MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  umgr2adedgwlk Structured version   Visualization version   GIF version

Theorem umgr2adedgwlk 27716
Description: In a multigraph, two adjacent edges form a walk of length 2. (Contributed by Alexander van der Vekens, 18-Feb-2018.) (Revised by AV, 29-Jan-2021.)
Hypotheses
Ref Expression
umgr2adedgwlk.e 𝐸 = (Edg‘𝐺)
umgr2adedgwlk.i 𝐼 = (iEdg‘𝐺)
umgr2adedgwlk.f 𝐹 = ⟨“𝐽𝐾”⟩
umgr2adedgwlk.p 𝑃 = ⟨“𝐴𝐵𝐶”⟩
umgr2adedgwlk.g (𝜑𝐺 ∈ UMGraph)
umgr2adedgwlk.a (𝜑 → ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸))
umgr2adedgwlk.j (𝜑 → (𝐼𝐽) = {𝐴, 𝐵})
umgr2adedgwlk.k (𝜑 → (𝐼𝐾) = {𝐵, 𝐶})
Assertion
Ref Expression
umgr2adedgwlk (𝜑 → (𝐹(Walks‘𝐺)𝑃 ∧ (♯‘𝐹) = 2 ∧ (𝐴 = (𝑃‘0) ∧ 𝐵 = (𝑃‘1) ∧ 𝐶 = (𝑃‘2))))

Proof of Theorem umgr2adedgwlk
StepHypRef Expression
1 umgr2adedgwlk.p . . 3 𝑃 = ⟨“𝐴𝐵𝐶”⟩
2 umgr2adedgwlk.f . . 3 𝐹 = ⟨“𝐽𝐾”⟩
3 umgr2adedgwlk.g . . . . . 6 (𝜑𝐺 ∈ UMGraph)
4 umgr2adedgwlk.a . . . . . 6 (𝜑 → ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸))
5 3anass 1089 . . . . . 6 ((𝐺 ∈ UMGraph ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) ↔ (𝐺 ∈ UMGraph ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸)))
63, 4, 5sylanbrc 585 . . . . 5 (𝜑 → (𝐺 ∈ UMGraph ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸))
7 umgr2adedgwlk.e . . . . . 6 𝐸 = (Edg‘𝐺)
87umgr2adedgwlklem 27715 . . . . 5 ((𝐺 ∈ UMGraph ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) → ((𝐴𝐵𝐵𝐶) ∧ (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺) ∧ 𝐶 ∈ (Vtx‘𝐺))))
96, 8syl 17 . . . 4 (𝜑 → ((𝐴𝐵𝐵𝐶) ∧ (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺) ∧ 𝐶 ∈ (Vtx‘𝐺))))
109simprd 498 . . 3 (𝜑 → (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺) ∧ 𝐶 ∈ (Vtx‘𝐺)))
119simpld 497 . . 3 (𝜑 → (𝐴𝐵𝐵𝐶))
12 ssid 3987 . . . . 5 {𝐴, 𝐵} ⊆ {𝐴, 𝐵}
13 umgr2adedgwlk.j . . . . 5 (𝜑 → (𝐼𝐽) = {𝐴, 𝐵})
1412, 13sseqtrrid 4018 . . . 4 (𝜑 → {𝐴, 𝐵} ⊆ (𝐼𝐽))
15 ssid 3987 . . . . 5 {𝐵, 𝐶} ⊆ {𝐵, 𝐶}
16 umgr2adedgwlk.k . . . . 5 (𝜑 → (𝐼𝐾) = {𝐵, 𝐶})
1715, 16sseqtrrid 4018 . . . 4 (𝜑 → {𝐵, 𝐶} ⊆ (𝐼𝐾))
1814, 17jca 514 . . 3 (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼𝐽) ∧ {𝐵, 𝐶} ⊆ (𝐼𝐾)))
19 eqid 2819 . . 3 (Vtx‘𝐺) = (Vtx‘𝐺)
20 umgr2adedgwlk.i . . 3 𝐼 = (iEdg‘𝐺)
211, 2, 10, 11, 18, 19, 202wlkd 27707 . 2 (𝜑𝐹(Walks‘𝐺)𝑃)
222fveq2i 6666 . . . 4 (♯‘𝐹) = (♯‘⟨“𝐽𝐾”⟩)
23 s2len 14243 . . . 4 (♯‘⟨“𝐽𝐾”⟩) = 2
2422, 23eqtri 2842 . . 3 (♯‘𝐹) = 2
2524a1i 11 . 2 (𝜑 → (♯‘𝐹) = 2)
26 s3fv0 14245 . . . . 5 (𝐴 ∈ (Vtx‘𝐺) → (⟨“𝐴𝐵𝐶”⟩‘0) = 𝐴)
