Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  3f1oss2 Structured version   Visualization version   GIF version

Theorem 3f1oss2 47238
Description: The composition of three bijections as bijection from the image of the converse of the domain onto the image of the converse of the range of the middle bijection. (Contributed by AV, 15-Aug-2025.)
Assertion
Ref Expression
3f1oss2 (((𝐹:𝐴1-1-onto𝐵𝐺:𝐶1-1-onto𝐷𝐻:𝐸1-1-onto𝐼) ∧ (𝐶𝐵𝐷𝐼)) → ((𝐻𝐺) ∘ 𝐹):(𝐹𝐶)–1-1-onto→(𝐻𝐷))

Proof of Theorem 3f1oss2
StepHypRef Expression
1 f1ocnv 6783 . . 3 (𝐹:𝐴1-1-onto𝐵𝐹:𝐵1-1-onto𝐴)
2 id 22 . . 3 (𝐺:𝐶1-1-onto𝐷𝐺:𝐶1-1-onto𝐷)
3 f1ocnv 6783 . . 3 (𝐻:𝐸1-1-onto𝐼𝐻:𝐼1-1-onto𝐸)
4 3f1oss1 47237 . . 3 (((𝐹:𝐵1-1-onto𝐴𝐺:𝐶1-1-onto𝐷𝐻:𝐼1-1-onto𝐸) ∧ (𝐶𝐵𝐷𝐼)) → ((𝐻𝐺) ∘ 𝐹):(𝐹𝐶)–1-1-onto→(𝐻𝐷))
51, 2, 3, 4syl3anl 1417 . 2 (((𝐹:𝐴1-1-onto𝐵𝐺:𝐶1-1-onto𝐷𝐻:𝐸1-1-onto𝐼) ∧ (𝐶𝐵𝐷𝐼)) → ((𝐻𝐺) ∘ 𝐹):(𝐹𝐶)–1-1-onto→(𝐻𝐷))
6 f1orel 6774 . . . . 5 (𝐹:𝐴1-1-onto𝐵 → Rel 𝐹)
7 dfrel2 6144 . . . . . . . . 9 (Rel 𝐹𝐹 = 𝐹)
87biimpi 216 . . . . . . . 8 (Rel 𝐹𝐹 = 𝐹)
98eqcomd 2739 . . . . . . 7 (Rel 𝐹𝐹 = 𝐹)
109coeq2d 5808 . . . . . 6 (Rel 𝐹 → ((𝐻𝐺) ∘ 𝐹) = ((𝐻𝐺) ∘ 𝐹))
1110f1oeq1d 6766 . . . . 5 (Rel 𝐹 → (((𝐻𝐺) ∘ 𝐹):(𝐹𝐶)–1-1-onto→(𝐻𝐷) ↔ ((𝐻𝐺) ∘ 𝐹):(𝐹𝐶)–1-1-onto→(𝐻𝐷)))
126, 11syl 17 . . . 4 (𝐹:𝐴1-1-onto𝐵 → (((𝐻𝐺) ∘ 𝐹):(𝐹𝐶)–1-1-onto→(𝐻𝐷) ↔ ((𝐻𝐺) ∘ 𝐹):(𝐹𝐶)–1-1-onto→(𝐻𝐷)))
13123ad2ant1 1133 . . 3 ((𝐹:𝐴1-1-onto𝐵𝐺:𝐶1-1-onto𝐷𝐻:𝐸1-1-onto𝐼) → (((𝐻𝐺) ∘ 𝐹):(𝐹𝐶)–1-1-onto→(𝐻𝐷) ↔ ((𝐻𝐺) ∘ 𝐹):(𝐹𝐶)–1-1-onto→(𝐻𝐷)))
1413adantr 480 . 2 (((𝐹:𝐴1-1-onto𝐵𝐺:𝐶1-1-onto𝐷𝐻:𝐸1-1-onto𝐼) ∧ (𝐶𝐵𝐷𝐼)) → (((𝐻𝐺) ∘ 𝐹):(𝐹𝐶)–1-1-onto→(𝐻𝐷) ↔ ((𝐻𝐺) ∘ 𝐹):(𝐹𝐶)–1-1-onto→(𝐻𝐷)))
155, 14mpbird 257 1 (((𝐹:𝐴1-1-onto𝐵𝐺:𝐶1-1-onto𝐷𝐻:𝐸1-1-onto𝐼) ∧ (𝐶𝐵𝐷𝐼)) → ((𝐻𝐺) ∘ 𝐹):(𝐹𝐶)–1-1-onto→(𝐻𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wss 3898  ccnv 5620  cima 5624  ccom 5625  Rel wrel 5626  1-1-ontowf1o 6488
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497
This theorem is referenced by:  uspgrlim  48154
  Copyright terms: Public domain W3C validator