MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addscut Structured version   Visualization version   GIF version

Theorem addscut 27451
Description: Demonstrate the cut properties of surreal addition. This gives us closure together with a pair of set-less-than relationships for surreal addition. (Contributed by Scott Fenton, 21-Jan-2025.)
Hypotheses
Ref Expression
addscut.1 (𝜑𝑋 No )
addscut.2 (𝜑𝑌 No )
Assertion
Ref Expression
addscut (𝜑 → ((𝑋 +s 𝑌) ∈ No ∧ ({𝑝 ∣ ∃𝑙 ∈ ( L ‘𝑋)𝑝 = (𝑙 +s 𝑌)} ∪ {𝑞 ∣ ∃𝑚 ∈ ( L ‘𝑌)𝑞 = (𝑋 +s 𝑚)}) <<s {(𝑋 +s 𝑌)} ∧ {(𝑋 +s 𝑌)} <<s ({𝑤 ∣ ∃𝑟 ∈ ( R ‘𝑋)𝑤 = (𝑟 +s 𝑌)} ∪ {𝑡 ∣ ∃𝑠 ∈ ( R ‘𝑌)𝑡 = (𝑋 +s 𝑠)})))
Distinct variable groups:   𝑋,𝑝,𝑙   𝑋,𝑞,𝑚   𝑤,𝑋,𝑟   𝑡,𝑋,𝑠   𝑌,𝑝,𝑙   𝑌,𝑞,𝑚   𝑤,𝑌,𝑟   𝑡,𝑌,𝑠
Allowed substitution hints:   𝜑(𝑤,𝑡,𝑚,𝑠,𝑟,𝑞,𝑝,𝑙)

Proof of Theorem addscut
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑒 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 addscut.1 . . 3 (𝜑𝑋 No )
2 addscut.2 . . 3 (𝜑𝑌 No )
31, 2addscutlem 27450 . 2 (𝜑 → ((𝑋 +s 𝑌) ∈ No ∧ ({𝑎 ∣ ∃𝑏 ∈ ( L ‘𝑋)𝑎 = (𝑏 +s 𝑌)} ∪ {𝑐 ∣ ∃𝑑 ∈ ( L ‘𝑌)𝑐 = (𝑋 +s 𝑑)}) <<s {(𝑋 +s 𝑌)} ∧ {(𝑋 +s 𝑌)} <<s ({𝑒 ∣ ∃𝑓 ∈ ( R ‘𝑋)𝑒 = (𝑓 +s 𝑌)} ∪ {𝑔 ∣ ∃ ∈ ( R ‘𝑌)𝑔 = (𝑋 +s )})))
4 biid 260 . . 3 ((𝑋 +s 𝑌) ∈ No ↔ (𝑋 +s 𝑌) ∈ No )
5 oveq1 7412 . . . . . . . . 9 (𝑙 = 𝑏 → (𝑙 +s 𝑌) = (𝑏 +s 𝑌))
65eqeq2d 2743 . . . . . . . 8 (𝑙 = 𝑏 → (𝑝 = (𝑙 +s 𝑌) ↔ 𝑝 = (𝑏 +s 𝑌)))
