Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  uspgrlim Structured version   Visualization version   GIF version

Theorem uspgrlim 48154
Description: A local isomorphism of simple pseudographs is a bijection between their vertices that preserves neighborhoods, expressed by properties of their edges (not edge functions as in isgrlim2 48145). (Contributed by AV, 15-Aug-2025.)
Hypotheses
Ref Expression
uspgrlim.v 𝑉 = (Vtx‘𝐺)
uspgrlim.w 𝑊 = (Vtx‘𝐻)
uspgrlim.n 𝑁 = (𝐺 ClNeighbVtx 𝑣)
uspgrlim.m 𝑀 = (𝐻 ClNeighbVtx (𝐹𝑣))
uspgrlim.i 𝐼 = (Edg‘𝐺)
uspgrlim.j 𝐽 = (Edg‘𝐻)
uspgrlim.k 𝐾 = {𝑥𝐼𝑥𝑁}
uspgrlim.l 𝐿 = {𝑥𝐽𝑥𝑀}
Assertion
Ref Expression
uspgrlim ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑍) → (𝐹 ∈ (𝐺 GraphLocIso 𝐻) ↔ (𝐹:𝑉1-1-onto𝑊 ∧ ∀𝑣𝑉𝑓(𝑓:𝑁1-1-onto𝑀 ∧ ∃𝑔(𝑔:𝐾1-1-onto𝐿 ∧ ∀𝑒𝐾 (𝑓𝑒) = (𝑔𝑒))))))
Distinct variable groups:   𝑥,𝐺   𝑥,𝐻   𝑥,𝐼   𝑥,𝐽   𝑥,𝑀   𝑥,𝑁,𝑒   𝑒,𝐺   𝑒,𝐾,𝑥   𝑥,𝐿   𝑒,𝑓,𝑔   𝑓,𝐹,𝑣   𝑓,𝐺,𝑔,𝑣   𝑒,𝐻,𝑓,𝑔,𝑣   𝑔,𝐾   𝑔,𝐿   𝑒,𝑀,𝑓,𝑔   𝑒,𝑁,𝑓,𝑔   𝑣,𝑉   𝑓,𝑍,𝑣   𝑥,𝑔
Allowed substitution hints:   𝐹(𝑥,𝑒,𝑔)   𝐼(𝑣,𝑒,𝑓,𝑔)   𝐽(𝑣,𝑒,𝑓,𝑔)   𝐾(𝑣,𝑓)   𝐿(𝑣,𝑒,𝑓)   𝑀(𝑣)   𝑁(𝑣)   𝑉(𝑥,𝑒,𝑓,𝑔)   𝑊(𝑥,𝑣,𝑒,𝑓,𝑔)   𝑍(𝑥,𝑒,𝑔)

Proof of Theorem uspgrlim
Dummy variables 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uspgrlim.v . . 3 𝑉 = (Vtx‘𝐺)
2 uspgrlim.w . . 3 𝑊 = (Vtx‘𝐻)
3 uspgrlim.n . . 3 𝑁 = (𝐺 ClNeighbVtx 𝑣)
4 uspgrlim.m . . 3 𝑀 = (𝐻 ClNeighbVtx (𝐹𝑣))
5 eqid 2733 . . 3 (iEdg‘𝐺) = (iEdg‘𝐺)
6 eqid 2733 . . 3 (iEdg‘𝐻) = (iEdg‘𝐻)
7 eqid 2733 . . 3 {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁} = {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁}
8 eqid 2733 . . 3 {𝑥 ∈ dom (iEdg‘𝐻) ∣ ((iEdg‘𝐻)‘𝑥) ⊆ 𝑀} = {𝑥 ∈ dom (iEdg‘𝐻) ∣ ((iEdg‘𝐻)‘𝑥) ⊆ 𝑀}
91, 2, 3, 4, 5, 6, 7, 8isgrlim2 48145 . 2 ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑍) → (𝐹 ∈ (𝐺 GraphLocIso 𝐻) ↔ (𝐹:𝑉1-1-onto𝑊 ∧ ∀𝑣𝑉𝑓(𝑓:𝑁1-1-onto𝑀 ∧ ∃(:{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁}–1-1-onto→{𝑥 ∈ dom (iEdg‘𝐻) ∣ ((iEdg‘𝐻)‘𝑥) ⊆ 𝑀} ∧ ∀𝑖 ∈ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁} (𝑓 “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(𝑖)))))))
10 fvex 6844 . . . . . . . . . . . . . 14 (iEdg‘𝐻) ∈ V
11 vex 3441 . . . . . . . . . . . . . 14 ∈ V
1210, 11coex 7869 . . . . . . . . . . . . 13 ((iEdg‘𝐻) ∘ ) ∈ V
13 fvex 6844 . . . . . . . . . . . . . 14 (iEdg‘𝐺) ∈ V
1413cnvex 7864 . . . . . . . . . . . . 13 (iEdg‘𝐺) ∈ V
1512, 14coex 7869 . . . . . . . . . . . 12 (((iEdg‘𝐻) ∘ ) ∘ (iEdg‘𝐺)) ∈ V
1615a1i 11 . . . . . . . . . . 11 (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (:{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁}–1-1-onto→{𝑥 ∈ dom (iEdg‘𝐻) ∣ ((iEdg‘𝐻)‘𝑥) ⊆ 𝑀} ∧ ∀𝑖 ∈ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁} (𝑓 “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(𝑖)))) → (((iEdg‘𝐻) ∘ ) ∘ (iEdg‘𝐺)) ∈ V)
175uspgrf1oedg 29172 . . . . . . . . . . . . . . 15 (𝐺 ∈ USPGraph → (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1-onto→(Edg‘𝐺))
