MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addscut Structured version   Visualization version   GIF version

Theorem addscut 27921
Description: Demonstrate the cut properties of surreal addition. This gives us closure together with a pair of set-less-than relationships for surreal addition. (Contributed by Scott Fenton, 21-Jan-2025.)
Hypotheses
Ref Expression
addscut.1 (𝜑𝑋 No )
addscut.2 (𝜑𝑌 No )
Assertion
Ref Expression
addscut (𝜑 → ((𝑋 +s 𝑌) ∈ No ∧ ({𝑝 ∣ ∃𝑙 ∈ ( L ‘𝑋)𝑝 = (𝑙 +s 𝑌)} ∪ {𝑞 ∣ ∃𝑚 ∈ ( L ‘𝑌)𝑞 = (𝑋 +s 𝑚)}) <<s {(𝑋 +s 𝑌)} ∧ {(𝑋 +s 𝑌)} <<s ({𝑤 ∣ ∃𝑟 ∈ ( R ‘𝑋)𝑤 = (𝑟 +s 𝑌)} ∪ {𝑡 ∣ ∃𝑠 ∈ ( R ‘𝑌)𝑡 = (𝑋 +s 𝑠)})))
Distinct variable groups:   𝑋,𝑝,𝑙   𝑋,𝑞,𝑚   𝑤,𝑋,𝑟   𝑡,𝑋,𝑠   𝑌,𝑝,𝑙   𝑌,𝑞,𝑚   𝑤,𝑌,𝑟   𝑡,𝑌,𝑠
Allowed substitution hints:   𝜑(𝑤,𝑡,𝑚,𝑠,𝑟,𝑞,𝑝,𝑙)

Proof of Theorem addscut
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑒 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 addscut.1 . . 3 (𝜑𝑋 No )
2 addscut.2 . . 3 (𝜑𝑌 No )
31, 2addscutlem 27920 . 2 (𝜑 → ((𝑋 +s 𝑌) ∈ No ∧ ({𝑎 ∣ ∃𝑏 ∈ ( L ‘𝑋)𝑎 = (𝑏 +s 𝑌)} ∪ {𝑐 ∣ ∃𝑑 ∈ ( L ‘𝑌)𝑐 = (𝑋 +s 𝑑)}) <<s {(𝑋 +s 𝑌)} ∧ {(𝑋 +s 𝑌)} <<s ({𝑒 ∣ ∃𝑓 ∈ ( R ‘𝑋)𝑒 = (𝑓 +s 𝑌)} ∪ {𝑔 ∣ ∃ ∈ ( R ‘𝑌)𝑔 = (𝑋 +s )})))
4 biid 261 . . 3 ((𝑋 +s 𝑌) ∈ No ↔ (𝑋 +s 𝑌) ∈ No )
5 oveq1 7353 . . . . . . . . 9 (𝑙 = 𝑏 → (𝑙 +s 𝑌) = (𝑏 +s 𝑌))
65eqeq2d 2742 . . . . . . . 8 (𝑙 = 𝑏 → (𝑝 = (𝑙 +s 𝑌) ↔ 𝑝 = (𝑏 +s 𝑌)))
