| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > umgr2adedgwlk | Structured version Visualization version GIF version | ||
| Description: In a multigraph, two adjacent edges form a walk of length 2. (Contributed by Alexander van der Vekens, 18-Feb-2018.) (Revised by AV, 29-Jan-2021.) |
| Ref | Expression |
|---|---|
| umgr2adedgwlk.e | ⊢ 𝐸 = (Edg‘𝐺) |
| umgr2adedgwlk.i | ⊢ 𝐼 = (iEdg‘𝐺) |
| umgr2adedgwlk.f | ⊢ 𝐹 = 〈“𝐽𝐾”〉 |
| umgr2adedgwlk.p | ⊢ 𝑃 = 〈“𝐴𝐵𝐶”〉 |
| umgr2adedgwlk.g | ⊢ (𝜑 → 𝐺 ∈ UMGraph) |
| umgr2adedgwlk.a | ⊢ (𝜑 → ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸)) |
| umgr2adedgwlk.j | ⊢ (𝜑 → (𝐼‘𝐽) = {𝐴, 𝐵}) |
| umgr2adedgwlk.k | ⊢ (𝜑 → (𝐼‘𝐾) = {𝐵, 𝐶}) |
| Ref | Expression |
|---|---|
| umgr2adedgwlk | ⊢ (𝜑 → (𝐹(Walks‘𝐺)𝑃 ∧ (♯‘𝐹) = 2 ∧ (𝐴 = (𝑃‘0) ∧ 𝐵 = (𝑃‘1) ∧ 𝐶 = (𝑃‘2)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | umgr2adedgwlk.p | . . 3 ⊢ 𝑃 = 〈“𝐴𝐵𝐶”〉 | |
| 2 | umgr2adedgwlk.f | . . 3 ⊢ 𝐹 = 〈“𝐽𝐾”〉 | |
| 3 | umgr2adedgwlk.g | . . . . . 6 ⊢ (𝜑 → 𝐺 ∈ UMGraph) | |
| 4 | umgr2adedgwlk.a | . . . . . 6 ⊢ (𝜑 → ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸)) | |
| 5 | 3anass 1094 | . . . . . 6 ⊢ ((𝐺 ∈ UMGraph ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) ↔ (𝐺 ∈ UMGraph ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸))) | |
| 6 | 3, 4, 5 | sylanbrc 583 | . . . . 5 ⊢ (𝜑 → (𝐺 ∈ UMGraph ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸)) |
| 7 | umgr2adedgwlk.e | . . . . . 6 ⊢ 𝐸 = (Edg‘𝐺) | |
| 8 | 7 | umgr2adedgwlklem 29931 | . . . . 5 ⊢ ((𝐺 ∈ UMGraph ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) → ((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶) ∧ (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺) ∧ 𝐶 ∈ (Vtx‘𝐺)))) |
| 9 | 6, 8 | syl 17 | . . . 4 ⊢ (𝜑 → ((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶) ∧ (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺) ∧ 𝐶 ∈ (Vtx‘𝐺)))) |
| 10 | 9 | simprd 495 | . . 3 ⊢ (𝜑 → (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺) ∧ 𝐶 ∈ (Vtx‘𝐺))) |
| 11 | 9 | simpld 494 | . . 3 ⊢ (𝜑 → (𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶)) |
| 12 | ssid 3986 | . . . . 5 ⊢ {𝐴, 𝐵} ⊆ {𝐴, 𝐵} | |
| 13 | umgr2adedgwlk.j | . . . . 5 ⊢ (𝜑 → (𝐼‘𝐽) = {𝐴, 𝐵}) | |
| 14 | 12, 13 | sseqtrrid 4007 | . . . 4 ⊢ (𝜑 → {𝐴, 𝐵} ⊆ (𝐼‘𝐽)) |
| 15 | ssid 3986 | . . . . 5 ⊢ {𝐵, 𝐶} ⊆ {𝐵, 𝐶} | |
| 16 | umgr2adedgwlk.k | . . . . 5 ⊢ (𝜑 → (𝐼‘𝐾) = {𝐵, 𝐶}) | |
| 17 | 15, 16 | sseqtrrid 4007 | . . . 4 ⊢ (𝜑 → {𝐵, 𝐶} ⊆ (𝐼‘𝐾)) |
| 18 | 14, 17 | jca 511 | . . 3 ⊢ (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼‘𝐽) ∧ {𝐵, 𝐶} ⊆ (𝐼‘𝐾))) |
| 19 | eqid 2736 | . . 3 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
| 20 | umgr2adedgwlk.i | . . 3 ⊢ 𝐼 = (iEdg‘𝐺) | |