1817ad2antrr 726 . . . . . . . . . . . . . 14 (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (:{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁}–1-1-onto→{𝑥 ∈ dom (iEdg‘𝐻) ∣ ((iEdg‘𝐻)‘𝑥) ⊆ 𝑀} ∧ ∀𝑖 ∈ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁} (𝑓 “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(𝑖)))) → (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1-onto→(Edg‘𝐺))
19 simprl 770 . . . . . . . . . . . . . 14 (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (:{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁}–1-1-onto→{𝑥 ∈ dom (iEdg‘𝐻) ∣ ((iEdg‘𝐻)‘𝑥) ⊆ 𝑀} ∧ ∀𝑖 ∈ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁} (𝑓 “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(𝑖)))) → :{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁}–1-1-onto→{𝑥 ∈ dom (iEdg‘𝐻) ∣ ((iEdg‘𝐻)‘𝑥) ⊆ 𝑀})
206uspgrf1oedg 29172 . . . . . . . . . . . . . . 15 (𝐻 ∈ USPGraph → (iEdg‘𝐻):dom (iEdg‘𝐻)–1-1-onto→(Edg‘𝐻))
2120ad2antlr 727 . . . . . . . . . . . . . 14 (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (:{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁}–1-1-onto→{𝑥 ∈ dom (iEdg‘𝐻) ∣ ((iEdg‘𝐻)‘𝑥) ⊆ 𝑀} ∧ ∀𝑖 ∈ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁} (𝑓 “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(𝑖)))) → (iEdg‘𝐻):dom (iEdg‘𝐻)–1-1-onto→(Edg‘𝐻))
22 ssrab2 4029 . . . . . . . . . . . . . . . 16 {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁} ⊆ dom (iEdg‘𝐺)
23 ssrab2 4029 . . . . . . . . . . . . . . . 16 {𝑥 ∈ dom (iEdg‘𝐻) ∣ ((iEdg‘𝐻)‘𝑥) ⊆ 𝑀} ⊆ dom (iEdg‘𝐻)
2422, 23pm3.2i 470 . . . . . . . . . . . . . . 15 ({𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁} ⊆ dom (iEdg‘𝐺) ∧ {𝑥 ∈ dom (iEdg‘𝐻) ∣ ((iEdg‘𝐻)‘𝑥) ⊆ 𝑀} ⊆ dom (iEdg‘𝐻))
2524a1i 11 . . . . . . . . . . . . . 14 (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (:{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁}–1-1-onto→{𝑥 ∈ dom (iEdg‘𝐻) ∣ ((iEdg‘𝐻)‘𝑥) ⊆ 𝑀} ∧ ∀𝑖 ∈ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁} (𝑓 “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(𝑖)))) → ({𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁} ⊆ dom (iEdg‘𝐺) ∧ {𝑥 ∈ dom (iEdg‘𝐻) ∣ ((iEdg‘𝐻)‘𝑥) ⊆ 𝑀} ⊆ dom (iEdg‘𝐻)))
26 3f1oss1 47237 . . . . . . . . . . . . . 14 ((((iEdg‘𝐺):dom (iEdg‘𝐺)–1-1-onto→(Edg‘𝐺) ∧ :{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁}–1-1-onto→{𝑥 ∈ dom (iEdg‘𝐻) ∣ ((iEdg‘𝐻)‘𝑥) ⊆ 𝑀} ∧ (iEdg‘𝐻):dom (iEdg‘𝐻)–1-1-onto→(Edg‘𝐻)) ∧ ({𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁} ⊆ dom (iEdg‘𝐺) ∧ {𝑥 ∈ dom (iEdg‘𝐻) ∣ ((iEdg‘𝐻)‘𝑥) ⊆ 𝑀} ⊆ dom (iEdg‘𝐻))) → (((iEdg‘𝐻) ∘ ) ∘ (iEdg‘𝐺)):((iEdg‘𝐺) “ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁})–1-1-onto→((iEdg‘𝐻) “ {𝑥 ∈ dom (iEdg‘𝐻) ∣ ((iEdg‘𝐻)‘𝑥) ⊆ 𝑀}))
2718, 19, 21, 25, 26syl31anc 1375 . . . . . . . . . . . . 13 (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (:{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁}–1-1-onto→{𝑥 ∈ dom (iEdg‘𝐻) ∣ ((iEdg‘𝐻)‘𝑥) ⊆ 𝑀} ∧ ∀𝑖 ∈ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁} (𝑓 “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(𝑖)))) → (((iEdg‘𝐻) ∘ ) ∘ (iEdg‘𝐺)):((iEdg‘𝐺) “ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁})–1-1-onto→((iEdg‘𝐻) “ {𝑥 ∈ dom (iEdg‘𝐻) ∣ ((iEdg‘𝐻)‘𝑥) ⊆ 𝑀}))