76cbvrexvw 3211 . . . . . . 7 (∃𝑙 ∈ ( L ‘𝑋)𝑝 = (𝑙 +s 𝑌) ↔ ∃𝑏 ∈ ( L ‘𝑋)𝑝 = (𝑏 +s 𝑌))
8 eqeq1 2735 . . . . . . . 8 (𝑝 = 𝑎 → (𝑝 = (𝑏 +s 𝑌) ↔ 𝑎 = (𝑏 +s 𝑌)))
98rexbidv 3156 . . . . . . 7 (𝑝 = 𝑎 → (∃𝑏 ∈ ( L ‘𝑋)𝑝 = (𝑏 +s 𝑌) ↔ ∃𝑏 ∈ ( L ‘𝑋)𝑎 = (𝑏 +s 𝑌)))
107, 9bitrid 283 . . . . . 6 (𝑝 = 𝑎 → (∃𝑙 ∈ ( L ‘𝑋)𝑝 = (𝑙 +s 𝑌) ↔ ∃𝑏 ∈ ( L ‘𝑋)𝑎 = (𝑏 +s 𝑌)))
1110cbvabv 2801 . . . . 5 {𝑝 ∣ ∃𝑙 ∈ ( L ‘𝑋)𝑝 = (𝑙 +s 𝑌)} = {𝑎 ∣ ∃𝑏 ∈ ( L ‘𝑋)𝑎 = (𝑏 +s 𝑌)}
12 oveq2 7354 . . . . . . . . 9 (𝑚 = 𝑑 → (𝑋 +s 𝑚) = (𝑋 +s 𝑑))
1312eqeq2d 2742 . . . . . . . 8 (𝑚 = 𝑑 → (𝑞 = (𝑋 +s 𝑚) ↔ 𝑞 = (𝑋 +s 𝑑)))
1413cbvrexvw 3211 . . . . . . 7 (∃𝑚 ∈ ( L ‘𝑌)𝑞 = (𝑋 +s 𝑚) ↔ ∃𝑑 ∈ ( L ‘𝑌)𝑞 = (𝑋 +s 𝑑))
15 eqeq1 2735 . . . . . . . 8 (𝑞 = 𝑐 → (𝑞 = (𝑋 +s 𝑑) ↔ 𝑐 = (𝑋 +s 𝑑)))
1615rexbidv 3156 . . . . . . 7 (𝑞 = 𝑐 → (∃𝑑 ∈ ( L ‘𝑌)𝑞 = (𝑋 +s 𝑑) ↔ ∃𝑑 ∈ ( L ‘𝑌)𝑐 = (𝑋 +s 𝑑)))
1714, 16bitrid 283 . . . . . 6 (𝑞 = 𝑐 → (∃𝑚 ∈ ( L ‘𝑌)𝑞 = (𝑋 +s 𝑚) ↔ ∃𝑑 ∈ ( L ‘𝑌)𝑐 = (𝑋 +s 𝑑)))
1817cbvabv 2801 . . . . 5 {𝑞 ∣ ∃𝑚 ∈ ( L ‘𝑌)𝑞 = (𝑋 +s 𝑚)} = {𝑐 ∣ ∃𝑑 ∈ ( L ‘𝑌)𝑐 = (𝑋 +s 𝑑)}
1911, 18uneq12i 4113 . . . 4 ({𝑝 ∣ ∃𝑙 ∈ ( L ‘𝑋)𝑝 = (𝑙 +s 𝑌)} ∪ {𝑞 ∣ ∃𝑚 ∈ ( L ‘𝑌)𝑞 = (𝑋 +s 𝑚)}) = ({𝑎 ∣ ∃𝑏 ∈ ( L ‘𝑋)𝑎 = (𝑏 +s 𝑌)} ∪ {𝑐 ∣ ∃𝑑 ∈ ( L ‘𝑌)𝑐 = (𝑋 +s 𝑑)})
2019breq1i 5096 . . 3 (({𝑝 ∣ ∃𝑙 ∈ ( L ‘𝑋)𝑝 = (𝑙 +s 𝑌)} ∪ {𝑞 ∣ ∃𝑚 ∈ ( L ‘𝑌)𝑞 = (𝑋 +s 𝑚)}) <<s {(𝑋 +s 𝑌)} ↔ ({𝑎 ∣ ∃𝑏 ∈ ( L ‘𝑋)𝑎 = (𝑏 +s 𝑌)} ∪ {𝑐 ∣ ∃𝑑 ∈ ( L ‘𝑌)𝑐 = (𝑋 +s 𝑑)}) <<s {(𝑋 +s 𝑌)})
21 oveq1 7353 . . . . . . . . 9 (𝑟 = 𝑓 → (𝑟 +s 𝑌) = (𝑓 +s 𝑌))
