Step | Hyp | Ref
| Expression |
1 | | addscut.1 |
. . 3
⊢ (𝜑 → 𝑋 ∈ No
) |
2 | | addscut.2 |
. . 3
⊢ (𝜑 → 𝑌 ∈ No
) |
3 | 1, 2 | addscutlem 27450 |
. 2
⊢ (𝜑 → ((𝑋 +s 𝑌) ∈ No
∧ ({𝑎 ∣
∃𝑏 ∈ ( L
‘𝑋)𝑎 = (𝑏 +s 𝑌)} ∪ {𝑐 ∣ ∃𝑑 ∈ ( L ‘𝑌)𝑐 = (𝑋 +s 𝑑)}) <<s {(𝑋 +s 𝑌)} ∧ {(𝑋 +s 𝑌)} <<s ({𝑒 ∣ ∃𝑓 ∈ ( R ‘𝑋)𝑒 = (𝑓 +s 𝑌)} ∪ {𝑔 ∣ ∃ℎ ∈ ( R ‘𝑌)𝑔 = (𝑋 +s ℎ)}))) |
4 | | biid 260 |
. . 3
⊢ ((𝑋 +s 𝑌) ∈ No
↔ (𝑋 +s
𝑌) ∈ No ) |
5 | | oveq1 7412 |
. . . . . . . . 9
⊢ (𝑙 = 𝑏 → (𝑙 +s 𝑌) = (𝑏 +s 𝑌)) |
6 | 5 | eqeq2d 2743 |
. . . . . . . 8
⊢ (𝑙 = 𝑏 → (𝑝 = (𝑙 +s 𝑌) ↔ 𝑝 = (𝑏 +s 𝑌))) |
7 | 6 | cbvrexvw 3235 |
. . . . . . 7
⊢
(∃𝑙 ∈ ( L
‘𝑋)𝑝 = (𝑙 +s 𝑌) ↔ ∃𝑏 ∈ ( L ‘𝑋)𝑝 = (𝑏 +s 𝑌)) |
8 | | eqeq1 2736 |
. . . . . . . 8
⊢ (𝑝 = 𝑎 → (𝑝 = (𝑏 +s 𝑌) ↔ 𝑎 = (𝑏 +s 𝑌))) |
9 | 8 | rexbidv 3178 |
. . . . . . 7
⊢ (𝑝 = 𝑎 → (∃𝑏 ∈ ( L ‘𝑋)𝑝 = (𝑏 +s 𝑌) ↔ ∃𝑏 ∈ ( L ‘𝑋)𝑎 = (𝑏 +s 𝑌))) |
10 | 7, 9 | bitrid 282 |
. . . . . 6
⊢ (𝑝 = 𝑎 → (∃𝑙 ∈ ( L ‘𝑋)𝑝 = (𝑙 +s 𝑌) ↔ ∃𝑏 ∈ ( L ‘𝑋)𝑎 = (𝑏 +s 𝑌))) |
11 | 10 | cbvabv 2805 |
. . . . 5
⊢ {𝑝 ∣ ∃𝑙 ∈ ( L ‘𝑋)𝑝 = (𝑙 +s 𝑌)} = {𝑎 ∣ ∃𝑏 ∈ ( L ‘𝑋)𝑎 = (𝑏 +s 𝑌)} |
12 | | oveq2 7413 |
. . . . . . . . 9
⊢ (𝑚 = 𝑑 → (𝑋 +s 𝑚) = (𝑋 +s 𝑑)) |
13 | 12 | eqeq2d 2743 |
. . . . . . . 8
⊢ (𝑚 = 𝑑 → (𝑞 = (𝑋 +s 𝑚) ↔ 𝑞 = (𝑋 +s 𝑑))) |
14 | 13 | cbvrexvw 3235 |
. . . . . . 7
⊢
(∃𝑚 ∈ ( L
‘𝑌)𝑞 = (𝑋 +s 𝑚) ↔ ∃𝑑 ∈ ( L ‘𝑌)𝑞 = (𝑋 +s 𝑑)) |
15 | | eqeq1 2736 |
. . . . . . . 8
⊢ (𝑞 = 𝑐 → (𝑞 = (𝑋 +s 𝑑) ↔ 𝑐 = (𝑋 +s 𝑑))) |
16 | 15 | rexbidv 3178 |
. . . . . . 7
⊢ (𝑞 = 𝑐 → (∃𝑑 ∈ ( L ‘𝑌)𝑞 = (𝑋 +s 𝑑) ↔ ∃𝑑 ∈ ( L ‘𝑌)𝑐 = (𝑋 +s 𝑑))) |