28 eqidd 2734 . . . . . . . . . . . . . 14 (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (:{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁}–1-1-onto→{𝑥 ∈ dom (iEdg‘𝐻) ∣ ((iEdg‘𝐻)‘𝑥) ⊆ 𝑀} ∧ ∀𝑖 ∈ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁} (𝑓 “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(𝑖)))) → (((iEdg‘𝐻) ∘ ) ∘ (iEdg‘𝐺)) = (((iEdg‘𝐻) ∘ ) ∘ (iEdg‘𝐺)))
29 uspgrlim.i . . . . . . . . . . . . . . . 16 𝐼 = (Edg‘𝐺)
30 uspgrlim.k . . . . . . . . . . . . . . . 16 𝐾 = {𝑥𝐼𝑥𝑁}
313, 29, 30uspgrlimlem1 48150 . . . . . . . . . . . . . . 15 (𝐺 ∈ USPGraph → 𝐾 = ((iEdg‘𝐺) “ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁}))
3231ad2antrr 726 . . . . . . . . . . . . . 14 (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (:{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁}–1-1-onto→{𝑥 ∈ dom (iEdg‘𝐻) ∣ ((iEdg‘𝐻)‘𝑥) ⊆ 𝑀} ∧ ∀𝑖 ∈ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁} (𝑓 “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(𝑖)))) → 𝐾 = ((iEdg‘𝐺) “ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁}))
33 uspgrlim.j . . . . . . . . . . . . . . . 16 𝐽 = (Edg‘𝐻)
34 uspgrlim.l . . . . . . . . . . . . . . . 16 𝐿 = {𝑥𝐽𝑥𝑀}
354, 33, 34uspgrlimlem1 48150 . . . . . . . . . . . . . . 15 (𝐻 ∈ USPGraph → 𝐿 = ((iEdg‘𝐻) “ {𝑥 ∈ dom (iEdg‘𝐻) ∣ ((iEdg‘𝐻)‘𝑥) ⊆ 𝑀}))
3635ad2antlr 727 . . . . . . . . . . . . . 14 (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (:{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁}–1-1-onto→{𝑥 ∈ dom (iEdg‘𝐻) ∣ ((iEdg‘𝐻)‘𝑥) ⊆ 𝑀} ∧ ∀𝑖 ∈ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁} (𝑓 “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(𝑖)))) → 𝐿 = ((iEdg‘𝐻) “ {𝑥 ∈ dom (iEdg‘𝐻) ∣ ((iEdg‘𝐻)‘𝑥) ⊆ 𝑀}))
3728, 32, 36f1oeq123d 6765 . . . . . . . . . . . . 13 (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (:{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁}–1-1-onto→{𝑥 ∈ dom (iEdg‘𝐻) ∣ ((iEdg‘𝐻)‘𝑥) ⊆ 𝑀} ∧ ∀𝑖 ∈ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁} (𝑓 “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(𝑖)))) → ((((iEdg‘𝐻) ∘ ) ∘ (iEdg‘𝐺)):𝐾1-1-onto𝐿 ↔ (((iEdg‘𝐻) ∘ ) ∘ (iEdg‘𝐺)):((iEdg‘𝐺) “ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁})–1-1-onto→((iEdg‘𝐻) “ {𝑥 ∈ dom (iEdg‘𝐻) ∣ ((iEdg‘𝐻)‘𝑥) ⊆ 𝑀})))
3827, 37mpbird 257 . . . . . . . . . . . 12 (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (:{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁}–1-1-onto→{𝑥 ∈ dom (iEdg‘𝐻) ∣ ((iEdg‘𝐻)‘𝑥) ⊆ 𝑀} ∧ ∀𝑖 ∈ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁} (𝑓 “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(𝑖)))) → (((iEdg‘𝐻) ∘ ) ∘ (iEdg‘𝐺)):𝐾1-1-onto𝐿)
39 simpll 766 . . . . . . . . . . . . . 14 (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (:{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁}–1-1-onto→{𝑥 ∈ dom (iEdg‘𝐻) ∣ ((iEdg‘𝐻)‘𝑥) ⊆ 𝑀} ∧ ∀𝑖 ∈ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁} (𝑓 “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(𝑖)))) → 𝐺 ∈ USPGraph)
