![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > 3f1oss2 | Structured version Visualization version GIF version |
Description: The composition of three bijections as bijection from the image of the converse of the domain onto the image of the converse of the range of the middle bijection. (Contributed by AV, 15-Aug-2025.) |
Ref | Expression |
---|---|
3f1oss2 | ⊢ (((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐺:𝐶–1-1-onto→𝐷 ∧ 𝐻:𝐸–1-1-onto→𝐼) ∧ (𝐶 ⊆ 𝐵 ∧ 𝐷 ⊆ 𝐼)) → ((◡𝐻 ∘ 𝐺) ∘ 𝐹):(◡𝐹 “ 𝐶)–1-1-onto→(◡𝐻 “ 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1ocnv 6869 | . . 3 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → ◡𝐹:𝐵–1-1-onto→𝐴) | |
2 | id 22 | . . 3 ⊢ (𝐺:𝐶–1-1-onto→𝐷 → 𝐺:𝐶–1-1-onto→𝐷) | |
3 | f1ocnv 6869 | . . 3 ⊢ (𝐻:𝐸–1-1-onto→𝐼 → ◡𝐻:𝐼–1-1-onto→𝐸) | |
4 | 3f1oss1 46980 | . . 3 ⊢ (((◡𝐹:𝐵–1-1-onto→𝐴 ∧ 𝐺:𝐶–1-1-onto→𝐷 ∧ ◡𝐻:𝐼–1-1-onto→𝐸) ∧ (𝐶 ⊆ 𝐵 ∧ 𝐷 ⊆ 𝐼)) → ((◡𝐻 ∘ 𝐺) ∘ ◡◡𝐹):(◡𝐹 “ 𝐶)–1-1-onto→(◡𝐻 “ 𝐷)) | |
5 | 1, 2, 3, 4 | syl3anl 1415 | . 2 ⊢ (((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐺:𝐶–1-1-onto→𝐷 ∧ 𝐻:𝐸–1-1-onto→𝐼) ∧ (𝐶 ⊆ 𝐵 ∧ 𝐷 ⊆ 𝐼)) → ((◡𝐻 ∘ 𝐺) ∘ ◡◡𝐹):(◡𝐹 “ 𝐶)–1-1-onto→(◡𝐻 “ 𝐷)) |
6 | f1orel 6860 | . . . . 5 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → Rel 𝐹) | |
7 | dfrel2 6215 | . . . . . . . . 9 ⊢ (Rel 𝐹 ↔ ◡◡𝐹 = 𝐹) | |
8 | 7 | biimpi 216 | . . . . . . . 8 ⊢ (Rel 𝐹 → ◡◡𝐹 = 𝐹) |
9 | 8 | eqcomd 2746 | . . . . . . 7 ⊢ (Rel 𝐹 → 𝐹 = ◡◡𝐹) |
10 | 9 | coeq2d 5882 | . . . . . 6 ⊢ (Rel 𝐹 → ((◡𝐻 ∘ 𝐺) ∘ 𝐹) = ((◡𝐻 ∘ 𝐺) ∘ ◡◡𝐹)) |
11 | 10 | f1oeq1d 6852 | . . . . 5 ⊢ (Rel 𝐹 → (((◡𝐻 ∘ 𝐺) ∘ 𝐹):(◡𝐹 “ 𝐶)–1-1-onto→(◡𝐻 “ 𝐷) ↔ ((◡𝐻 ∘ 𝐺) ∘ ◡◡𝐹):(◡𝐹 “ 𝐶)–1-1-onto→(◡𝐻 “ 𝐷))) |
12 | 6, 11 | syl 17 | . . . 4 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → (((◡𝐻 ∘ 𝐺) ∘ 𝐹):(◡𝐹 “ 𝐶)–1-1-onto→(◡𝐻 “ 𝐷) ↔ ((◡𝐻 ∘ 𝐺) ∘ ◡◡𝐹):(◡𝐹 “ 𝐶)–1-1-onto→(◡𝐻 “ 𝐷))) |
13 | 12 | 3ad2ant1 1133 | . . 3 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐺:𝐶–1-1-onto→𝐷 ∧ 𝐻:𝐸–1-1-onto→𝐼) → (((◡𝐻 ∘ 𝐺) ∘ 𝐹):(◡𝐹 “ 𝐶)–1-1-onto→(◡𝐻 “ 𝐷) ↔ ((◡𝐻 ∘ 𝐺) ∘ ◡◡𝐹):(◡𝐹 “ 𝐶)–1-1-onto→(◡𝐻 “ 𝐷))) |
14 | 13 | adantr 480 | . 2 ⊢ (((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐺:𝐶–1-1-onto→𝐷 ∧ 𝐻:𝐸–1-1-onto→𝐼) ∧ (𝐶 ⊆ 𝐵 ∧ 𝐷 ⊆ 𝐼)) → (((◡𝐻 ∘ 𝐺) ∘ 𝐹):(◡𝐹 “ 𝐶)–1-1-onto→(◡𝐻 “ 𝐷) ↔ ((◡𝐻 ∘ 𝐺) ∘ ◡◡𝐹):(◡𝐹 “ 𝐶)–1-1-onto→(◡𝐻 “ 𝐷))) |
15 | 5, 14 | mpbird 257 | 1 ⊢ (((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐺:𝐶–1-1-onto→𝐷 ∧ 𝐻:𝐸–1-1-onto→𝐼) ∧ (𝐶 ⊆ 𝐵 ∧ 𝐷 ⊆ 𝐼)) → ((◡𝐻 ∘ 𝐺) ∘ 𝐹):(◡𝐹 “ 𝐶)–1-1-onto→(◡𝐻 “ 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ⊆ wss 3976 ◡ccnv 5694 “ cima 5698 ∘ ccom 5699 Rel wrel 5700 –1-1-onto→wf1o 6567 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5701 df-rel 5702 df-cnv 5703 df-co 5704 df-dm 5705 df-rn 5706 df-res 5707 df-ima 5708 df-iota 6520 df-fun 6570 df-fn 6571 df-f 6572 df-f1 6573 df-fo 6574 df-f1o 6575 df-fv 6576 |
This theorem is referenced by: uspgrlim 47806 |
Copyright terms: Public domain | W3C validator |