Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > umgr2adedgwlk | Structured version Visualization version GIF version |
Description: In a multigraph, two adjacent edges form a walk of length 2. (Contributed by Alexander van der Vekens, 18-Feb-2018.) (Revised by AV, 29-Jan-2021.) |
Ref | Expression |
---|---|
umgr2adedgwlk.e | ⊢ 𝐸 = (Edg‘𝐺) |
umgr2adedgwlk.i | ⊢ 𝐼 = (iEdg‘𝐺) |
umgr2adedgwlk.f | ⊢ 𝐹 = 〈“𝐽𝐾”〉 |
umgr2adedgwlk.p | ⊢ 𝑃 = 〈“𝐴𝐵𝐶”〉 |
umgr2adedgwlk.g | ⊢ (𝜑 → 𝐺 ∈ UMGraph) |
umgr2adedgwlk.a | ⊢ (𝜑 → ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸)) |
umgr2adedgwlk.j | ⊢ (𝜑 → (𝐼‘𝐽) = {𝐴, 𝐵}) |
umgr2adedgwlk.k | ⊢ (𝜑 → (𝐼‘𝐾) = {𝐵, 𝐶}) |
Ref | Expression |
---|---|
umgr2adedgwlk | ⊢ (𝜑 → (𝐹(Walks‘𝐺)𝑃 ∧ (♯‘𝐹) = 2 ∧ (𝐴 = (𝑃‘0) ∧ 𝐵 = (𝑃‘1) ∧ 𝐶 = (𝑃‘2)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | umgr2adedgwlk.p | . . 3 ⊢ 𝑃 = 〈“𝐴𝐵𝐶”〉 | |
2 | umgr2adedgwlk.f | . . 3 ⊢ 𝐹 = 〈“𝐽𝐾”〉 | |
3 | umgr2adedgwlk.g | . . . . . 6 ⊢ (𝜑 → 𝐺 ∈ UMGraph) | |
4 | umgr2adedgwlk.a | . . . . . 6 ⊢ (𝜑 → ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸)) | |
5 | 3anass 1093 | . . . . . 6 ⊢ ((𝐺 ∈ UMGraph ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) ↔ (𝐺 ∈ UMGraph ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸))) | |
6 | 3, 4, 5 | sylanbrc 582 | . . . . 5 ⊢ (𝜑 → (𝐺 ∈ UMGraph ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸)) |
7 | umgr2adedgwlk.e | . . . . . 6 ⊢ 𝐸 = (Edg‘𝐺) | |
8 | 7 | umgr2adedgwlklem 28210 | . . . . 5 ⊢ ((𝐺 ∈ UMGraph ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) → ((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶) ∧ (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺) ∧ 𝐶 ∈ (Vtx‘𝐺)))) |
9 | 6, 8 | syl 17 | . . . 4 ⊢ (𝜑 → ((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶) ∧ (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺) ∧ 𝐶 ∈ (Vtx‘𝐺)))) |
10 | 9 | simprd 495 | . . 3 ⊢ (𝜑 → (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺) ∧ 𝐶 ∈ (Vtx‘𝐺))) |
11 | 9 | simpld 494 | . . 3 ⊢ (𝜑 → (𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶)) |
12 | ssid 3939 | . . . . 5 ⊢ {𝐴, 𝐵} ⊆ {𝐴, 𝐵} | |
13 | umgr2adedgwlk.j | . . . . 5 ⊢ (𝜑 → (𝐼‘𝐽) = {𝐴, 𝐵}) | |
14 | 12, 13 | sseqtrrid 3970 | . . . 4 ⊢ (𝜑 → {𝐴, 𝐵} ⊆ (𝐼‘𝐽)) |
15 | ssid 3939 | . . . . 5 ⊢ {𝐵, 𝐶} ⊆ {𝐵, 𝐶} | |
16 | umgr2adedgwlk.k | . . . . 5 ⊢ (𝜑 → (𝐼‘𝐾) = {𝐵, 𝐶}) | |
17 | 15, 16 | sseqtrrid 3970 | . . . 4 ⊢ (𝜑 → {𝐵, 𝐶} ⊆ (𝐼‘𝐾)) |
18 | 14, 17 | jca 511 | . . 3 ⊢ (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼‘𝐽) ∧ {𝐵, 𝐶} ⊆ (𝐼‘𝐾))) |
19 | eqid 2738 | . . 3 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
20 | umgr2adedgwlk.i | . . 3 ⊢ 𝐼 = (iEdg‘𝐺) | |
