![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > umgr2adedgwlk | Structured version Visualization version GIF version |
Description: In a multigraph, two adjacent edges form a walk of length 2. (Contributed by Alexander van der Vekens, 18-Feb-2018.) (Revised by AV, 29-Jan-2021.) |
Ref | Expression |
---|---|
umgr2adedgwlk.e | ⊢ 𝐸 = (Edg‘𝐺) |
umgr2adedgwlk.i | ⊢ 𝐼 = (iEdg‘𝐺) |
umgr2adedgwlk.f | ⊢ 𝐹 = 〈“𝐽𝐾”〉 |
umgr2adedgwlk.p | ⊢ 𝑃 = 〈“𝐴𝐵𝐶”〉 |
umgr2adedgwlk.g | ⊢ (𝜑 → 𝐺 ∈ UMGraph) |
umgr2adedgwlk.a | ⊢ (𝜑 → ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸)) |
umgr2adedgwlk.j | ⊢ (𝜑 → (𝐼‘𝐽) = {𝐴, 𝐵}) |
umgr2adedgwlk.k | ⊢ (𝜑 → (𝐼‘𝐾) = {𝐵, 𝐶}) |
Ref | Expression |
---|---|
umgr2adedgwlk | ⊢ (𝜑 → (𝐹(Walks‘𝐺)𝑃 ∧ (♯‘𝐹) = 2 ∧ (𝐴 = (𝑃‘0) ∧ 𝐵 = (𝑃‘1) ∧ 𝐶 = (𝑃‘2)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | umgr2adedgwlk.p | . . 3 ⊢ 𝑃 = 〈“𝐴𝐵𝐶”〉 | |
2 | umgr2adedgwlk.f | . . 3 ⊢ 𝐹 = 〈“𝐽𝐾”〉 | |
3 | umgr2adedgwlk.g | . . . . . 6 ⊢ (𝜑 → 𝐺 ∈ UMGraph) | |
4 | umgr2adedgwlk.a | . . . . . 6 ⊢ (𝜑 → ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸)) | |
5 | 3anass 1095 | . . . . . 6 ⊢ ((𝐺 ∈ UMGraph ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) ↔ (𝐺 ∈ UMGraph ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸))) | |
6 | 3, 4, 5 | sylanbrc 582 | . . . . 5 ⊢ (𝜑 → (𝐺 ∈ UMGraph ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸)) |
7 | umgr2adedgwlk.e | . . . . . 6 ⊢ 𝐸 = (Edg‘𝐺) | |
8 | 7 | umgr2adedgwlklem 29977 | . . . . 5 ⊢ ((𝐺 ∈ UMGraph ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) → ((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶) ∧ (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺) ∧ 𝐶 ∈ (Vtx‘𝐺)))) |
9 | 6, 8 | syl 17 | . . . 4 ⊢ (𝜑 → ((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶) ∧ (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺) ∧ 𝐶 ∈ (Vtx‘𝐺)))) |
10 | 9 | simprd 495 | . . 3 ⊢ (𝜑 → (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺) ∧ 𝐶 ∈ (Vtx‘𝐺))) |
11 | 9 | simpld 494 | . . 3 ⊢ (𝜑 → (𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶)) |
12 | ssid 4031 | . . . . 5 ⊢ {𝐴, 𝐵} ⊆ {𝐴, 𝐵} | |
13 | umgr2adedgwlk.j | . . . . 5 ⊢ (𝜑 → (𝐼‘𝐽) = {𝐴, 𝐵}) | |
14 | 12, 13 | sseqtrrid 4062 | . . . 4 ⊢ (𝜑 → {𝐴, 𝐵} ⊆ (𝐼‘𝐽)) |
15 | ssid 4031 | . . . . 5 ⊢ {𝐵, 𝐶} ⊆ {𝐵, 𝐶} | |
16 | umgr2adedgwlk.k | . . . . 5 ⊢ (𝜑 → (𝐼‘𝐾) = {𝐵, 𝐶}) | |
17 | 15, 16 | sseqtrrid 4062 | . . . 4 ⊢ (𝜑 → {𝐵, 𝐶} ⊆ (𝐼‘𝐾)) |
18 | 14, 17 | jca 511 | . . 3 ⊢ (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼‘𝐽) ∧ {𝐵, 𝐶} ⊆ (𝐼‘𝐾))) |
19 | eqid 2740 | . . 3 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
20 | umgr2adedgwlk.i | . . 3 ⊢ 𝐼 = (iEdg‘𝐺) | |