2221eqeq2d 2742 . . . . . . . 8 (𝑟 = 𝑓 → (𝑤 = (𝑟 +s 𝑌) ↔ 𝑤 = (𝑓 +s 𝑌)))
2322cbvrexvw 3211 . . . . . . 7 (∃𝑟 ∈ ( R ‘𝑋)𝑤 = (𝑟 +s 𝑌) ↔ ∃𝑓 ∈ ( R ‘𝑋)𝑤 = (𝑓 +s 𝑌))
24 eqeq1 2735 . . . . . . . 8 (𝑤 = 𝑒 → (𝑤 = (𝑓 +s 𝑌) ↔ 𝑒 = (𝑓 +s 𝑌)))
2524rexbidv 3156 . . . . . . 7 (𝑤 = 𝑒 → (∃𝑓 ∈ ( R ‘𝑋)𝑤 = (𝑓 +s 𝑌) ↔ ∃𝑓 ∈ ( R ‘𝑋)𝑒 = (𝑓 +s 𝑌)))
2623, 25bitrid 283 . . . . . 6 (𝑤 = 𝑒 → (∃𝑟 ∈ ( R ‘𝑋)𝑤 = (𝑟 +s 𝑌) ↔ ∃𝑓 ∈ ( R ‘𝑋)𝑒 = (𝑓 +s 𝑌)))
2726cbvabv 2801 . . . . 5 {𝑤 ∣ ∃𝑟 ∈ ( R ‘𝑋)𝑤 = (𝑟 +s 𝑌)} = {𝑒 ∣ ∃𝑓 ∈ ( R ‘𝑋)𝑒 = (𝑓 +s 𝑌)}
28 oveq2 7354 . . . . . . . . 9 (𝑠 = → (𝑋 +s 𝑠) = (𝑋 +s ))
2928eqeq2d 2742 . . . . . . . 8 (𝑠 = → (𝑡 = (𝑋 +s 𝑠) ↔ 𝑡 = (𝑋 +s )))
3029cbvrexvw 3211 . . . . . . 7 (∃𝑠 ∈ ( R ‘𝑌)𝑡 = (𝑋 +s 𝑠) ↔ ∃ ∈ ( R ‘𝑌)𝑡 = (𝑋 +s ))
31 eqeq1 2735 . . . . . . . 8 (𝑡 = 𝑔 → (𝑡 = (𝑋 +s ) ↔ 𝑔 = (𝑋 +s )))
3231rexbidv 3156 . . . . . . 7 (𝑡 = 𝑔 → (∃ ∈ ( R ‘𝑌)𝑡 = (𝑋 +s ) ↔ ∃ ∈ ( R ‘𝑌)𝑔 = (𝑋 +s )))
3330, 32bitrid 283 . . . . . 6 (𝑡 = 𝑔 → (∃𝑠 ∈ ( R ‘𝑌)𝑡 = (𝑋 +s 𝑠) ↔ ∃ ∈ ( R ‘𝑌)𝑔 = (𝑋 +s )))
3433cbvabv 2801 . . . . 5 {𝑡 ∣ ∃𝑠 ∈ ( R ‘𝑌)𝑡 = (𝑋 +s 𝑠)} = {𝑔 ∣ ∃ ∈ ( R ‘𝑌)𝑔 = (𝑋 +s )}
3527, 34uneq12i 4113 . . . 4 ({𝑤 ∣ ∃𝑟 ∈ ( R ‘𝑋)𝑤 = (𝑟 +s 𝑌)} ∪ {𝑡 ∣ ∃𝑠 ∈ ( R ‘𝑌)𝑡 = (𝑋 +s 𝑠)}) = ({𝑒 ∣ ∃𝑓 ∈ ( R ‘𝑋)𝑒 = (𝑓 +s 𝑌)} ∪ {𝑔 ∣ ∃ ∈ ( R ‘𝑌)𝑔 = (𝑋 +s )})
3635breq2i 5097 . . 3 ({(𝑋 +s 𝑌)} <<s ({𝑤 ∣ ∃𝑟 ∈ ( R ‘𝑋)𝑤 = (𝑟 +s 𝑌)} ∪ {𝑡 ∣ ∃𝑠 ∈ ( R ‘𝑌)𝑡 = (𝑋 +s 𝑠)}) ↔ {(𝑋 +s 𝑌)} <<s ({𝑒 ∣ ∃𝑓 ∈ ( R ‘𝑋)𝑒 = (𝑓 +s 𝑌)} ∪ {𝑔 ∣ ∃ ∈ ( R ‘𝑌)𝑔 = (𝑋 +s )}))