17 | 14, 16 | bitrid 282 |
. . . . . 6
⊢ (𝑞 = 𝑐 → (∃𝑚 ∈ ( L ‘𝑌)𝑞 = (𝑋 +s 𝑚) ↔ ∃𝑑 ∈ ( L ‘𝑌)𝑐 = (𝑋 +s 𝑑))) |
18 | 17 | cbvabv 2805 |
. . . . 5
⊢ {𝑞 ∣ ∃𝑚 ∈ ( L ‘𝑌)𝑞 = (𝑋 +s 𝑚)} = {𝑐 ∣ ∃𝑑 ∈ ( L ‘𝑌)𝑐 = (𝑋 +s 𝑑)} |
19 | 11, 18 | uneq12i 4160 |
. . . 4
⊢ ({𝑝 ∣ ∃𝑙 ∈ ( L ‘𝑋)𝑝 = (𝑙 +s 𝑌)} ∪ {𝑞 ∣ ∃𝑚 ∈ ( L ‘𝑌)𝑞 = (𝑋 +s 𝑚)}) = ({𝑎 ∣ ∃𝑏 ∈ ( L ‘𝑋)𝑎 = (𝑏 +s 𝑌)} ∪ {𝑐 ∣ ∃𝑑 ∈ ( L ‘𝑌)𝑐 = (𝑋 +s 𝑑)}) |
20 | 19 | breq1i 5154 |
. . 3
⊢ (({𝑝 ∣ ∃𝑙 ∈ ( L ‘𝑋)𝑝 = (𝑙 +s 𝑌)} ∪ {𝑞 ∣ ∃𝑚 ∈ ( L ‘𝑌)𝑞 = (𝑋 +s 𝑚)}) <<s {(𝑋 +s 𝑌)} ↔ ({𝑎 ∣ ∃𝑏 ∈ ( L ‘𝑋)𝑎 = (𝑏 +s 𝑌)} ∪ {𝑐 ∣ ∃𝑑 ∈ ( L ‘𝑌)𝑐 = (𝑋 +s 𝑑)}) <<s {(𝑋 +s 𝑌)}) |
21 | | oveq1 7412 |
. . . . . . . . 9
⊢ (𝑟 = 𝑓 → (𝑟 +s 𝑌) = (𝑓 +s 𝑌)) |
22 | 21 | eqeq2d 2743 |
. . . . . . . 8
⊢ (𝑟 = 𝑓 → (𝑤 = (𝑟 +s 𝑌) ↔ 𝑤 = (𝑓 +s 𝑌))) |
23 | 22 | cbvrexvw 3235 |
. . . . . . 7
⊢
(∃𝑟 ∈ ( R
‘𝑋)𝑤 = (𝑟 +s 𝑌) ↔ ∃𝑓 ∈ ( R ‘𝑋)𝑤 = (𝑓 +s 𝑌)) |
24 | | eqeq1 2736 |
. . . . . . . 8
⊢ (𝑤 = 𝑒 → (𝑤 = (𝑓 +s 𝑌) ↔ 𝑒 = (𝑓 +s 𝑌))) |
25 | 24 | rexbidv 3178 |
. . . . . . 7
⊢ (𝑤 = 𝑒 → (∃𝑓 ∈ ( R ‘𝑋)𝑤 = (𝑓 +s 𝑌) ↔ ∃𝑓 ∈ ( R ‘𝑋)𝑒 = (𝑓 +s 𝑌))) |
26 | 23, 25 | bitrid 282 |
. . . . . 6
⊢ (𝑤 = 𝑒 → (∃𝑟 ∈ ( R ‘𝑋)𝑤 = (𝑟 +s 𝑌) ↔ ∃𝑓 ∈ ( R ‘𝑋)𝑒 = (𝑓 +s 𝑌))) |
27 | 26 | cbvabv 2805 |
. . . . 5
⊢ {𝑤 ∣ ∃𝑟 ∈ ( R ‘𝑋)𝑤 = (𝑟 +s 𝑌)} = {𝑒 ∣ ∃𝑓 ∈ ( R ‘𝑋)𝑒 = (𝑓 +s 𝑌)} |
28 | | oveq2 7413 |
. . . . . . . . 9
⊢ (𝑠 = ℎ → (𝑋 +s 𝑠) = (𝑋 +s ℎ)) |
29 | 28 | eqeq2d 2743 |
. . . . . . . 8
⊢ (𝑠 = ℎ → (𝑡 = (𝑋 +s 𝑠) ↔ 𝑡 = (𝑋 +s ℎ))) |
30 | 29 | cbvrexvw 3235 |
. . . . . . 7