21 | 1, 2, 10, 11, 18, 19, 20 | 2wlkd 28202 | . 2 ⊢ (𝜑 → 𝐹(Walks‘𝐺)𝑃) |
22 | 2 | fveq2i 6759 | . . . 4 ⊢ (♯‘𝐹) = (♯‘〈“𝐽𝐾”〉) |
23 | s2len 14530 | . . . 4 ⊢ (♯‘〈“𝐽𝐾”〉) = 2 | |
24 | 22, 23 | eqtri 2766 | . . 3 ⊢ (♯‘𝐹) = 2 |
25 | 24 | a1i 11 | . 2 ⊢ (𝜑 → (♯‘𝐹) = 2) |
26 | s3fv0 14532 | . . . . 5 ⊢ (𝐴 ∈ (Vtx‘𝐺) → (〈“𝐴𝐵𝐶”〉‘0) = 𝐴) | |
27 | s3fv1 14533 | . . . . 5 ⊢ (𝐵 ∈ (Vtx‘𝐺) → (〈“𝐴𝐵𝐶”〉‘1) = 𝐵) | |
28 | s3fv2 14534 | . . . . 5 ⊢ (𝐶 ∈ (Vtx‘𝐺) → (〈“𝐴𝐵𝐶”〉‘2) = 𝐶) | |
29 | 26, 27, 28 | 3anim123i 1149 | . . . 4 ⊢ ((𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺) ∧ 𝐶 ∈ (Vtx‘𝐺)) → ((〈“𝐴𝐵𝐶”〉‘0) = 𝐴 ∧ (〈“𝐴𝐵𝐶”〉‘1) = 𝐵 ∧ (〈“𝐴𝐵𝐶”〉‘2) = 𝐶)) |
30 | 10, 29 | syl 17 | . . 3 ⊢ (𝜑 → ((〈“𝐴𝐵𝐶”〉‘0) = 𝐴 ∧ (〈“𝐴𝐵𝐶”〉‘1) = 𝐵 ∧ (〈“𝐴𝐵𝐶”〉‘2) = 𝐶)) |
31 | 1 | fveq1i 6757 | . . . . . 6 ⊢ (𝑃‘0) = (〈“𝐴𝐵𝐶”〉‘0) |
32 | 31 | eqeq2i 2751 | . . . . 5 ⊢ (𝐴 = (𝑃‘0) ↔ 𝐴 = (〈“𝐴𝐵𝐶”〉‘0)) |
33 | eqcom 2745 | . . . . 5 ⊢ (𝐴 = (〈“𝐴𝐵𝐶”〉‘0) ↔ (〈“𝐴𝐵𝐶”〉‘0) = 𝐴) | |
34 | 32, 33 | bitri 274 | . . . 4 ⊢ (𝐴 = (𝑃‘0) ↔ (〈“𝐴𝐵𝐶”〉‘0) = 𝐴) |
35 | 1 | fveq1i 6757 | . . . . . 6 ⊢ (𝑃‘1) = (〈“𝐴𝐵𝐶”〉‘1) |
36 | 35 | eqeq2i 2751 | . . . . 5 ⊢ (𝐵 = (𝑃‘1) ↔ 𝐵 = (〈“𝐴𝐵𝐶”〉‘1)) |
37 | eqcom 2745 | . . . . 5 ⊢ (𝐵 = (〈“𝐴𝐵𝐶”〉‘1) ↔ (〈“𝐴𝐵𝐶”〉‘1) = 𝐵) | |
38 | 36, 37 | bitri 274 | . . . 4 ⊢ (𝐵 = (𝑃‘1) ↔ (〈“𝐴𝐵𝐶”〉‘1) = 𝐵) |
39 | 1 | fveq1i 6757 | . . . . . 6 ⊢ (𝑃‘2) = (〈“𝐴𝐵𝐶”〉‘2) |
40 | 39 | eqeq2i 2751 | . . . . 5 ⊢ (𝐶 = (𝑃‘2) ↔ 𝐶 = (〈“𝐴𝐵𝐶”〉‘2)) |
41 | eqcom 2745 | . . . . 5 ⊢ (𝐶 = (〈“𝐴𝐵𝐶”〉‘2) ↔ (〈“𝐴𝐵𝐶”〉‘2) = 𝐶) | |
42 | 40, 41 | bitri 274 | . . . 4 ⊢ (𝐶 = (𝑃‘2) ↔ (〈“𝐴𝐵𝐶”〉‘2) = 𝐶) |
43 | 34, 38, 42 | 3anbi123i 1153 | . . 3 ⊢ ((𝐴 = (𝑃‘0) ∧ 𝐵 = (𝑃‘1) ∧ 𝐶 = (𝑃‘2)) ↔ ((〈“𝐴𝐵𝐶”〉‘0) = 𝐴 ∧ (〈“𝐴𝐵𝐶”〉‘1) = 𝐵 ∧ (〈“𝐴𝐵𝐶”〉‘2) = 𝐶)) |
44 | 30, 43 | sylibr 233 | . 2 ⊢ (𝜑 → (𝐴 = (𝑃‘0) ∧ 𝐵 = (𝑃‘1) ∧ 𝐶 = (𝑃‘2))) |
45 | 21, 25, 44 | 3jca 1126 | 1 ⊢ (𝜑 → (𝐹(Walks‘𝐺)𝑃 ∧ (♯‘𝐹) = 2 ∧ (𝐴 = (𝑃‘0) ∧ 𝐵 = (𝑃‘1) ∧ 𝐶 = (𝑃‘2)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ⊆ wss 3883 {cpr 4560 class class class wbr 5070 ‘cfv 6418 0cc0 10802 1c1 10803 2c2 11958 ♯chash 13972 〈“cs2 14482 〈“cs3 14483 Vtxcvtx 27269 iEdgciedg 27270 Edgcedg 27320 UMGraphcumgr 27354 Walkscwlks 27866 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-ifp 1060 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-oadd 8271 df-er 8456 df-map 8575 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-dju 9590 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-3 11967 df-n0 12164 df-z 12250 df-uz 12512 df-fz 13169 df-fzo 13312 df-hash 13973 df-word 14146 df-concat 14202 df-s1 14229 df-s2 14489 df-s3 14490 df-edg 27321 df-umgr 27356 df-wlks 27869 |
This theorem is referenced by: umgr2adedgwlkonALT 28213 umgr2wlk 28215 |
Copyright terms: Public domain | W3C validator |