817cbvabv 2799 . . . . 5 {𝑞 ∣ ∃𝑚 ∈ ( L ‘𝑌)𝑞 = (𝑋 +s 𝑚)} = {𝑐 ∣ ∃𝑑 ∈ ( L ‘𝑌)𝑐 = (𝑋 +s 𝑑)}
1911, 18uneq12i 4156 . . . 4 ({𝑝 ∣ ∃𝑙 ∈ ( L ‘𝑋)𝑝 = (𝑙 +s 𝑌)} ∪ {𝑞 ∣ ∃𝑚 ∈ ( L ‘𝑌)𝑞 = (𝑋 +s 𝑚)}) = ({𝑎 ∣ ∃𝑏 ∈ ( L ‘𝑋)𝑎 = (𝑏 +s 𝑌)} ∪ {𝑐 ∣ ∃𝑑 ∈ ( L ‘𝑌)𝑐 = (𝑋 +s 𝑑)})
2019breq1i 5148 . . 3 (({𝑝 ∣ ∃𝑙 ∈ ( L ‘𝑋)𝑝 = (𝑙 +s 𝑌)} ∪ {𝑞 ∣ ∃𝑚 ∈ ( L ‘𝑌)𝑞 = (𝑋 +s 𝑚)}) <<s {(𝑋 +s 𝑌)} ↔ ({𝑎 ∣ ∃𝑏 ∈ ( L ‘𝑋)𝑎 = (𝑏 +s 𝑌)} ∪ {𝑐 ∣ ∃𝑑 ∈ ( L ‘𝑌)𝑐 = (𝑋 +s 𝑑)}) <<s {(𝑋 +s 𝑌)})
21 oveq1 7411 . . . . . . . . 9 (𝑟 = 𝑓 → (𝑟 +s 𝑌) = (𝑓 +s 𝑌))
2221eqeq2d 2737 . . . . . . . 8 (𝑟 = 𝑓 → (𝑤 = (𝑟 +s 𝑌) ↔ 𝑤 = (𝑓 +s 𝑌)))
2322cbvrexvw 3229 . . . . . . 7 (∃𝑟 ∈ ( R ‘𝑋)𝑤 = (𝑟 +s 𝑌) ↔ ∃𝑓 ∈ ( R ‘𝑋)𝑤 = (𝑓 +s 𝑌))
24 eqeq1 2730 . . . . . . . 8 (𝑤 = 𝑒 → (𝑤 = (𝑓 +s 𝑌) ↔ 𝑒 = (𝑓 +s 𝑌)))
2524rexbidv 3172 . . . . . . 7 (𝑤 = 𝑒 → (∃𝑓 ∈ ( R ‘𝑋)𝑤 = (𝑓 +s 𝑌) ↔ ∃𝑓 ∈ ( R ‘𝑋)𝑒 = (𝑓 +s 𝑌)))
2623, 25bitrid 283 . . . . . 6 (𝑤 = 𝑒 → (∃𝑟 ∈ ( R ‘𝑋)𝑤 = (𝑟 +s 𝑌) ↔ ∃𝑓 ∈ ( R ‘𝑋)𝑒 = (𝑓 +s 𝑌)))
2726cbvabv 2799 . . . . 5 {𝑤 ∣ ∃𝑟 ∈ ( R ‘𝑋)𝑤 = (𝑟 +s 𝑌)} = {𝑒 ∣ ∃𝑓 ∈ ( R ‘𝑋)𝑒 = (𝑓 +s 𝑌)}
28 oveq2 7412 . . . . . . . . 9 (𝑠 = → (𝑋 +s 𝑠) = (𝑋 +s ))
2928eqeq2d 2737 . . . . . . . 8 (𝑠 = → (𝑡 = (𝑋 +s 𝑠) ↔ 𝑡 = (𝑋 +s )))
3029cbvrexvw 3229 . . . . . . 7 (∃𝑠 ∈ ( R ‘𝑌)𝑡 = (𝑋 +s 𝑠) ↔ ∃ ∈ ( R ‘𝑌)𝑡 = (𝑋 +s ))
31 eqeq1 2730 . . . . . . . 8 (𝑡 = 𝑔 → (𝑡 = (𝑋 +s ) ↔ 𝑔 = (𝑋 +s )))
3231rexbidv 3172 . . . . . . 7 (𝑡 = 𝑔 → (∃ ∈ ( R ‘𝑌)𝑡 = (𝑋 +s ) ↔ ∃ ∈ ( R ‘𝑌)𝑔 = (𝑋 +s )))
3330, 32bitrid 283 . . . . . 6 (𝑡 = 𝑔 → (∃𝑠 ∈ ( R ‘𝑌)𝑡 = (𝑋 +s 𝑠) ↔ ∃ ∈ ( R ‘𝑌)𝑔 = (𝑋 +s )))
3433cbvabv 2799 . . . . 5 {𝑡 ∣ ∃𝑠 ∈ ( R ‘𝑌)𝑡 = (𝑋 +s 𝑠)} = {𝑔 ∣ ∃ ∈ ( R ‘𝑌)𝑔 = (𝑋 +s )}
3527, 34uneq12i 4156 . . . 4 ({𝑤 ∣ ∃𝑟 ∈ ( R ‘𝑋)𝑤 = (𝑟 +s 𝑌)} ∪ {𝑡 ∣ ∃𝑠 ∈ ( R ‘𝑌)𝑡 = (𝑋 +s 𝑠)}) = ({𝑒 ∣ ∃𝑓 ∈ ( R ‘𝑋)𝑒 = (𝑓 +s 𝑌)} ∪ {𝑔 ∣ ∃ ∈ ( R ‘𝑌)𝑔 = (𝑋 +s )})
3635breq2i 5149 . . 3 ({(𝑋 +s 𝑌)} <<s ({𝑤 ∣ ∃𝑟 ∈ ( R ‘𝑋)𝑤 = (𝑟 +s 𝑌)} ∪ {𝑡 ∣ ∃𝑠 ∈ ( R ‘𝑌)𝑡 = (𝑋 +s 𝑠)}) ↔ {(𝑋 +s 𝑌)} <<s ({𝑒 ∣ ∃𝑓 ∈ ( R ‘𝑋)𝑒 = (𝑓 +s 𝑌)} ∪ {𝑔 ∣ ∃ ∈ ( R ‘𝑌)𝑔 = (𝑋 +s )}))
