![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > umgr2adedgwlk | Structured version Visualization version GIF version |
Description: In a multigraph, two adjacent edges form a walk of length 2. (Contributed by Alexander van der Vekens, 18-Feb-2018.) (Revised by AV, 29-Jan-2021.) |
Ref | Expression |
---|---|
umgr2adedgwlk.e | ⊢ 𝐸 = (Edg‘𝐺) |
umgr2adedgwlk.i | ⊢ 𝐼 = (iEdg‘𝐺) |
umgr2adedgwlk.f | ⊢ 𝐹 = 〈“𝐽𝐾”〉 |
umgr2adedgwlk.p | ⊢ 𝑃 = 〈“𝐴𝐵𝐶”〉 |
umgr2adedgwlk.g | ⊢ (𝜑 → 𝐺 ∈ UMGraph) |
umgr2adedgwlk.a | ⊢ (𝜑 → ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸)) |
umgr2adedgwlk.j | ⊢ (𝜑 → (𝐼‘𝐽) = {𝐴, 𝐵}) |
umgr2adedgwlk.k | ⊢ (𝜑 → (𝐼‘𝐾) = {𝐵, 𝐶}) |
Ref | Expression |
---|---|
umgr2adedgwlk | ⊢ (𝜑 → (𝐹(Walks‘𝐺)𝑃 ∧ (♯‘𝐹) = 2 ∧ (𝐴 = (𝑃‘0) ∧ 𝐵 = (𝑃‘1) ∧ 𝐶 = (𝑃‘2)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | umgr2adedgwlk.p | . . 3 ⊢ 𝑃 = 〈“𝐴𝐵𝐶”〉 | |
2 | umgr2adedgwlk.f | . . 3 ⊢ 𝐹 = 〈“𝐽𝐾”〉 | |
3 | umgr2adedgwlk.g | . . . . . 6 ⊢ (𝜑 → 𝐺 ∈ UMGraph) | |
4 | umgr2adedgwlk.a | . . . . . 6 ⊢ (𝜑 → ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸)) | |
5 | 3anass 1094 | . . . . . 6 ⊢ ((𝐺 ∈ UMGraph ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) ↔ (𝐺 ∈ UMGraph ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸))) | |
6 | 3, 4, 5 | sylanbrc 583 | . . . . 5 ⊢ (𝜑 → (𝐺 ∈ UMGraph ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸)) |
7 | umgr2adedgwlk.e | . . . . . 6 ⊢ 𝐸 = (Edg‘𝐺) | |
8 | 7 | umgr2adedgwlklem 29974 | . . . . 5 ⊢ ((𝐺 ∈ UMGraph ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) → ((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶) ∧ (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺) ∧ 𝐶 ∈ (Vtx‘𝐺)))) |
9 | 6, 8 | syl 17 | . . . 4 ⊢ (𝜑 → ((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶) ∧ (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺) ∧ 𝐶 ∈ (Vtx‘𝐺)))) |
10 | 9 | simprd 495 | . . 3 ⊢ (𝜑 → (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺) ∧ 𝐶 ∈ (Vtx‘𝐺))) |
11 | 9 | simpld 494 | . . 3 ⊢ (𝜑 → (𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶)) |
12 | ssid 4018 | . . . . 5 ⊢ {𝐴, 𝐵} ⊆ {𝐴, 𝐵} | |
13 | umgr2adedgwlk.j | . . . . 5 ⊢ (𝜑 → (𝐼‘𝐽) = {𝐴, 𝐵}) | |
14 | 12, 13 | sseqtrrid 4049 | . . . 4 ⊢ (𝜑 → {𝐴, 𝐵} ⊆ (𝐼‘𝐽)) |
15 | ssid 4018 | . . . . 5 ⊢ {𝐵, 𝐶} ⊆ {𝐵, 𝐶} | |
16 | umgr2adedgwlk.k | . . . . 5 ⊢ (𝜑 → (𝐼‘𝐾) = {𝐵, 𝐶}) | |
17 | 15, 16 | sseqtrrid 4049 | . . . 4 ⊢ (𝜑 → {𝐵, 𝐶} ⊆ (𝐼‘𝐾)) |
18 | 14, 17 | jca 511 | . . 3 ⊢ (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼‘𝐽) ∧ {𝐵, 𝐶} ⊆ (𝐼‘𝐾))) |
19 | eqid 2735 | . . 3 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
20 | umgr2adedgwlk.i | . . 3 ⊢ 𝐼 = (iEdg‘𝐺) | |
21 | 1, 2, 10, 11, 18, 19, 20 | 2wlkd 29966 | . 2 ⊢ (𝜑 → 𝐹(Walks‘𝐺)𝑃) |