40 simprr 772 . . . . . . . . . . . . . 14 (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (:{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁}–1-1-onto→{𝑥 ∈ dom (iEdg‘𝐻) ∣ ((iEdg‘𝐻)‘𝑥) ⊆ 𝑀} ∧ ∀𝑖 ∈ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁} (𝑓 “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(𝑖)))) → ∀𝑖 ∈ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁} (𝑓 “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(𝑖)))
411, 2, 3, 4, 29, 33, 30, 34uspgrlimlem3 48152 . . . . . . . . . . . . . 14 ((𝐺 ∈ USPGraph ∧ :{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁}–1-1-onto→{𝑥 ∈ dom (iEdg‘𝐻) ∣ ((iEdg‘𝐻)‘𝑥) ⊆ 𝑀} ∧ ∀𝑖 ∈ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁} (𝑓 “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(𝑖))) → (𝑒𝐾 → (𝑓𝑒) = ((((iEdg‘𝐻) ∘ ) ∘ (iEdg‘𝐺))‘𝑒)))
4239, 19, 40, 41syl3anc 1373 . . . . . . . . . . . . 13 (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (:{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁}–1-1-onto→{𝑥 ∈ dom (iEdg‘𝐻) ∣ ((iEdg‘𝐻)‘𝑥) ⊆ 𝑀} ∧ ∀𝑖 ∈ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁} (𝑓 “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(𝑖)))) → (𝑒𝐾 → (𝑓𝑒) = ((((iEdg‘𝐻) ∘ ) ∘ (iEdg‘𝐺))‘𝑒)))
4342ralrimiv 3124 . . . . . . . . . . . 12 (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (:{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁}–1-1-onto→{𝑥 ∈ dom (iEdg‘𝐻) ∣ ((iEdg‘𝐻)‘𝑥) ⊆ 𝑀} ∧ ∀𝑖 ∈ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁} (𝑓 “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(𝑖)))) → ∀𝑒𝐾 (𝑓𝑒) = ((((iEdg‘𝐻) ∘ ) ∘ (iEdg‘𝐺))‘𝑒))
4438, 43jca 511 . . . . . . . . . . 11 (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (:{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁}–1-1-onto→{𝑥 ∈ dom (iEdg‘𝐻) ∣ ((iEdg‘𝐻)‘𝑥) ⊆ 𝑀} ∧ ∀𝑖 ∈ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁} (𝑓 “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(𝑖)))) → ((((iEdg‘𝐻) ∘ ) ∘ (iEdg‘𝐺)):𝐾1-1-onto𝐿 ∧ ∀𝑒𝐾 (𝑓𝑒) = ((((iEdg‘𝐻) ∘ ) ∘ (iEdg‘𝐺))‘𝑒)))
45 f1oeq1 6759 . . . . . . . . . . . 12 (𝑔 = (((iEdg‘𝐻) ∘ ) ∘ (iEdg‘𝐺)) → (𝑔:𝐾1-1-onto𝐿 ↔ (((iEdg‘𝐻) ∘ ) ∘ (iEdg‘𝐺)):𝐾1-1-onto𝐿))
46 fveq1 6830 . . . . . . . . . . . . . 14 (𝑔 = (((iEdg‘𝐻) ∘ ) ∘ (iEdg‘𝐺)) → (𝑔𝑒) = ((((iEdg‘𝐻) ∘ ) ∘ (iEdg‘𝐺))‘𝑒))
4746eqeq2d 2744 . . . . . . . . . . . . 13 (𝑔 = (((iEdg‘𝐻) ∘ ) ∘ (iEdg‘𝐺)) → ((𝑓𝑒) = (𝑔𝑒) ↔ (𝑓𝑒) = ((((iEdg‘𝐻) ∘ ) ∘ (iEdg‘𝐺))‘𝑒)))
4847ralbidv 3156 . . . . . . . . . . . 12 (𝑔 = (((iEdg‘𝐻) ∘ ) ∘ (iEdg‘𝐺)) → (∀𝑒𝐾 (𝑓𝑒) = (𝑔𝑒) ↔ ∀𝑒𝐾 (𝑓𝑒) = ((((iEdg‘𝐻) ∘ ) ∘ (iEdg‘𝐺))‘𝑒)))
4945, 48anbi12d 632 . . . . . . . . . . 11 (𝑔 = (((iEdg‘𝐻) ∘ ) ∘ (iEdg‘𝐺)) → ((𝑔:𝐾1-1-onto𝐿 ∧ ∀𝑒𝐾 (𝑓𝑒) = (𝑔𝑒)) ↔ ((((iEdg‘𝐻) ∘ ) ∘ (iEdg‘𝐺)):𝐾1-1-onto𝐿 ∧ ∀𝑒𝐾 (𝑓𝑒) = ((((iEdg‘𝐻) ∘ ) ∘ (iEdg‘𝐺))‘𝑒))))
5016, 44, 49spcedv 3549 . . . . . . . . . 10 (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (:{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁}–1-1-onto→{𝑥 ∈ dom (iEdg‘𝐻) ∣ ((iEdg‘𝐻)‘𝑥) ⊆ 𝑀} ∧ ∀𝑖 ∈ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁} (𝑓 “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(𝑖)))) → ∃𝑔(𝑔:𝐾1-1-onto𝐿 ∧ ∀𝑒𝐾 (𝑓𝑒) = (𝑔𝑒)))