374, 20, 363anbi123i 1155 . 2 (((𝑋 +s 𝑌) ∈ No ∧ ({𝑝 ∣ ∃𝑙 ∈ ( L ‘𝑋)𝑝 = (𝑙 +s 𝑌)} ∪ {𝑞 ∣ ∃𝑚 ∈ ( L ‘𝑌)𝑞 = (𝑋 +s 𝑚)}) <<s {(𝑋 +s 𝑌)} ∧ {(𝑋 +s 𝑌)} <<s ({𝑤 ∣ ∃𝑟 ∈ ( R ‘𝑋)𝑤 = (𝑟 +s 𝑌)} ∪ {𝑡 ∣ ∃𝑠 ∈ ( R ‘𝑌)𝑡 = (𝑋 +s 𝑠)})) ↔ ((𝑋 +s 𝑌) ∈ No ∧ ({𝑎 ∣ ∃𝑏 ∈ ( L ‘𝑋)𝑎 = (𝑏 +s 𝑌)} ∪ {𝑐 ∣ ∃𝑑 ∈ ( L ‘𝑌)𝑐 = (𝑋 +s 𝑑)}) <<s {(𝑋 +s 𝑌)} ∧ {(𝑋 +s 𝑌)} <<s ({𝑒 ∣ ∃𝑓 ∈ ( R ‘𝑋)𝑒 = (𝑓 +s 𝑌)} ∪ {𝑔 ∣ ∃ ∈ ( R ‘𝑌)𝑔 = (𝑋 +s )})))
383, 37sylibr 234 1 (𝜑 → ((𝑋 +s 𝑌) ∈ No ∧ ({𝑝 ∣ ∃𝑙 ∈ ( L ‘𝑋)𝑝 = (𝑙 +s 𝑌)} ∪ {𝑞 ∣ ∃𝑚 ∈ ( L ‘𝑌)𝑞 = (𝑋 +s 𝑚)}) <<s {(𝑋 +s 𝑌)} ∧ {(𝑋 +s 𝑌)} <<s ({𝑤 ∣ ∃𝑟 ∈ ( R ‘𝑋)𝑤 = (𝑟 +s 𝑌)} ∪ {𝑡 ∣ ∃𝑠 ∈ ( R ‘𝑌)𝑡 = (𝑋 +s 𝑠)})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1541  wcel 2111  {cab 2709  wrex 3056  cun 3895  {csn 4573   class class class wbr 5089  cfv 6481  (class class class)co 7346   No csur 27578   <<s csslt 27720   L cleft 27786   R cright 27787   +s cadds 27902
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-1o 8385  df-2o 8386  df-nadd 8581  df-no 27581  df-slt 27582  df-bday 27583  df-sslt 27721  df-scut 27723  df-0s 27768  df-made 27788  df-old 27789  df-left 27791  df-right 27792  df-norec2 27892  df-adds 27903
This theorem is referenced by:  addscut2  27922  addscld  27923  sleadd1  27932  addsuniflem  27944  addsasslem1  27946  addsasslem2  27947
  Copyright terms: Public domain W3C validator