76cbvrexvw 3235 . . . . . . 7 (∃𝑙 ∈ ( L ‘𝑋)𝑝 = (𝑙 +s 𝑌) ↔ ∃𝑏 ∈ ( L ‘𝑋)𝑝 = (𝑏 +s 𝑌))
8 eqeq1 2736 . . . . . . . 8 (𝑝 = 𝑎 → (𝑝 = (𝑏 +s 𝑌) ↔ 𝑎 = (𝑏 +s 𝑌)))
98rexbidv 3178 . . . . . . 7 (𝑝 = 𝑎 → (∃𝑏 ∈ ( L ‘𝑋)𝑝 = (𝑏 +s 𝑌) ↔ ∃𝑏 ∈ ( L ‘𝑋)𝑎 = (𝑏 +s 𝑌)))
107, 9bitrid 282 . . . . . 6 (𝑝 = 𝑎 → (∃𝑙 ∈ ( L ‘𝑋)𝑝 = (𝑙 +s 𝑌) ↔ ∃𝑏 ∈ ( L ‘𝑋)𝑎 = (𝑏 +s 𝑌)))
1110cbvabv 2805 . . . . 5 {𝑝 ∣ ∃𝑙 ∈ ( L ‘𝑋)𝑝 = (𝑙 +s 𝑌)} = {𝑎 ∣ ∃𝑏 ∈ ( L ‘𝑋)𝑎 = (𝑏 +s 𝑌)}
12 oveq2 7413 . . . . . . . . 9 (𝑚 = 𝑑 → (𝑋 +s 𝑚) = (𝑋 +s 𝑑))
1312eqeq2d 2743 . . . . . . . 8 (𝑚 = 𝑑 → (𝑞 = (𝑋 +s 𝑚) ↔ 𝑞 = (𝑋 +s 𝑑)))
1413cbvrexvw 3235 . . . . . . 7 (∃𝑚 ∈ ( L ‘𝑌)𝑞 = (𝑋 +s 𝑚) ↔ ∃𝑑 ∈ ( L ‘𝑌)𝑞 = (𝑋 +s 𝑑))
15 eqeq1 2736 . . . . . . . 8 (𝑞 = 𝑐 → (𝑞 = (𝑋 +s 𝑑) ↔ 𝑐 = (𝑋 +s 𝑑)))
1615rexbidv 3178 . . . . . . 7 (𝑞 = 𝑐 → (∃𝑑 ∈ ( L ‘𝑌)𝑞 = (𝑋 +s 𝑑) ↔ ∃𝑑 ∈ ( L ‘𝑌)𝑐 = (𝑋 +s 𝑑)))
1714, 16bitrid 282 . . . . . 6 (𝑞 = 𝑐 → (∃𝑚 ∈ ( L ‘𝑌)𝑞 = (𝑋 +s 𝑚) ↔ ∃𝑑 ∈ ( L ‘𝑌)𝑐 = (𝑋 +s 𝑑)))
1817cbvabv 2805 . . . . 5 {𝑞 ∣ ∃𝑚 ∈ ( L ‘𝑌)𝑞 = (𝑋 +s 𝑚)} = {𝑐 ∣ ∃𝑑 ∈ ( L ‘𝑌)𝑐 = (𝑋 +s 𝑑)}
1911, 18uneq12i 4160 . . . 4 ({𝑝 ∣ ∃𝑙 ∈ ( L ‘𝑋)𝑝 = (𝑙 +s 𝑌)} ∪ {𝑞 ∣ ∃𝑚 ∈ ( L ‘𝑌)𝑞 = (𝑋 +s 𝑚)}) = ({𝑎 ∣ ∃𝑏 ∈ ( L ‘𝑋)𝑎 = (𝑏 +s 𝑌)} ∪ {𝑐 ∣ ∃𝑑 ∈ ( L ‘𝑌)𝑐 = (𝑋 +s 𝑑)})
2019breq1i 5154 . . 3 (({𝑝 ∣ ∃𝑙 ∈ ( L ‘𝑋)𝑝 = (𝑙 +s 𝑌)} ∪ {𝑞 ∣ ∃𝑚 ∈ ( L ‘𝑌)𝑞 = (𝑋 +s 𝑚)}) <<s {(𝑋 +s 𝑌)} ↔ ({𝑎 ∣ ∃𝑏 ∈ ( L ‘𝑋)𝑎 = (𝑏 +s 𝑌)} ∪ {𝑐 ∣ ∃𝑑 ∈ ( L ‘𝑌)𝑐 = (𝑋 +s 𝑑)}) <<s {(𝑋 +s 𝑌)})
21 oveq1 7412 . . . . . . . . 9 (𝑟 = 𝑓 → (𝑟 +s 𝑌) = (𝑓 +s 𝑌))