21 | 1, 2, 10, 11, 18, 19, 20 | 2wlkd 29969 | . 2 ⊢ (𝜑 → 𝐹(Walks‘𝐺)𝑃) |
22 | 2 | fveq2i 6923 | . . . 4 ⊢ (♯‘𝐹) = (♯‘〈“𝐽𝐾”〉) |
23 | s2len 14938 | . . . 4 ⊢ (♯‘〈“𝐽𝐾”〉) = 2 | |
24 | 22, 23 | eqtri 2768 | . . 3 ⊢ (♯‘𝐹) = 2 |
25 | 24 | a1i 11 | . 2 ⊢ (𝜑 → (♯‘𝐹) = 2) |
26 | s3fv0 14940 | . . . . 5 ⊢ (𝐴 ∈ (Vtx‘𝐺) → (〈“𝐴𝐵𝐶”〉‘0) = 𝐴) | |
27 | s3fv1 14941 | . . . . 5 ⊢ (𝐵 ∈ (Vtx‘𝐺) → (〈“𝐴𝐵𝐶”〉‘1) = 𝐵) | |
28 | s3fv2 14942 | . . . . 5 ⊢ (𝐶 ∈ (Vtx‘𝐺) → (〈“𝐴𝐵𝐶”〉‘2) = 𝐶) | |
29 | 26, 27, 28 | 3anim123i 1151 | . . . 4 ⊢ ((𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺) ∧ 𝐶 ∈ (Vtx‘𝐺)) → ((〈“𝐴𝐵𝐶”〉‘0) = 𝐴 ∧ (〈“𝐴𝐵𝐶”〉‘1) = 𝐵 ∧ (〈“𝐴𝐵𝐶”〉‘2) = 𝐶)) |
30 | 10, 29 | syl 17 | . . 3 ⊢ (𝜑 → ((〈“𝐴𝐵𝐶”〉‘0) = 𝐴 ∧ (〈“𝐴𝐵𝐶”〉‘1) = 𝐵 ∧ (〈“𝐴𝐵𝐶”〉‘2) = 𝐶)) |
31 | 1 | fveq1i 6921 | . . . . . 6 ⊢ (𝑃‘0) = (〈“𝐴𝐵𝐶”〉‘0) |
32 | 31 | eqeq2i 2753 | . . . . 5 ⊢ (𝐴 = (𝑃‘0) ↔ 𝐴 = (〈“𝐴𝐵𝐶”〉‘0)) |
33 | eqcom 2747 | . . . . 5 ⊢ (𝐴 = (〈“𝐴𝐵𝐶”〉‘0) ↔ (〈“𝐴𝐵𝐶”〉‘0) = 𝐴) | |
34 | 32, 33 | bitri 275 | . . . 4 ⊢ (𝐴 = (𝑃‘0) ↔ (〈“𝐴𝐵𝐶”〉‘0) = 𝐴) |
35 | 1 | fveq1i 6921 | . . . . . 6 ⊢ (𝑃‘1) = (〈“𝐴𝐵𝐶”〉‘1) |
36 | 35 | eqeq2i 2753 | . . . . 5 ⊢ (𝐵 = (𝑃‘1) ↔ 𝐵 = (〈“𝐴𝐵𝐶”〉‘1)) |
37 | eqcom 2747 | . . . . 5 ⊢ (𝐵 = (〈“𝐴𝐵𝐶”〉‘1) ↔ (〈“𝐴𝐵𝐶”〉‘1) = 𝐵) | |
38 | 36, 37 | bitri 275 | . . . 4 ⊢ (𝐵 = (𝑃‘1) ↔ (〈“𝐴𝐵𝐶”〉‘1) = 𝐵) |
39 | 1 | fveq1i 6921 | . . . . . 6 ⊢ (𝑃‘2) = (〈“𝐴𝐵𝐶”〉‘2) |
40 | 39 | eqeq2i 2753 | . . . . 5 ⊢ (𝐶 = (𝑃‘2) ↔ 𝐶 = (〈“𝐴𝐵𝐶”〉‘2)) |
41 | eqcom 2747 | . . . . 5 ⊢ (𝐶 = (〈“𝐴𝐵𝐶”〉‘2) ↔ (〈“𝐴𝐵𝐶”〉‘2) = 𝐶) | |
42 | 40, 41 | bitri 275 | . . . 4 ⊢ (𝐶 = (𝑃‘2) ↔ (〈“𝐴𝐵𝐶”〉‘2) = 𝐶) |
43 | 34, 38, 42 | 3anbi123i 1155 | . . 3 ⊢ ((𝐴 = (𝑃‘0) ∧ 𝐵 = (𝑃‘1) ∧ 𝐶 = (𝑃‘2)) ↔ ((〈“𝐴𝐵𝐶”〉‘0) = 𝐴 ∧ (〈“𝐴𝐵𝐶”〉‘1) = 𝐵 ∧ (〈“𝐴𝐵𝐶”〉‘2) = 𝐶)) |
44 | 30, 43 | sylibr 234 | . 2 ⊢ (𝜑 → (𝐴 = (𝑃‘0) ∧ 𝐵 = (𝑃‘1) ∧ 𝐶 = (𝑃‘2))) |
45 | 21, 25, 44 | 3jca 1128 | 1 ⊢ (𝜑 → (𝐹(Walks‘𝐺)𝑃 ∧ (♯‘𝐹) = 2 ∧ (𝐴 = (𝑃‘0) ∧ 𝐵 = (𝑃‘1) ∧ 𝐶 = (𝑃‘2)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 ⊆ wss 3976 {cpr 4650 class class class wbr 5166 ‘cfv 6573 0cc0 11184 1c1 11185 2c2 12348 ♯chash 14379 〈“cs2 14890 〈“cs3 14891 Vtxcvtx 29031 iEdgciedg 29032 Edgcedg 29082 UMGraphcumgr 29116 Walkscwlks 29632 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-ifp 1064 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-oadd 8526 df-er 8763 df-map 8886 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-dju 9970 df-card 10008 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-3 12357 df-n0 12554 df-z 12640 df-uz 12904 df-fz 13568 df-fzo 13712 df-hash 14380 df-word 14563 df-concat 14619 df-s1 14644 df-s2 14897 df-s3 14898 df-edg 29083 df-umgr 29118 df-wlks 29635 |
This theorem is referenced by: umgr2adedgwlkonALT 29980 umgr2wlk 29982 |
Copyright terms: Public domain | W3C validator |