Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  3f1oss2 Structured version   Visualization version   GIF version

Theorem 3f1oss2 47061
Description: The composition of three bijections as bijection from the image of the converse of the domain onto the image of the converse of the range of the middle bijection. (Contributed by AV, 15-Aug-2025.)
Assertion
Ref Expression
3f1oss2 (((𝐹:𝐴1-1-onto𝐵𝐺:𝐶1-1-onto𝐷𝐻:𝐸1-1-onto𝐼) ∧ (𝐶𝐵𝐷𝐼)) → ((𝐻𝐺) ∘ 𝐹):(𝐹𝐶)–1-1-onto→(𝐻𝐷))

Proof of Theorem 3f1oss2
StepHypRef Expression
1 f1ocnv 6840 . . 3 (𝐹:𝐴1-1-onto𝐵𝐹:𝐵1-1-onto𝐴)
2 id 22 . . 3 (𝐺:𝐶1-1-onto𝐷𝐺:𝐶1-1-onto𝐷)
3 f1ocnv 6840 . . 3 (𝐻:𝐸1-1-onto𝐼𝐻:𝐼1-1-onto𝐸)
4 3f1oss1 47060 . . 3 (((𝐹:𝐵1-1-onto𝐴𝐺:𝐶1-1-onto𝐷𝐻:𝐼1-1-onto𝐸) ∧ (𝐶𝐵𝐷𝐼)) → ((𝐻𝐺) ∘ 𝐹):(𝐹𝐶)–1-1-onto→(𝐻𝐷))
51, 2, 3, 4syl3anl 1416 . 2 (((𝐹:𝐴1-1-onto𝐵𝐺:𝐶1-1-onto𝐷𝐻:𝐸1-1-onto𝐼) ∧ (𝐶𝐵𝐷𝐼)) → ((𝐻𝐺) ∘ 𝐹):(𝐹𝐶)–1-1-onto→(𝐻𝐷))
6 f1orel 6831 . . . . 5 (𝐹:𝐴1-1-onto𝐵 → Rel 𝐹)
7 dfrel2 6189 . . . . . . . . 9 (Rel 𝐹𝐹 = 𝐹)
87biimpi 216 . . . . . . . 8 (Rel 𝐹𝐹 = 𝐹)
98eqcomd 2740 . . . . . . 7 (Rel 𝐹𝐹 = 𝐹)
109coeq2d 5853 . . . . . 6 (Rel 𝐹 → ((𝐻𝐺) ∘ 𝐹) = ((𝐻𝐺) ∘ 𝐹))
1110f1oeq1d 6823 . . . . 5 (Rel 𝐹 → (((𝐻𝐺) ∘ 𝐹):(𝐹𝐶)–1-1-onto→(𝐻𝐷) ↔ ((𝐻𝐺) ∘ 𝐹):(𝐹𝐶)–1-1-onto→(𝐻𝐷)))
126, 11syl 17 . . . 4 (𝐹:𝐴1-1-onto𝐵 → (((𝐻𝐺) ∘ 𝐹):(𝐹𝐶)–1-1-onto→(𝐻𝐷) ↔ ((𝐻𝐺) ∘ 𝐹):(𝐹𝐶)–1-1-onto→(𝐻𝐷)))
13123ad2ant1 1133 . . 3 ((𝐹:𝐴1-1-onto𝐵𝐺:𝐶1-1-onto𝐷𝐻:𝐸1-1-onto𝐼) → (((𝐻𝐺) ∘ 𝐹):(𝐹𝐶)–1-1-onto→(𝐻𝐷) ↔ ((𝐻𝐺) ∘ 𝐹):(𝐹𝐶)–1-1-onto→(𝐻𝐷)))
1413adantr 480 . 2 (((𝐹:𝐴1-1-onto𝐵𝐺:𝐶1-1-onto𝐷𝐻:𝐸1-1-onto𝐼) ∧ (𝐶𝐵𝐷𝐼)) → (((𝐻𝐺) ∘ 𝐹):(𝐹𝐶)–1-1-onto→(𝐻𝐷) ↔ ((𝐻𝐺) ∘ 𝐹):(𝐹𝐶)–1-1-onto→(𝐻𝐷)))
155, 14mpbird 257 1 (((𝐹:𝐴1-1-onto𝐵𝐺:𝐶1-1-onto𝐷𝐻:𝐸1-1-onto𝐼) ∧ (𝐶𝐵𝐷𝐼)) → ((𝐻𝐺) ∘ 𝐹):(𝐹𝐶)–1-1-onto→(𝐻𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1539  wss 3931  ccnv 5664  cima 5668  ccom 5669  Rel wrel 5670  1-1-ontowf1o 6540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pr 5412
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-br 5124  df-opab 5186  df-mpt 5206  df-id 5558  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549
This theorem is referenced by:  uspgrlim  47932
  Copyright terms: Public domain W3C validator