| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 3f1oss2 | Structured version Visualization version GIF version | ||
| Description: The composition of three bijections as bijection from the image of the converse of the domain onto the image of the converse of the range of the middle bijection. (Contributed by AV, 15-Aug-2025.) |
| Ref | Expression |
|---|---|
| 3f1oss2 | ⊢ (((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐺:𝐶–1-1-onto→𝐷 ∧ 𝐻:𝐸–1-1-onto→𝐼) ∧ (𝐶 ⊆ 𝐵 ∧ 𝐷 ⊆ 𝐼)) → ((◡𝐻 ∘ 𝐺) ∘ 𝐹):(◡𝐹 “ 𝐶)–1-1-onto→(◡𝐻 “ 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1ocnv 6814 | . . 3 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → ◡𝐹:𝐵–1-1-onto→𝐴) | |
| 2 | id 22 | . . 3 ⊢ (𝐺:𝐶–1-1-onto→𝐷 → 𝐺:𝐶–1-1-onto→𝐷) | |
| 3 | f1ocnv 6814 | . . 3 ⊢ (𝐻:𝐸–1-1-onto→𝐼 → ◡𝐻:𝐼–1-1-onto→𝐸) | |
| 4 | 3f1oss1 47066 | . . 3 ⊢ (((◡𝐹:𝐵–1-1-onto→𝐴 ∧ 𝐺:𝐶–1-1-onto→𝐷 ∧ ◡𝐻:𝐼–1-1-onto→𝐸) ∧ (𝐶 ⊆ 𝐵 ∧ 𝐷 ⊆ 𝐼)) → ((◡𝐻 ∘ 𝐺) ∘ ◡◡𝐹):(◡𝐹 “ 𝐶)–1-1-onto→(◡𝐻 “ 𝐷)) | |
| 5 | 1, 2, 3, 4 | syl3anl 1417 | . 2 ⊢ (((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐺:𝐶–1-1-onto→𝐷 ∧ 𝐻:𝐸–1-1-onto→𝐼) ∧ (𝐶 ⊆ 𝐵 ∧ 𝐷 ⊆ 𝐼)) → ((◡𝐻 ∘ 𝐺) ∘ ◡◡𝐹):(◡𝐹 “ 𝐶)–1-1-onto→(◡𝐻 “ 𝐷)) |
| 6 | f1orel 6805 | . . . . 5 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → Rel 𝐹) | |
| 7 | dfrel2 6164 | . . . . . . . . 9 ⊢ (Rel 𝐹 ↔ ◡◡𝐹 = 𝐹) | |
| 8 | 7 | biimpi 216 | . . . . . . . 8 ⊢ (Rel 𝐹 → ◡◡𝐹 = 𝐹) |
| 9 | 8 | eqcomd 2736 | . . . . . . 7 ⊢ (Rel 𝐹 → 𝐹 = ◡◡𝐹) |
| 10 | 9 | coeq2d 5828 | . . . . . 6 ⊢ (Rel 𝐹 → ((◡𝐻 ∘ 𝐺) ∘ 𝐹) = ((◡𝐻 ∘ 𝐺) ∘ ◡◡𝐹)) |
| 11 | 10 | f1oeq1d 6797 | . . . . 5 ⊢ (Rel 𝐹 → (((◡𝐻 ∘ 𝐺) ∘ 𝐹):(◡𝐹 “ 𝐶)–1-1-onto→(◡𝐻 “ 𝐷) ↔ ((◡𝐻 ∘ 𝐺) ∘ ◡◡𝐹):(◡𝐹 “ 𝐶)–1-1-onto→(◡𝐻 “ 𝐷))) |
| 12 | 6, 11 | syl 17 | . . . 4 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → (((◡𝐻 ∘ 𝐺) ∘ 𝐹):(◡𝐹 “ 𝐶)–1-1-onto→(◡𝐻 “ 𝐷) ↔ ((◡𝐻 ∘ 𝐺) ∘ ◡◡𝐹):(◡𝐹 “ 𝐶)–1-1-onto→(◡𝐻 “ 𝐷))) |
| 13 | 12 | 3ad2ant1 1133 | . . 3 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐺:𝐶–1-1-onto→𝐷 ∧ 𝐻:𝐸–1-1-onto→𝐼) → (((◡𝐻 ∘ 𝐺) ∘ 𝐹):(◡𝐹 “ 𝐶)–1-1-onto→(◡𝐻 “ 𝐷) ↔ ((◡𝐻 ∘ 𝐺) ∘ ◡◡𝐹):(◡𝐹 “ 𝐶)–1-1-onto→(◡𝐻 “ 𝐷))) |
| 14 | 13 | adantr 480 | . 2 ⊢ (((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐺:𝐶–1-1-onto→𝐷 ∧ 𝐻:𝐸–1-1-onto→𝐼) ∧ (𝐶 ⊆ 𝐵 ∧ 𝐷 ⊆ 𝐼)) → (((◡𝐻 ∘ 𝐺) ∘ 𝐹):(◡𝐹 “ 𝐶)–1-1-onto→(◡𝐻 “ 𝐷) ↔ ((◡𝐻 ∘ 𝐺) ∘ ◡◡𝐹):(◡𝐹 “ 𝐶)–1-1-onto→(◡𝐻 “ 𝐷))) |
| 15 | 5, 14 | mpbird 257 | 1 ⊢ (((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐺:𝐶–1-1-onto→𝐷 ∧ 𝐻:𝐸–1-1-onto→𝐼) ∧ (𝐶 ⊆ 𝐵 ∧ 𝐷 ⊆ 𝐼)) → ((◡𝐻 ∘ 𝐺) ∘ 𝐹):(◡𝐹 “ 𝐶)–1-1-onto→(◡𝐻 “ 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ⊆ wss 3916 ◡ccnv 5639 “ cima 5643 ∘ ccom 5644 Rel wrel 5645 –1-1-onto→wf1o 6512 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pr 5389 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-br 5110 df-opab 5172 df-mpt 5191 df-id 5535 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 |
| This theorem is referenced by: uspgrlim 47981 |
| Copyright terms: Public domain | W3C validator |