2221eqeq2d 2743 . . . . . . . 8 (𝑟 = 𝑓 → (𝑤 = (𝑟 +s 𝑌) ↔ 𝑤 = (𝑓 +s 𝑌)))
2322cbvrexvw 3235 . . . . . . 7 (∃𝑟 ∈ ( R ‘𝑋)𝑤 = (𝑟 +s 𝑌) ↔ ∃𝑓 ∈ ( R ‘𝑋)𝑤 = (𝑓 +s 𝑌))
24 eqeq1 2736 . . . . . . . 8 (𝑤 = 𝑒 → (𝑤 = (𝑓 +s 𝑌) ↔ 𝑒 = (𝑓 +s 𝑌)))
2524rexbidv 3178 . . . . . . 7 (𝑤 = 𝑒 → (∃𝑓 ∈ ( R ‘𝑋)𝑤 = (𝑓 +s 𝑌) ↔ ∃𝑓 ∈ ( R ‘𝑋)𝑒 = (𝑓 +s 𝑌)))
2623, 25bitrid 282 . . . . . 6 (𝑤 = 𝑒 → (∃𝑟 ∈ ( R ‘𝑋)𝑤 = (𝑟 +s 𝑌) ↔ ∃𝑓 ∈ ( R ‘𝑋)𝑒 = (𝑓 +s 𝑌)))
2726cbvabv 2805 . . . . 5 {𝑤 ∣ ∃𝑟 ∈ ( R ‘𝑋)𝑤 = (𝑟 +s 𝑌)} = {𝑒 ∣ ∃𝑓 ∈ ( R ‘𝑋)𝑒 = (𝑓 +s 𝑌)}
28 oveq2 7413 . . . . . . . . 9 (𝑠 = → (𝑋 +s 𝑠) = (𝑋 +s ))
2928eqeq2d 2743 . . . . . . . 8 (𝑠 = → (𝑡 = (𝑋 +s 𝑠) ↔ 𝑡 = (𝑋 +s )))
3029cbvrexvw 3235 . . . . . . 7 (∃𝑠 ∈ ( R ‘𝑌)𝑡 = (𝑋 +s 𝑠) ↔ ∃ ∈ ( R ‘𝑌)𝑡 = (𝑋 +s ))
31 eqeq1 2736 . . . . . . . 8 (𝑡 = 𝑔 → (𝑡 = (𝑋 +s ) ↔ 𝑔 = (𝑋 +s )))
3231rexbidv 3178 . . . . . . 7 (𝑡 = 𝑔 → (∃ ∈ ( R ‘𝑌)𝑡 = (𝑋 +s ) ↔ ∃ ∈ ( R ‘𝑌)𝑔 = (𝑋 +s )))
3330, 32bitrid 282 . . . . . 6 (𝑡 = 𝑔 → (∃𝑠 ∈ ( R ‘𝑌)𝑡 = (𝑋 +s 𝑠) ↔ ∃ ∈ ( R ‘𝑌)𝑔 = (𝑋 +s )))
3433cbvabv 2805 . . . . 5 {𝑡 ∣ ∃𝑠 ∈ ( R ‘𝑌)𝑡 = (𝑋 +s 𝑠)} = {𝑔 ∣ ∃ ∈ ( R ‘𝑌)𝑔 = (𝑋 +s )}
3527, 34uneq12i 4160 . . . 4 ({𝑤 ∣ ∃𝑟 ∈ ( R ‘𝑋)𝑤 = (𝑟 +s 𝑌)} ∪ {𝑡 ∣ ∃𝑠 ∈ ( R ‘𝑌)𝑡 = (𝑋 +s 𝑠)}) = ({𝑒 ∣ ∃𝑓 ∈ ( R ‘𝑋)𝑒 = (𝑓 +s 𝑌)} ∪ {𝑔 ∣ ∃ ∈ ( R ‘𝑌)𝑔 = (𝑋 +s )})
3635breq2i 5155 . . 3 ({(𝑋 +s 𝑌)} <<s ({𝑤 ∣ ∃𝑟 ∈ ( R ‘𝑋)𝑤 = (𝑟 +s 𝑌)} ∪ {𝑡 ∣ ∃𝑠 ∈ ( R ‘𝑌)𝑡 = (𝑋 +s 𝑠)}) ↔ {(𝑋 +s 𝑌)} <<s ({𝑒 ∣ ∃𝑓 ∈ ( R ‘𝑋)𝑒 = (𝑓 +s 𝑌)} ∪ {𝑔 ∣ ∃ ∈ ( R ‘𝑌)𝑔 = (𝑋 +s )}))