⊢
(∃𝑠 ∈ ( R
‘𝑌)𝑡 = (𝑋 +s 𝑠) ↔ ∃ℎ ∈ ( R ‘𝑌)𝑡 = (𝑋 +s ℎ)) |
31 | | eqeq1 2736 |
. . . . . . . 8
⊢ (𝑡 = 𝑔 → (𝑡 = (𝑋 +s ℎ) ↔ 𝑔 = (𝑋 +s ℎ))) |
32 | 31 | rexbidv 3178 |
. . . . . . 7
⊢ (𝑡 = 𝑔 → (∃ℎ ∈ ( R ‘𝑌)𝑡 = (𝑋 +s ℎ) ↔ ∃ℎ ∈ ( R ‘𝑌)𝑔 = (𝑋 +s ℎ))) |
33 | 30, 32 | bitrid 282 |
. . . . . 6
⊢ (𝑡 = 𝑔 → (∃𝑠 ∈ ( R ‘𝑌)𝑡 = (𝑋 +s 𝑠) ↔ ∃ℎ ∈ ( R ‘𝑌)𝑔 = (𝑋 +s ℎ))) |
34 | 33 | cbvabv 2805 |
. . . . 5
⊢ {𝑡 ∣ ∃𝑠 ∈ ( R ‘𝑌)𝑡 = (𝑋 +s 𝑠)} = {𝑔 ∣ ∃ℎ ∈ ( R ‘𝑌)𝑔 = (𝑋 +s ℎ)} |
35 | 27, 34 | uneq12i 4160 |
. . . 4
⊢ ({𝑤 ∣ ∃𝑟 ∈ ( R ‘𝑋)𝑤 = (𝑟 +s 𝑌)} ∪ {𝑡 ∣ ∃𝑠 ∈ ( R ‘𝑌)𝑡 = (𝑋 +s 𝑠)}) = ({𝑒 ∣ ∃𝑓 ∈ ( R ‘𝑋)𝑒 = (𝑓 +s 𝑌)} ∪ {𝑔 ∣ ∃ℎ ∈ ( R ‘𝑌)𝑔 = (𝑋 +s ℎ)}) |
36 | 35 | breq2i 5155 |
. . 3
⊢ ({(𝑋 +s 𝑌)} <<s ({𝑤 ∣ ∃𝑟 ∈ ( R ‘𝑋)𝑤 = (𝑟 +s 𝑌)} ∪ {𝑡 ∣ ∃𝑠 ∈ ( R ‘𝑌)𝑡 = (𝑋 +s 𝑠)}) ↔ {(𝑋 +s 𝑌)} <<s ({𝑒 ∣ ∃𝑓 ∈ ( R ‘𝑋)𝑒 = (𝑓 +s 𝑌)} ∪ {𝑔 ∣ ∃ℎ ∈ ( R ‘𝑌)𝑔 = (𝑋 +s ℎ)})) |
37 | 4, 20, 36 | 3anbi123i 1155 |
. 2
⊢ (((𝑋 +s 𝑌) ∈ No
∧ ({𝑝 ∣
∃𝑙 ∈ ( L
‘𝑋)𝑝 = (𝑙 +s 𝑌)} ∪ {𝑞 ∣ ∃𝑚 ∈ ( L ‘𝑌)𝑞 = (𝑋 +s 𝑚)}) <<s {(𝑋 +s 𝑌)} ∧ {(𝑋 +s 𝑌)} <<s ({𝑤 ∣ ∃𝑟 ∈ ( R ‘𝑋)𝑤 = (𝑟 +s 𝑌)} ∪ {𝑡 ∣ ∃𝑠 ∈ ( R ‘𝑌)𝑡 = (𝑋 +s 𝑠)})) ↔ ((𝑋 +s 𝑌) ∈ No
∧ ({𝑎 ∣
∃𝑏 ∈ ( L
‘𝑋)𝑎 = (𝑏 +s 𝑌)} ∪ {𝑐 ∣ ∃𝑑 ∈ ( L ‘𝑌)𝑐 = (𝑋 +s 𝑑)}) <<s {(𝑋 +s 𝑌)} ∧ {(𝑋 +s 𝑌)} <<s ({𝑒 ∣ ∃𝑓 ∈ ( R ‘𝑋)𝑒 = (𝑓 +s 𝑌)} ∪ {𝑔 ∣ ∃ℎ ∈ ( R ‘𝑌)𝑔 = (𝑋 +s ℎ)}))) |
38 | 3, 37 | sylibr 233 |
1
⊢ (𝜑 → ((𝑋 +s 𝑌) ∈ No
∧ ({𝑝 ∣
∃𝑙 ∈ ( L
‘𝑋)𝑝 = (𝑙 +s 𝑌)} ∪ {𝑞 ∣ ∃𝑚 ∈ ( L ‘𝑌)𝑞 = (𝑋 +s 𝑚)}) <<s {(𝑋 +s 𝑌)} ∧ {(𝑋 +s 𝑌)} <<s ({𝑤 ∣ ∃𝑟 ∈ ( R ‘𝑋)𝑤 = (𝑟 +s 𝑌)} ∪ {𝑡 ∣ ∃𝑠 ∈ ( R ‘𝑌)𝑡 = (𝑋 +s 𝑠)}))) |