5150ex 412 . . . . . . . . 9 ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) → ((:{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁}–1-1-onto→{𝑥 ∈ dom (iEdg‘𝐻) ∣ ((iEdg‘𝐻)‘𝑥) ⊆ 𝑀} ∧ ∀𝑖 ∈ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁} (𝑓 “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(𝑖))) → ∃𝑔(𝑔:𝐾1-1-onto𝐿 ∧ ∀𝑒𝐾 (𝑓𝑒) = (𝑔𝑒))))
5251exlimdv 1934 . . . . . . . 8 ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) → (∃(:{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁}–1-1-onto→{𝑥 ∈ dom (iEdg‘𝐻) ∣ ((iEdg‘𝐻)‘𝑥) ⊆ 𝑀} ∧ ∀𝑖 ∈ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁} (𝑓 “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(𝑖))) → ∃𝑔(𝑔:𝐾1-1-onto𝐿 ∧ ∀𝑒𝐾 (𝑓𝑒) = (𝑔𝑒))))
5310cnvex 7864 . . . . . . . . . . . . . 14 (iEdg‘𝐻) ∈ V
54 vex 3441 . . . . . . . . . . . . . 14 𝑔 ∈ V
5553, 54coex 7869 . . . . . . . . . . . . 13 ((iEdg‘𝐻) ∘ 𝑔) ∈ V
5655, 13coex 7869 . . . . . . . . . . . 12 (((iEdg‘𝐻) ∘ 𝑔) ∘ (iEdg‘𝐺)) ∈ V
5756a1i 11 . . . . . . . . . . 11 (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝑔:𝐾1-1-onto𝐿 ∧ ∀𝑒𝐾 (𝑓𝑒) = (𝑔𝑒))) → (((iEdg‘𝐻) ∘ 𝑔) ∘ (iEdg‘𝐺)) ∈ V)
5817ad2antrr 726 . . . . . . . . . . . . . 14 (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝑔:𝐾1-1-onto𝐿 ∧ ∀𝑒𝐾 (𝑓𝑒) = (𝑔𝑒))) → (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1-onto→(Edg‘𝐺))
59 simprl 770 . . . . . . . . . . . . . 14 (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝑔:𝐾1-1-onto𝐿 ∧ ∀𝑒𝐾 (𝑓𝑒) = (𝑔𝑒))) → 𝑔:𝐾1-1-onto𝐿)
6020ad2antlr 727 . . . . . . . . . . . . . 14 (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝑔:𝐾1-1-onto𝐿 ∧ ∀𝑒𝐾 (𝑓𝑒) = (𝑔𝑒))) → (iEdg‘𝐻):dom (iEdg‘𝐻)–1-1-onto→(Edg‘𝐻))
6129rabeqi 3409 . . . . . . . . . . . . . . . . . 18 {𝑥𝐼𝑥𝑁} = {𝑥 ∈ (Edg‘𝐺) ∣ 𝑥𝑁}
6230, 61eqtri 2756 . . . . . . . . . . . . . . . . 17 𝐾 = {𝑥 ∈ (Edg‘𝐺) ∣ 𝑥𝑁}
6362ssrab3 4031 . . . . . . . . . . . . . . . 16 𝐾 ⊆ (Edg‘𝐺)
6433rabeqi 3409 . . . . . . . . . . . . . . . . . 18 {𝑥𝐽𝑥𝑀} = {𝑥 ∈ (Edg‘𝐻) ∣ 𝑥𝑀}
6534, 64eqtri 2756 . . . . . . . . . . . . . . . . 17 𝐿 = {𝑥 ∈ (Edg‘𝐻) ∣ 𝑥𝑀}
6665ssrab3 4031 . . . . . . . . . . . . . . . 16 𝐿 ⊆ (Edg‘𝐻)
6763, 66pm3.2i 470 . . . . . . . . . . . . . . 15 (𝐾 ⊆ (Edg‘𝐺) ∧ 𝐿 ⊆ (Edg‘𝐻))
6867a1i 11 . . . . . . . . . . . . . 14 (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝑔:𝐾1-1-onto𝐿 ∧ ∀𝑒𝐾 (𝑓𝑒) = (𝑔𝑒))) → (𝐾 ⊆ (Edg‘𝐺) ∧ 𝐿 ⊆ (Edg‘𝐻)))
69 3f1oss2 47238 . . . . . . . . . . . . . 14 ((((iEdg‘𝐺):dom (iEdg‘𝐺)–1-1-onto→(Edg‘𝐺) ∧ 𝑔:𝐾1-1-onto𝐿 ∧ (iEdg‘𝐻):dom (iEdg‘𝐻)–1-1-onto→(Edg‘𝐻)) ∧ (𝐾 ⊆ (Edg‘𝐺) ∧ 𝐿 ⊆ (Edg‘𝐻))) → (((iEdg‘𝐻) ∘ 𝑔) ∘ (iEdg‘𝐺)):((iEdg‘𝐺) “ 𝐾)–1-1-onto→((iEdg‘𝐻) “ 𝐿))
7058, 59, 60, 68, 69syl31anc 1375 . . . . . . . . . . . . 13 (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝑔:𝐾1-1-onto𝐿 ∧ ∀𝑒𝐾 (𝑓𝑒) = (𝑔𝑒))) → (((iEdg‘𝐻) ∘ 𝑔) ∘ (iEdg‘𝐺)):((iEdg‘𝐺) “ 𝐾)–1-1-onto→((iEdg‘𝐻) “ 𝐿))
71 eqidd 2734 . . . . . . . . . . . . . 14 (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝑔:𝐾1-1-onto𝐿 ∧ ∀𝑒𝐾 (𝑓𝑒) = (𝑔𝑒))) → (((iEdg‘𝐻) ∘ 𝑔) ∘ (iEdg‘𝐺)) = (((iEdg‘𝐻) ∘ 𝑔) ∘ (iEdg‘𝐺)))