374, 20, 363anbi123i 1155 . 2 (((𝑋 +s 𝑌) ∈ No ∧ ({𝑝 ∣ ∃𝑙 ∈ ( L ‘𝑋)𝑝 = (𝑙 +s 𝑌)} ∪ {𝑞 ∣ ∃𝑚 ∈ ( L ‘𝑌)𝑞 = (𝑋 +s 𝑚)}) <<s {(𝑋 +s 𝑌)} ∧ {(𝑋 +s 𝑌)} <<s ({𝑤 ∣ ∃𝑟 ∈ ( R ‘𝑋)𝑤 = (𝑟 +s 𝑌)} ∪ {𝑡 ∣ ∃𝑠 ∈ ( R ‘𝑌)𝑡 = (𝑋 +s 𝑠)})) ↔ ((𝑋 +s 𝑌) ∈ No ∧ ({𝑎 ∣ ∃𝑏 ∈ ( L ‘𝑋)𝑎 = (𝑏 +s 𝑌)} ∪ {𝑐 ∣ ∃𝑑 ∈ ( L ‘𝑌)𝑐 = (𝑋 +s 𝑑)}) <<s {(𝑋 +s 𝑌)} ∧ {(𝑋 +s 𝑌)} <<s ({𝑒 ∣ ∃𝑓 ∈ ( R ‘𝑋)𝑒 = (𝑓 +s 𝑌)} ∪ {𝑔 ∣ ∃ ∈ ( R ‘𝑌)𝑔 = (𝑋 +s )})))
383, 37sylibr 233 1 (𝜑 → ((𝑋 +s 𝑌) ∈ No ∧ ({𝑝 ∣ ∃𝑙 ∈ ( L ‘𝑋)𝑝 = (𝑙 +s 𝑌)} ∪ {𝑞 ∣ ∃𝑚 ∈ ( L ‘𝑌)𝑞 = (𝑋 +s 𝑚)}) <<s {(𝑋 +s 𝑌)} ∧ {(𝑋 +s 𝑌)} <<s ({𝑤 ∣ ∃𝑟 ∈ ( R ‘𝑋)𝑤 = (𝑟 +s 𝑌)} ∪ {𝑡 ∣ ∃𝑠 ∈ ( R ‘𝑌)𝑡 = (𝑋 +s 𝑠)})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1087   = wceq 1541  wcel 2106  {cab 2709  wrex 3070  cun 3945  {csn 4627   class class class wbr 5147  cfv 6540  (class class class)co 7405   No csur 27132   <<s csslt 27271   L cleft 27329   R cright 27330   +s cadds 27432
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-tp 4632  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-1o 8462  df-2o 8463  df-nadd 8661  df-no 27135  df-slt 27136  df-bday 27137  df-sslt 27272  df-scut 27274  df-0s 27314  df-made 27331  df-old 27332  df-left 27334  df-right 27335  df-norec2 27422  df-adds 27433
This theorem is referenced by:  addscut2  27452  addscld  27453  sleadd1  27461  addsuniflem  27473  addsasslem1  27475  addsasslem2  27476
  Copyright terms: Public domain W3C validator