374, 20, 363anbi123i 1152 . 2 (((𝑋 +s 𝑌) ∈ No ∧ ({𝑝 ∣ ∃𝑙 ∈ ( L ‘𝑋)𝑝 = (𝑙 +s 𝑌)} ∪ {𝑞 ∣ ∃𝑚 ∈ ( L ‘𝑌)𝑞 = (𝑋 +s 𝑚)}) <<s {(𝑋 +s 𝑌)} ∧ {(𝑋 +s 𝑌)} <<s ({𝑤 ∣ ∃𝑟 ∈ ( R ‘𝑋)𝑤 = (𝑟 +s 𝑌)} ∪ {𝑡 ∣ ∃𝑠 ∈ ( R ‘𝑌)𝑡 = (𝑋 +s 𝑠)})) ↔ ((𝑋 +s 𝑌) ∈ No ∧ ({𝑎 ∣ ∃𝑏 ∈ ( L ‘𝑋)𝑎 = (𝑏 +s 𝑌)} ∪ {𝑐 ∣ ∃𝑑 ∈ ( L ‘𝑌)𝑐 = (𝑋 +s 𝑑)}) <<s {(𝑋 +s 𝑌)} ∧ {(𝑋 +s 𝑌)} <<s ({𝑒 ∣ ∃𝑓 ∈ ( R ‘𝑋)𝑒 = (𝑓 +s 𝑌)} ∪ {𝑔 ∣ ∃ ∈ ( R ‘𝑌)𝑔 = (𝑋 +s )})))
383, 37sylibr 233 1 (𝜑 → ((𝑋 +s 𝑌) ∈ No ∧ ({𝑝 ∣ ∃𝑙 ∈ ( L ‘𝑋)𝑝 = (𝑙 +s 𝑌)} ∪ {𝑞 ∣ ∃𝑚 ∈ ( L ‘𝑌)𝑞 = (𝑋 +s 𝑚)}) <<s {(𝑋 +s 𝑌)} ∧ {(𝑋 +s 𝑌)} <<s ({𝑤 ∣ ∃𝑟 ∈ ( R ‘𝑋)𝑤 = (𝑟 +s 𝑌)} ∪ {𝑡 ∣ ∃𝑠 ∈ ( R ‘𝑌)𝑡 = (𝑋 +s 𝑠)})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1084   = wceq 1533  wcel 2098  {cab 2703  wrex 3064  cun 3941  {csn 4623   class class class wbr 5141  cfv 6536  (class class class)co 7404   No csur 27523   <<s csslt 27663   L cleft 27722   R cright 27723   +s cadds 27826
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-rmo 3370  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-tp 4628  df-op 4630  df-uni 4903  df-int 4944  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-se 5625  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6293  df-ord 6360  df-on 6361  df-suc 6363  df-iota 6488  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7360  df-ov 7407  df-oprab 7408  df-mpo 7409  df-1st 7971  df-2nd 7972  df-frecs 8264  df-wrecs 8295  df-recs 8369  df-1o 8464  df-2o 8465  df-nadd 8664  df-no 27526  df-slt 27527  df-bday 27528  df-sslt 27664  df-scut 27666  df-0s 27707  df-made 27724  df-old 27725  df-left 27727  df-right 27728  df-norec2 27816  df-adds 27827
This theorem is referenced by:  addscut2  27846  addscld  27847  sleadd1  27856  addsuniflem  27868  addsasslem1  27870  addsasslem2  27871
  Copyright terms: Public domain W3C validator