27 s3fv1 14246 . . . . 5 (𝐵 ∈ (Vtx‘𝐺) → (⟨“𝐴𝐵𝐶”⟩‘1) = 𝐵)
28 s3fv2 14247 . . . . 5 (𝐶 ∈ (Vtx‘𝐺) → (⟨“𝐴𝐵𝐶”⟩‘2) = 𝐶)
2926, 27, 283anim123i 1145 . . . 4 ((𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺) ∧ 𝐶 ∈ (Vtx‘𝐺)) → ((⟨“𝐴𝐵𝐶”⟩‘0) = 𝐴 ∧ (⟨“𝐴𝐵𝐶”⟩‘1) = 𝐵 ∧ (⟨“𝐴𝐵𝐶”⟩‘2) = 𝐶))
3010, 29syl 17 . . 3 (𝜑 → ((⟨“𝐴𝐵𝐶”⟩‘0) = 𝐴 ∧ (⟨“𝐴𝐵𝐶”⟩‘1) = 𝐵 ∧ (⟨“𝐴𝐵𝐶”⟩‘2) = 𝐶))
311fveq1i 6664 . . . . . 6 (𝑃‘0) = (⟨“𝐴𝐵𝐶”⟩‘0)
3231eqeq2i 2832 . . . . 5 (𝐴 = (𝑃‘0) ↔ 𝐴 = (⟨“𝐴𝐵𝐶”⟩‘0))
33 eqcom 2826 . . . . 5 (𝐴 = (⟨“𝐴𝐵𝐶”⟩‘0) ↔ (⟨“𝐴𝐵𝐶”⟩‘0) = 𝐴)
3432, 33bitri 277 . . . 4 (𝐴 = (𝑃‘0) ↔ (⟨“𝐴𝐵𝐶”⟩‘0) = 𝐴)
351fveq1i 6664 . . . . . 6 (𝑃‘1) = (⟨“𝐴𝐵𝐶”⟩‘1)
3635eqeq2i 2832 . . . . 5 (𝐵 = (𝑃‘1) ↔ 𝐵 = (⟨“𝐴𝐵𝐶”⟩‘1))
37 eqcom 2826 . . . . 5 (𝐵 = (⟨“𝐴𝐵𝐶”⟩‘1) ↔ (⟨“𝐴𝐵𝐶”⟩‘1) = 𝐵)
3836, 37bitri 277 . . . 4 (𝐵 = (𝑃‘1) ↔ (⟨“𝐴𝐵𝐶”⟩‘1) = 𝐵)
391fveq1i 6664 . . . . . 6 (𝑃‘2) = (⟨“𝐴𝐵𝐶”⟩‘2)
4039eqeq2i 2832 . . . . 5 (𝐶 = (𝑃‘2) ↔ 𝐶 = (⟨“𝐴𝐵𝐶”⟩‘2))
41 eqcom 2826 . . . . 5 (𝐶 = (⟨“𝐴𝐵𝐶”⟩‘2) ↔ (⟨“𝐴𝐵𝐶”⟩‘2) = 𝐶)
4240, 41bitri 277 . . . 4 (𝐶 = (𝑃‘2) ↔ (⟨“𝐴𝐵𝐶”⟩‘2) = 𝐶)
4334, 38, 423anbi123i 1149 . . 3 ((𝐴 = (𝑃‘0) ∧ 𝐵 = (𝑃‘1) ∧ 𝐶 = (𝑃‘2)) ↔ ((⟨“𝐴𝐵𝐶”⟩‘0) = 𝐴 ∧ (⟨“𝐴𝐵𝐶”⟩‘1) = 𝐵 ∧ (⟨“𝐴𝐵𝐶”⟩‘2) = 𝐶))
4430, 43sylibr 236 . 2 (𝜑 → (𝐴 = (𝑃‘0) ∧ 𝐵 = (𝑃‘1) ∧ 𝐶 = (𝑃‘2)))
4521, 25, 443jca 1122 1 (𝜑 → (𝐹(Walks‘𝐺)𝑃 ∧ (♯‘𝐹) = 2 ∧ (𝐴 = (𝑃‘0) ∧ 𝐵 = (𝑃‘1) ∧ 𝐶 = (𝑃‘2))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1081   = wceq 1530  wcel 2107  wne 3014  wss 3934  {cpr 4561   class class class wbr 5057  cfv 6348  0cc0 10529  1c1 10530  2c2 11684  chash 13682  ⟨“cs2 14195  ⟨“cs3 14196  Vtxcvtx 26773  iEdgciedg 26774  Edgcedg 26824  UMGraphcumgr 26858  Walkscwlks 27370
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2791  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-ifp 1057  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rmo 3144  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7573  df-1st 7681  df-2nd 7682  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-1o 8094  df-oadd 8098  df-er 8281  df-map 8400  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-dju 9322  df-card 9360  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-nn 11631  df-2 11692  df-3 11693  df-n0 11890  df-z 11974  df-uz 12236  df-fz 12885  df-fzo 13026  df-hash 13683  df-word 13854  df-concat 13915  df-s1 13942  df-s2 14202  df-s3 14203  df-edg 26825  df-umgr 26860  df-wlks 27373
This theorem is referenced by:  umgr2adedgwlkonALT  27718  umgr2wlk  27720
  Copyright terms: Public domain W3C validator