| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 3f1oss2 | Structured version Visualization version GIF version | ||
| Description: The composition of three bijections as bijection from the image of the converse of the domain onto the image of the converse of the range of the middle bijection. (Contributed by AV, 15-Aug-2025.) |
| Ref | Expression |
|---|---|
| 3f1oss2 | ⊢ (((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐺:𝐶–1-1-onto→𝐷 ∧ 𝐻:𝐸–1-1-onto→𝐼) ∧ (𝐶 ⊆ 𝐵 ∧ 𝐷 ⊆ 𝐼)) → ((◡𝐻 ∘ 𝐺) ∘ 𝐹):(◡𝐹 “ 𝐶)–1-1-onto→(◡𝐻 “ 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1ocnv 6783 | . . 3 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → ◡𝐹:𝐵–1-1-onto→𝐴) | |
| 2 | id 22 | . . 3 ⊢ (𝐺:𝐶–1-1-onto→𝐷 → 𝐺:𝐶–1-1-onto→𝐷) | |
| 3 | f1ocnv 6783 | . . 3 ⊢ (𝐻:𝐸–1-1-onto→𝐼 → ◡𝐻:𝐼–1-1-onto→𝐸) | |
| 4 | 3f1oss1 47237 | . . 3 ⊢ (((◡𝐹:𝐵–1-1-onto→𝐴 ∧ 𝐺:𝐶–1-1-onto→𝐷 ∧ ◡𝐻:𝐼–1-1-onto→𝐸) ∧ (𝐶 ⊆ 𝐵 ∧ 𝐷 ⊆ 𝐼)) → ((◡𝐻 ∘ 𝐺) ∘ ◡◡𝐹):(◡𝐹 “ 𝐶)–1-1-onto→(◡𝐻 “ 𝐷)) | |
| 5 | 1, 2, 3, 4 | syl3anl 1417 | . 2 ⊢ (((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐺:𝐶–1-1-onto→𝐷 ∧ 𝐻:𝐸–1-1-onto→𝐼) ∧ (𝐶 ⊆ 𝐵 ∧ 𝐷 ⊆ 𝐼)) → ((◡𝐻 ∘ 𝐺) ∘ ◡◡𝐹):(◡𝐹 “ 𝐶)–1-1-onto→(◡𝐻 “ 𝐷)) |
| 6 | f1orel 6774 | . . . . 5 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → Rel 𝐹) | |
| 7 | dfrel2 6144 | . . . . . . . . 9 ⊢ (Rel 𝐹 ↔ ◡◡𝐹 = 𝐹) | |
| 8 | 7 | biimpi 216 | . . . . . . . 8 ⊢ (Rel 𝐹 → ◡◡𝐹 = 𝐹) |
| 9 | 8 | eqcomd 2739 | . . . . . . 7 ⊢ (Rel 𝐹 → 𝐹 = ◡◡𝐹) |
| 10 | 9 | coeq2d 5808 | . . . . . 6 ⊢ (Rel 𝐹 → ((◡𝐻 ∘ 𝐺) ∘ 𝐹) = ((◡𝐻 ∘ 𝐺) ∘ ◡◡𝐹)) |
| 11 | 10 | f1oeq1d 6766 | . . . . 5 ⊢ (Rel 𝐹 → (((◡𝐻 ∘ 𝐺) ∘ 𝐹):(◡𝐹 “ 𝐶)–1-1-onto→(◡𝐻 “ 𝐷) ↔ ((◡𝐻 ∘ 𝐺) ∘ ◡◡𝐹):(◡𝐹 “ 𝐶)–1-1-onto→(◡𝐻 “ 𝐷))) |
| 12 | 6, 11 | syl 17 | . . . 4 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → (((◡𝐻 ∘ 𝐺) ∘ 𝐹):(◡𝐹 “ 𝐶)–1-1-onto→(◡𝐻 “ 𝐷) ↔ ((◡𝐻 ∘ 𝐺) ∘ ◡◡𝐹):(◡𝐹 “ 𝐶)–1-1-onto→(◡𝐻 “ 𝐷))) |
| 13 | 12 | 3ad2ant1 1133 | . . 3 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐺:𝐶–1-1-onto→𝐷 ∧ 𝐻:𝐸–1-1-onto→𝐼) → (((◡𝐻 ∘ 𝐺) ∘ 𝐹):(◡𝐹 “ 𝐶)–1-1-onto→(◡𝐻 “ 𝐷) ↔ ((◡𝐻 ∘ 𝐺) ∘ ◡◡𝐹):(◡𝐹 “ 𝐶)–1-1-onto→(◡𝐻 “ 𝐷))) |
| 14 | 13 | adantr 480 | . 2 ⊢ (((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐺:𝐶–1-1-onto→𝐷 ∧ 𝐻:𝐸–1-1-onto→𝐼) ∧ (𝐶 ⊆ 𝐵 ∧ 𝐷 ⊆ 𝐼)) → (((◡𝐻 ∘ 𝐺) ∘ 𝐹):(◡𝐹 “ 𝐶)–1-1-onto→(◡𝐻 “ 𝐷) ↔ ((◡𝐻 ∘ 𝐺) ∘ ◡◡𝐹):(◡𝐹 “ 𝐶)–1-1-onto→(◡𝐻 “ 𝐷))) |
| 15 | 5, 14 | mpbird 257 | 1 ⊢ (((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐺:𝐶–1-1-onto→𝐷 ∧ 𝐻:𝐸–1-1-onto→𝐼) ∧ (𝐶 ⊆ 𝐵 ∧ 𝐷 ⊆ 𝐼)) → ((◡𝐻 ∘ 𝐺) ∘ 𝐹):(◡𝐹 “ 𝐶)–1-1-onto→(◡𝐻 “ 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ⊆ wss 3898 ◡ccnv 5620 “ cima 5624 ∘ ccom 5625 Rel wrel 5626 –1-1-onto→wf1o 6488 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 |
| This theorem is referenced by: uspgrlim 48154 |
| Copyright terms: Public domain | W3C validator |