723, 29, 30uspgrlimlem2 48151 . . . . . . . . . . . . . . 15 (𝐺 ∈ USPGraph → ((iEdg‘𝐺) “ 𝐾) = {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁})
7372ad2antrr 726 . . . . . . . . . . . . . 14 (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝑔:𝐾1-1-onto𝐿 ∧ ∀𝑒𝐾 (𝑓𝑒) = (𝑔𝑒))) → ((iEdg‘𝐺) “ 𝐾) = {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁})
744, 33, 34uspgrlimlem2 48151 . . . . . . . . . . . . . . 15 (𝐻 ∈ USPGraph → ((iEdg‘𝐻) “ 𝐿) = {𝑥 ∈ dom (iEdg‘𝐻) ∣ ((iEdg‘𝐻)‘𝑥) ⊆ 𝑀})
7574ad2antlr 727 . . . . . . . . . . . . . 14 (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝑔:𝐾1-1-onto𝐿 ∧ ∀𝑒𝐾 (𝑓𝑒) = (𝑔𝑒))) → ((iEdg‘𝐻) “ 𝐿) = {𝑥 ∈ dom (iEdg‘𝐻) ∣ ((iEdg‘𝐻)‘𝑥) ⊆ 𝑀})
7671, 73, 75f1oeq123d 6765 . . . . . . . . . . . . 13 (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝑔:𝐾1-1-onto𝐿 ∧ ∀𝑒𝐾 (𝑓𝑒) = (𝑔𝑒))) → ((((iEdg‘𝐻) ∘ 𝑔) ∘ (iEdg‘𝐺)):((iEdg‘𝐺) “ 𝐾)–1-1-onto→((iEdg‘𝐻) “ 𝐿) ↔ (((iEdg‘𝐻) ∘ 𝑔) ∘ (iEdg‘𝐺)):{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁}–1-1-onto→{𝑥 ∈ dom (iEdg‘𝐻) ∣ ((iEdg‘𝐻)‘𝑥) ⊆ 𝑀}))
7770, 76mpbid 232 . . . . . . . . . . . 12 (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝑔:𝐾1-1-onto𝐿 ∧ ∀𝑒𝐾 (𝑓𝑒) = (𝑔𝑒))) → (((iEdg‘𝐻) ∘ 𝑔) ∘ (iEdg‘𝐺)):{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁}–1-1-onto→{𝑥 ∈ dom (iEdg‘𝐻) ∣ ((iEdg‘𝐻)‘𝑥) ⊆ 𝑀})
78 fveq2 6831 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑖 → ((iEdg‘𝐺)‘𝑥) = ((iEdg‘𝐺)‘𝑖))
7978sseq1d 3962 . . . . . . . . . . . . . . 15 (𝑥 = 𝑖 → (((iEdg‘𝐺)‘𝑥) ⊆ 𝑁 ↔ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑁))
8079elrab 3643 . . . . . . . . . . . . . 14 (𝑖 ∈ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁} ↔ (𝑖 ∈ dom (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑁))
811, 2, 3, 4, 29, 33, 30, 34uspgrlimlem4 48153 . . . . . . . . . . . . . 14 (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝑔:𝐾1-1-onto𝐿 ∧ ∀𝑒𝐾 (𝑓𝑒) = (𝑔𝑒))) → ((𝑖 ∈ dom (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑁) → (𝑓 “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘((((iEdg‘𝐻) ∘ 𝑔) ∘ (iEdg‘𝐺))‘𝑖))))
8280, 81biimtrid 242 . . . . . . . . . . . . 13 (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝑔:𝐾1-1-onto𝐿 ∧ ∀𝑒𝐾 (𝑓𝑒) = (𝑔𝑒))) → (𝑖 ∈ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁} → (𝑓 “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘((((iEdg‘𝐻) ∘ 𝑔) ∘ (iEdg‘𝐺))‘𝑖))))
8382ralrimiv 3124 . . . . . . . . . . . 12 (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝑔:𝐾1-1-onto𝐿 ∧ ∀𝑒𝐾 (𝑓𝑒) = (𝑔𝑒))) → ∀𝑖 ∈ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁} (𝑓 “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘((((iEdg‘𝐻) ∘ 𝑔) ∘ (iEdg‘𝐺))‘𝑖)))
8477, 83jca 511 . . . . . . . . . . 11 (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝑔:𝐾1-1-onto𝐿 ∧ ∀𝑒𝐾 (𝑓𝑒) = (𝑔𝑒))) → ((((iEdg‘𝐻) ∘ 𝑔) ∘ (iEdg‘𝐺)):{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁}–1-1-onto→{𝑥 ∈ dom (iEdg‘𝐻) ∣ ((iEdg‘𝐻)‘𝑥) ⊆ 𝑀} ∧ ∀𝑖 ∈ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁} (𝑓 “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘((((iEdg‘𝐻) ∘ 𝑔) ∘ (iEdg‘𝐺))‘𝑖))))