22 | 2 | fveq2i 6910 | . . . 4 ⊢ (♯‘𝐹) = (♯‘〈“𝐽𝐾”〉) |
23 | s2len 14925 | . . . 4 ⊢ (♯‘〈“𝐽𝐾”〉) = 2 | |
24 | 22, 23 | eqtri 2763 | . . 3 ⊢ (♯‘𝐹) = 2 |
25 | 24 | a1i 11 | . 2 ⊢ (𝜑 → (♯‘𝐹) = 2) |
26 | s3fv0 14927 | . . . . 5 ⊢ (𝐴 ∈ (Vtx‘𝐺) → (〈“𝐴𝐵𝐶”〉‘0) = 𝐴) | |
27 | s3fv1 14928 | . . . . 5 ⊢ (𝐵 ∈ (Vtx‘𝐺) → (〈“𝐴𝐵𝐶”〉‘1) = 𝐵) | |
28 | s3fv2 14929 | . . . . 5 ⊢ (𝐶 ∈ (Vtx‘𝐺) → (〈“𝐴𝐵𝐶”〉‘2) = 𝐶) | |
29 | 26, 27, 28 | 3anim123i 1150 | . . . 4 ⊢ ((𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺) ∧ 𝐶 ∈ (Vtx‘𝐺)) → ((〈“𝐴𝐵𝐶”〉‘0) = 𝐴 ∧ (〈“𝐴𝐵𝐶”〉‘1) = 𝐵 ∧ (〈“𝐴𝐵𝐶”〉‘2) = 𝐶)) |
30 | 10, 29 | syl 17 | . . 3 ⊢ (𝜑 → ((〈“𝐴𝐵𝐶”〉‘0) = 𝐴 ∧ (〈“𝐴𝐵𝐶”〉‘1) = 𝐵 ∧ (〈“𝐴𝐵𝐶”〉‘2) = 𝐶)) |
31 | 1 | fveq1i 6908 | . . . . . 6 ⊢ (𝑃‘0) = (〈“𝐴𝐵𝐶”〉‘0) |
32 | 31 | eqeq2i 2748 | . . . . 5 ⊢ (𝐴 = (𝑃‘0) ↔ 𝐴 = (〈“𝐴𝐵𝐶”〉‘0)) |
33 | eqcom 2742 | . . . . 5 ⊢ (𝐴 = (〈“𝐴𝐵𝐶”〉‘0) ↔ (〈“𝐴𝐵𝐶”〉‘0) = 𝐴) | |
34 | 32, 33 | bitri 275 | . . . 4 ⊢ (𝐴 = (𝑃‘0) ↔ (〈“𝐴𝐵𝐶”〉‘0) = 𝐴) |
35 | 1 | fveq1i 6908 | . . . . . 6 ⊢ (𝑃‘1) = (〈“𝐴𝐵𝐶”〉‘1) |
36 | 35 | eqeq2i 2748 | . . . . 5 ⊢ (𝐵 = (𝑃‘1) ↔ 𝐵 = (〈“𝐴𝐵𝐶”〉‘1)) |
37 | eqcom 2742 | . . . . 5 ⊢ (𝐵 = (〈“𝐴𝐵𝐶”〉‘1) ↔ (〈“𝐴𝐵𝐶”〉‘1) = 𝐵) | |
38 | 36, 37 | bitri 275 | . . . 4 ⊢ (𝐵 = (𝑃‘1) ↔ (〈“𝐴𝐵𝐶”〉‘1) = 𝐵) |
39 | 1 | fveq1i 6908 | . . . . . 6 ⊢ (𝑃‘2) = (〈“𝐴𝐵𝐶”〉‘2) |
40 | 39 | eqeq2i 2748 | . . . . 5 ⊢ (𝐶 = (𝑃‘2) ↔ 𝐶 = (〈“𝐴𝐵𝐶”〉‘2)) |
41 | eqcom 2742 | . . . . 5 ⊢ (𝐶 = (〈“𝐴𝐵𝐶”〉‘2) ↔ (〈“𝐴𝐵𝐶”〉‘2) = 𝐶) | |
42 | 40, 41 | bitri 275 | . . . 4 ⊢ (𝐶 = (𝑃‘2) ↔ (〈“𝐴𝐵𝐶”〉‘2) = 𝐶) |
43 | 34, 38, 42 | 3anbi123i 1154 | . . 3 ⊢ ((𝐴 = (𝑃‘0) ∧ 𝐵 = (𝑃‘1) ∧ 𝐶 = (𝑃‘2)) ↔ ((〈“𝐴𝐵𝐶”〉‘0) = 𝐴 ∧ (〈“𝐴𝐵𝐶”〉‘1) = 𝐵 ∧ (〈“𝐴𝐵𝐶”〉‘2) = 𝐶)) |
44 | 30, 43 | sylibr 234 | . 2 ⊢ (𝜑 → (𝐴 = (𝑃‘0) ∧ 𝐵 = (𝑃‘1) ∧ 𝐶 = (𝑃‘2))) |
45 | 21, 25, 44 | 3jca 1127 | 1 ⊢ (𝜑 → (𝐹(Walks‘𝐺)𝑃 ∧ (♯‘𝐹) = 2 ∧ (𝐴 = (𝑃‘0) ∧ 𝐵 = (𝑃‘1) ∧ 𝐶 = (𝑃‘2)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 ≠ wne 2938 ⊆ wss 3963 {cpr 4633 class class class wbr 5148 ‘cfv 6563 0cc0 11153 1c1 11154 2c2 12319 ♯chash 14366 〈“cs2 14877 〈“cs3 14878 Vtxcvtx 29028 iEdgciedg 29029 Edgcedg 29079 UMGraphcumgr 29113 Walkscwlks 29629 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-tp 4636 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-oadd 8509 df-er 8744 df-map 8867 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-dju 9939 df-card 9977 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-nn 12265 df-2 12327 df-3 12328 df-n0 12525 df-z 12612 df-uz 12877 df-fz 13545 df-fzo 13692 df-hash 14367 df-word 14550 df-concat 14606 df-s1 14631 df-s2 14884 df-s3 14885 df-edg 29080 df-umgr 29115 df-wlks 29632 |
This theorem is referenced by: umgr2adedgwlkonALT 29977 umgr2wlk 29979 |
Copyright terms: Public domain | W3C validator |