| 21 | 1, 2, 10, 11, 18, 19, 20 | 2wlkd 29923 | . 2 ⊢ (𝜑 → 𝐹(Walks‘𝐺)𝑃) |
| 22 | 2 | fveq2i 6884 | . . . 4 ⊢ (♯‘𝐹) = (♯‘〈“𝐽𝐾”〉) |
| 23 | s2len 14913 | . . . 4 ⊢ (♯‘〈“𝐽𝐾”〉) = 2 | |
| 24 | 22, 23 | eqtri 2759 | . . 3 ⊢ (♯‘𝐹) = 2 |
| 25 | 24 | a1i 11 | . 2 ⊢ (𝜑 → (♯‘𝐹) = 2) |
| 26 | s3fv0 14915 | . . . . 5 ⊢ (𝐴 ∈ (Vtx‘𝐺) → (〈“𝐴𝐵𝐶”〉‘0) = 𝐴) | |
| 27 | s3fv1 14916 | . . . . 5 ⊢ (𝐵 ∈ (Vtx‘𝐺) → (〈“𝐴𝐵𝐶”〉‘1) = 𝐵) | |
| 28 | s3fv2 14917 | . . . . 5 ⊢ (𝐶 ∈ (Vtx‘𝐺) → (〈“𝐴𝐵𝐶”〉‘2) = 𝐶) | |
| 29 | 26, 27, 28 | 3anim123i 1151 | . . . 4 ⊢ ((𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺) ∧ 𝐶 ∈ (Vtx‘𝐺)) → ((〈“𝐴𝐵𝐶”〉‘0) = 𝐴 ∧ (〈“𝐴𝐵𝐶”〉‘1) = 𝐵 ∧ (〈“𝐴𝐵𝐶”〉‘2) = 𝐶)) |
| 30 | 10, 29 | syl 17 | . . 3 ⊢ (𝜑 → ((〈“𝐴𝐵𝐶”〉‘0) = 𝐴 ∧ (〈“𝐴𝐵𝐶”〉‘1) = 𝐵 ∧ (〈“𝐴𝐵𝐶”〉‘2) = 𝐶)) |
| 31 | 1 | fveq1i 6882 | . . . . . 6 ⊢ (𝑃‘0) = (〈“𝐴𝐵𝐶”〉‘0) |
| 32 | 31 | eqeq2i 2749 | . . . . 5 ⊢ (𝐴 = (𝑃‘0) ↔ 𝐴 = (〈“𝐴𝐵𝐶”〉‘0)) |
| 33 | eqcom 2743 | . . . . 5 ⊢ (𝐴 = (〈“𝐴𝐵𝐶”〉‘0) ↔ (〈“𝐴𝐵𝐶”〉‘0) = 𝐴) | |
| 34 | 32, 33 | bitri 275 | . . . 4 ⊢ (𝐴 = (𝑃‘0) ↔ (〈“𝐴𝐵𝐶”〉‘0) = 𝐴) |
| 35 | 1 | fveq1i 6882 | . . . . . 6 ⊢ (𝑃‘1) = (〈“𝐴𝐵𝐶”〉‘1) |
| 36 | 35 | eqeq2i 2749 | . . . . 5 ⊢ (𝐵 = (𝑃‘1) ↔ 𝐵 = (〈“𝐴𝐵𝐶”〉‘1)) |
| 37 | eqcom 2743 | . . . . 5 ⊢ (𝐵 = (〈“𝐴𝐵𝐶”〉‘1) ↔ (〈“𝐴𝐵𝐶”〉‘1) = 𝐵) | |
| 38 | 36, 37 | bitri 275 | . . . 4 ⊢ (𝐵 = (𝑃‘1) ↔ (〈“𝐴𝐵𝐶”〉‘1) = 𝐵) |
| 39 | 1 | fveq1i 6882 | . . . . . 6 ⊢ (𝑃‘2) = (〈“𝐴𝐵𝐶”〉‘2) |
| 40 | 39 | eqeq2i 2749 | . . . . 5 ⊢ (𝐶 = (𝑃‘2) ↔ 𝐶 = (〈“𝐴𝐵𝐶”〉‘2)) |
| 41 | eqcom 2743 | . . . . 5 ⊢ (𝐶 = (〈“𝐴𝐵𝐶”〉‘2) ↔ (〈“𝐴𝐵𝐶”〉‘2) = 𝐶) | |
| 42 | 40, 41 | bitri 275 | . . . 4 ⊢ (𝐶 = (𝑃‘2) ↔ (〈“𝐴𝐵𝐶”〉‘2) = 𝐶) |
| 43 | 34, 38, 42 | 3anbi123i 1155 | . . 3 ⊢ ((𝐴 = (𝑃‘0) ∧ 𝐵 = (𝑃‘1) ∧ 𝐶 = (𝑃‘2)) ↔ ((〈“𝐴𝐵𝐶”〉‘0) = 𝐴 ∧ (〈“𝐴𝐵𝐶”〉‘1) = 𝐵 ∧ (〈“𝐴𝐵𝐶”〉‘2) = 𝐶)) |
| 44 | 30, 43 | sylibr 234 | . 2 ⊢ (𝜑 → (𝐴 = (𝑃‘0) ∧ 𝐵 = (𝑃‘1) ∧ 𝐶 = (𝑃‘2))) |
| 45 | 21, 25, 44 | 3jca 1128 | 1 ⊢ (𝜑 → (𝐹(Walks‘𝐺)𝑃 ∧ (♯‘𝐹) = 2 ∧ (𝐴 = (𝑃‘0) ∧ 𝐵 = (𝑃‘1) ∧ 𝐶 = (𝑃‘2)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2933 ⊆ wss 3931 {cpr 4608 class class class wbr 5124 ‘cfv 6536 0cc0 11134 1c1 11135 2c2 12300 ♯chash 14353 〈“cs2 14865 〈“cs3 14866 Vtxcvtx 28980 iEdgciedg 28981 Edgcedg 29031 UMGraphcumgr 29065 Walkscwlks 29581 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-oadd 8489 df-er 8724 df-map 8847 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-dju 9920 df-card 9958 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-nn 12246 df-2 12308 df-3 12309 df-n0 12507 df-z 12594 df-uz 12858 df-fz 13530 df-fzo 13677 df-hash 14354 df-word 14537 df-concat 14594 df-s1 14619 df-s2 14872 df-s3 14873 df-edg 29032 df-umgr 29067 df-wlks 29584 |
| This theorem is referenced by: umgr2adedgwlkonALT 29934 umgr2wlk 29936 |
| Copyright terms: Public domain | W3C validator |