85 f1oeq1 6759 . . . . . . . . . . . 12 ( = (((iEdg‘𝐻) ∘ 𝑔) ∘ (iEdg‘𝐺)) → (:{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁}–1-1-onto→{𝑥 ∈ dom (iEdg‘𝐻) ∣ ((iEdg‘𝐻)‘𝑥) ⊆ 𝑀} ↔ (((iEdg‘𝐻) ∘ 𝑔) ∘ (iEdg‘𝐺)):{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁}–1-1-onto→{𝑥 ∈ dom (iEdg‘𝐻) ∣ ((iEdg‘𝐻)‘𝑥) ⊆ 𝑀}))
86 fveq1 6830 . . . . . . . . . . . . . . 15 ( = (((iEdg‘𝐻) ∘ 𝑔) ∘ (iEdg‘𝐺)) → (𝑖) = ((((iEdg‘𝐻) ∘ 𝑔) ∘ (iEdg‘𝐺))‘𝑖))
8786fveq2d 6835 . . . . . . . . . . . . . 14 ( = (((iEdg‘𝐻) ∘ 𝑔) ∘ (iEdg‘𝐺)) → ((iEdg‘𝐻)‘(𝑖)) = ((iEdg‘𝐻)‘((((iEdg‘𝐻) ∘ 𝑔) ∘ (iEdg‘𝐺))‘𝑖)))
8887eqeq2d 2744 . . . . . . . . . . . . 13 ( = (((iEdg‘𝐻) ∘ 𝑔) ∘ (iEdg‘𝐺)) → ((𝑓 “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(𝑖)) ↔ (𝑓 “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘((((iEdg‘𝐻) ∘ 𝑔) ∘ (iEdg‘𝐺))‘𝑖))))
8988ralbidv 3156 . . . . . . . . . . . 12 ( = (((iEdg‘𝐻) ∘ 𝑔) ∘ (iEdg‘𝐺)) → (∀𝑖 ∈ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁} (𝑓 “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(𝑖)) ↔ ∀𝑖 ∈ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁} (𝑓 “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘((((iEdg‘𝐻) ∘ 𝑔) ∘ (iEdg‘𝐺))‘𝑖))))
9085, 89anbi12d 632 . . . . . . . . . . 11 ( = (((iEdg‘𝐻) ∘ 𝑔) ∘ (iEdg‘𝐺)) → ((:{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁}–1-1-onto→{𝑥 ∈ dom (iEdg‘𝐻) ∣ ((iEdg‘𝐻)‘𝑥) ⊆ 𝑀} ∧ ∀𝑖 ∈ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁} (𝑓 “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(𝑖))) ↔ ((((iEdg‘𝐻) ∘ 𝑔) ∘ (iEdg‘𝐺)):{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁}–1-1-onto→{𝑥 ∈ dom (iEdg‘𝐻) ∣ ((iEdg‘𝐻)‘𝑥) ⊆ 𝑀} ∧ ∀𝑖 ∈ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁} (𝑓 “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘((((iEdg‘𝐻) ∘ 𝑔) ∘ (iEdg‘𝐺))‘𝑖)))))
9157, 84, 90spcedv 3549 . . . . . . . . . 10 (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝑔:𝐾1-1-onto𝐿 ∧ ∀𝑒𝐾 (𝑓𝑒) = (𝑔𝑒))) → ∃(:{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁}–1-1-onto→{𝑥 ∈ dom (iEdg‘𝐻) ∣ ((iEdg‘𝐻)‘𝑥) ⊆ 𝑀} ∧ ∀𝑖 ∈ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁} (𝑓 “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(𝑖))))
9291ex 412 . . . . . . . . 9 ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) → ((𝑔:𝐾1-1-onto𝐿 ∧ ∀𝑒𝐾 (𝑓𝑒) = (𝑔𝑒)) → ∃(:{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁}–1-1-onto→{𝑥 ∈ dom (iEdg‘𝐻) ∣ ((iEdg‘𝐻)‘𝑥) ⊆ 𝑀} ∧ ∀𝑖 ∈ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁} (𝑓 “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(𝑖)))))
9392exlimdv 1934 . . . . . . . 8 ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) → (∃𝑔(𝑔:𝐾1-1-onto𝐿 ∧ ∀𝑒𝐾 (𝑓𝑒) = (𝑔𝑒)) → ∃(:{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁}–1-1-onto→{𝑥 ∈ dom (iEdg‘𝐻) ∣ ((iEdg‘𝐻)‘𝑥) ⊆ 𝑀} ∧ ∀𝑖 ∈ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁} (𝑓 “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(𝑖)))))
9452, 93impbid 212 . . . . . . 7 ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) → (∃(:{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁}–1-1-onto→{𝑥 ∈ dom (iEdg‘𝐻) ∣ ((iEdg‘𝐻)‘𝑥) ⊆ 𝑀} ∧ ∀𝑖 ∈ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁} (𝑓 “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(𝑖))) ↔ ∃𝑔(𝑔:𝐾1-1-onto𝐿 ∧ ∀𝑒𝐾 (𝑓𝑒) = (𝑔𝑒))))
