Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  3f1oss2 Structured version   Visualization version   GIF version

Theorem 3f1oss2 47050
Description: The composition of three bijections as bijection from the image of the converse of the domain onto the image of the converse of the range of the middle bijection. (Contributed by AV, 15-Aug-2025.)
Assertion
Ref Expression
3f1oss2 (((𝐹:𝐴1-1-onto𝐵𝐺:𝐶1-1-onto𝐷𝐻:𝐸1-1-onto𝐼) ∧ (𝐶𝐵𝐷𝐼)) → ((𝐻𝐺) ∘ 𝐹):(𝐹𝐶)–1-1-onto→(𝐻𝐷))

Proof of Theorem 3f1oss2
StepHypRef Expression
1 f1ocnv 6794 . . 3 (𝐹:𝐴1-1-onto𝐵𝐹:𝐵1-1-onto𝐴)
2 id 22 . . 3 (𝐺:𝐶1-1-onto𝐷𝐺:𝐶1-1-onto𝐷)
3 f1ocnv 6794 . . 3 (𝐻:𝐸1-1-onto𝐼𝐻:𝐼1-1-onto𝐸)
4 3f1oss1 47049 . . 3 (((𝐹:𝐵1-1-onto𝐴𝐺:𝐶1-1-onto𝐷𝐻:𝐼1-1-onto𝐸) ∧ (𝐶𝐵𝐷𝐼)) → ((𝐻𝐺) ∘ 𝐹):(𝐹𝐶)–1-1-onto→(𝐻𝐷))
51, 2, 3, 4syl3anl 1417 . 2 (((𝐹:𝐴1-1-onto𝐵𝐺:𝐶1-1-onto𝐷𝐻:𝐸1-1-onto𝐼) ∧ (𝐶𝐵𝐷𝐼)) → ((𝐻𝐺) ∘ 𝐹):(𝐹𝐶)–1-1-onto→(𝐻𝐷))
6 f1orel 6785 . . . . 5 (𝐹:𝐴1-1-onto𝐵 → Rel 𝐹)
7 dfrel2 6150 . . . . . . . . 9 (Rel 𝐹𝐹 = 𝐹)
87biimpi 216 . . . . . . . 8 (Rel 𝐹𝐹 = 𝐹)
98eqcomd 2735 . . . . . . 7 (Rel 𝐹𝐹 = 𝐹)
109coeq2d 5816 . . . . . 6 (Rel 𝐹 → ((𝐻𝐺) ∘ 𝐹) = ((𝐻𝐺) ∘ 𝐹))
1110f1oeq1d 6777 . . . . 5 (Rel 𝐹 → (((𝐻𝐺) ∘ 𝐹):(𝐹𝐶)–1-1-onto→(𝐻𝐷) ↔ ((𝐻𝐺) ∘ 𝐹):(𝐹𝐶)–1-1-onto→(𝐻𝐷)))
126, 11syl 17 . . . 4 (𝐹:𝐴1-1-onto𝐵 → (((𝐻𝐺) ∘ 𝐹):(𝐹𝐶)–1-1-onto→(𝐻𝐷) ↔ ((𝐻𝐺) ∘ 𝐹):(𝐹𝐶)–1-1-onto→(𝐻𝐷)))
13123ad2ant1 1133 . . 3 ((𝐹:𝐴1-1-onto𝐵𝐺:𝐶1-1-onto𝐷𝐻:𝐸1-1-onto𝐼) → (((𝐻𝐺) ∘ 𝐹):(𝐹𝐶)–1-1-onto→(𝐻𝐷) ↔ ((𝐻𝐺) ∘ 𝐹):(𝐹𝐶)–1-1-onto→(𝐻𝐷)))
1413adantr 480 . 2 (((𝐹:𝐴1-1-onto𝐵𝐺:𝐶1-1-onto𝐷𝐻:𝐸1-1-onto𝐼) ∧ (𝐶𝐵𝐷𝐼)) → (((𝐻𝐺) ∘ 𝐹):(𝐹𝐶)–1-1-onto→(𝐻𝐷) ↔ ((𝐻𝐺) ∘ 𝐹):(𝐹𝐶)–1-1-onto→(𝐻𝐷)))
155, 14mpbird 257 1 (((𝐹:𝐴1-1-onto𝐵𝐺:𝐶1-1-onto𝐷𝐻:𝐸1-1-onto𝐼) ∧ (𝐶𝐵𝐷𝐼)) → ((𝐻𝐺) ∘ 𝐹):(𝐹𝐶)–1-1-onto→(𝐻𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wss 3911  ccnv 5630  cima 5634  ccom 5635  Rel wrel 5636  1-1-ontowf1o 6498
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507
This theorem is referenced by:  uspgrlim  47964
  Copyright terms: Public domain W3C validator