9594anbi2d 630 . . . . . 6 ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) → ((𝑓:𝑁1-1-onto𝑀 ∧ ∃(:{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁}–1-1-onto→{𝑥 ∈ dom (iEdg‘𝐻) ∣ ((iEdg‘𝐻)‘𝑥) ⊆ 𝑀} ∧ ∀𝑖 ∈ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁} (𝑓 “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(𝑖)))) ↔ (𝑓:𝑁1-1-onto𝑀 ∧ ∃𝑔(𝑔:𝐾1-1-onto𝐿 ∧ ∀𝑒𝐾 (𝑓𝑒) = (𝑔𝑒)))))
9695exbidv 1922 . . . . 5 ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) → (∃𝑓(𝑓:𝑁1-1-onto𝑀 ∧ ∃(:{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁}–1-1-onto→{𝑥 ∈ dom (iEdg‘𝐻) ∣ ((iEdg‘𝐻)‘𝑥) ⊆ 𝑀} ∧ ∀𝑖 ∈ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁} (𝑓 “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(𝑖)))) ↔ ∃𝑓(𝑓:𝑁1-1-onto𝑀 ∧ ∃𝑔(𝑔:𝐾1-1-onto𝐿 ∧ ∀𝑒𝐾 (𝑓𝑒) = (𝑔𝑒)))))
9796ralbidv 3156 . . . 4 ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) → (∀𝑣𝑉𝑓(𝑓:𝑁1-1-onto𝑀 ∧ ∃(:{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁}–1-1-onto→{𝑥 ∈ dom (iEdg‘𝐻) ∣ ((iEdg‘𝐻)‘𝑥) ⊆ 𝑀} ∧ ∀𝑖 ∈ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁} (𝑓 “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(𝑖)))) ↔ ∀𝑣𝑉𝑓(𝑓:𝑁1-1-onto𝑀 ∧ ∃𝑔(𝑔:𝐾1-1-onto𝐿 ∧ ∀𝑒𝐾 (𝑓𝑒) = (𝑔𝑒)))))
9897anbi2d 630 . . 3 ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) → ((𝐹:𝑉1-1-onto𝑊 ∧ ∀𝑣𝑉𝑓(𝑓:𝑁1-1-onto𝑀 ∧ ∃(:{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁}–1-1-onto→{𝑥 ∈ dom (iEdg‘𝐻) ∣ ((iEdg‘𝐻)‘𝑥) ⊆ 𝑀} ∧ ∀𝑖 ∈ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁} (𝑓 “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(𝑖))))) ↔ (𝐹:𝑉1-1-onto𝑊 ∧ ∀𝑣𝑉𝑓(𝑓:𝑁1-1-onto𝑀 ∧ ∃𝑔(𝑔:𝐾1-1-onto𝐿 ∧ ∀𝑒𝐾 (𝑓𝑒) = (𝑔𝑒))))))
99983adant3 1132 . 2 ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑍) → ((𝐹:𝑉1-1-onto𝑊 ∧ ∀𝑣𝑉𝑓(𝑓:𝑁1-1-onto𝑀 ∧ ∃(:{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁}–1-1-onto→{𝑥 ∈ dom (iEdg‘𝐻) ∣ ((iEdg‘𝐻)‘𝑥) ⊆ 𝑀} ∧ ∀𝑖 ∈ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁} (𝑓 “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(𝑖))))) ↔ (𝐹:𝑉1-1-onto𝑊 ∧ ∀𝑣𝑉𝑓(𝑓:𝑁1-1-onto𝑀 ∧ ∃𝑔(𝑔:𝐾1-1-onto𝐿 ∧ ∀𝑒𝐾 (𝑓𝑒) = (𝑔𝑒))))))
1009, 99bitrd 279 1 ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹𝑍) → (𝐹 ∈ (𝐺 GraphLocIso 𝐻) ↔ (𝐹:𝑉1-1-onto𝑊 ∧ ∀𝑣𝑉𝑓(𝑓:𝑁1-1-onto𝑀 ∧ ∃𝑔(𝑔:𝐾1-1-onto𝐿 ∧ ∀𝑒𝐾 (𝑓𝑒) = (𝑔𝑒))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wex 1780  wcel 2113  wral 3048  {crab 3396  Vcvv 3437  wss 3898  ccnv 5620  dom cdm 5621  cima 5624  ccom 5625  1-1-ontowf1o 6488  cfv 6489  (class class class)co 7355  Vtxcvtx 28995  iEdgciedg 28996  Edgcedg 29046  USPGraphcuspgr 29147   ClNeighbVtx cclnbgr 47980   GraphLocIso cgrlim 48138
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-ov 7358  df-oprab 7359  df-mpo 7360  df-1st 7930  df-2nd 7931  df-1o 8394  df-map 8761  df-vtx 28997  df-iedg 28998  df-edg 29047  df-uspgr 29149  df-clnbgr 47981  df-isubgr 48023  df-grim 48040  df-gric 48043  df-grlim 48140
This theorem is referenced by:  usgrlimprop  48155
  Copyright terms: Public domain W3C validator