| Step | Hyp | Ref
| Expression |
| 1 | | uspgrlim.v |
. . 3
⊢ 𝑉 = (Vtx‘𝐺) |
| 2 | | uspgrlim.w |
. . 3
⊢ 𝑊 = (Vtx‘𝐻) |
| 3 | | uspgrlim.n |
. . 3
⊢ 𝑁 = (𝐺 ClNeighbVtx 𝑣) |
| 4 | | uspgrlim.m |
. . 3
⊢ 𝑀 = (𝐻 ClNeighbVtx (𝐹‘𝑣)) |
| 5 | | eqid 2736 |
. . 3
⊢
(iEdg‘𝐺) =
(iEdg‘𝐺) |
| 6 | | eqid 2736 |
. . 3
⊢
(iEdg‘𝐻) =
(iEdg‘𝐻) |
| 7 | | eqid 2736 |
. . 3
⊢ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁} = {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁} |
| 8 | | eqid 2736 |
. . 3
⊢ {𝑥 ∈ dom (iEdg‘𝐻) ∣ ((iEdg‘𝐻)‘𝑥) ⊆ 𝑀} = {𝑥 ∈ dom (iEdg‘𝐻) ∣ ((iEdg‘𝐻)‘𝑥) ⊆ 𝑀} |
| 9 | 1, 2, 3, 4, 5, 6, 7, 8 | isgrlim2 47923 |
. 2
⊢ ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑍) → (𝐹 ∈ (𝐺 GraphLocIso 𝐻) ↔ (𝐹:𝑉–1-1-onto→𝑊 ∧ ∀𝑣 ∈ 𝑉 ∃𝑓(𝑓:𝑁–1-1-onto→𝑀 ∧ ∃ℎ(ℎ:{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁}–1-1-onto→{𝑥 ∈ dom (iEdg‘𝐻) ∣ ((iEdg‘𝐻)‘𝑥) ⊆ 𝑀} ∧ ∀𝑖 ∈ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁} (𝑓 “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(ℎ‘𝑖))))))) |
| 10 | | fvex 6917 |
. . . . . . . . . . . . . 14
⊢
(iEdg‘𝐻)
∈ V |
| 11 | | vex 3483 |
. . . . . . . . . . . . . 14
⊢ ℎ ∈ V |
| 12 | 10, 11 | coex 7948 |
. . . . . . . . . . . . 13
⊢
((iEdg‘𝐻)
∘ ℎ) ∈
V |
| 13 | | fvex 6917 |
. . . . . . . . . . . . . 14
⊢
(iEdg‘𝐺)
∈ V |
| 14 | 13 | cnvex 7943 |
. . . . . . . . . . . . 13
⊢ ◡(iEdg‘𝐺) ∈ V |
| 15 | 12, 14 | coex 7948 |
. . . . . . . . . . . 12
⊢
(((iEdg‘𝐻)
∘ ℎ) ∘ ◡(iEdg‘𝐺)) ∈ V |
| 16 | 15 | a1i 11 |
. . . . . . . . . . 11
⊢ (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (ℎ:{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁}–1-1-onto→{𝑥 ∈ dom (iEdg‘𝐻) ∣ ((iEdg‘𝐻)‘𝑥) ⊆ 𝑀} ∧ ∀𝑖 ∈ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁} (𝑓 “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(ℎ‘𝑖)))) → (((iEdg‘𝐻) ∘ ℎ) ∘ ◡(iEdg‘𝐺)) ∈ V) |
| 17 | 5 | uspgrf1oedg 29180 |
. . . . . . . . . . . . . . 15
⊢ (𝐺 ∈ USPGraph →
(iEdg‘𝐺):dom
(iEdg‘𝐺)–1-1-onto→(Edg‘𝐺)) |
| 18 | 17 | ad2antrr 726 |
. . . . . . . . . . . . . 14
⊢ (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (ℎ:{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁}–1-1-onto→{𝑥 ∈ dom (iEdg‘𝐻) ∣ ((iEdg‘𝐻)‘𝑥) ⊆ 𝑀} ∧ ∀𝑖 ∈ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁} (𝑓 “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(ℎ‘𝑖)))) → (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1-onto→(Edg‘𝐺)) |
| 19 | | simprl 771 |
. . . . . . . . . . . . . 14
⊢ (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (ℎ:{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁}–1-1-onto→{𝑥 ∈ dom (iEdg‘𝐻) ∣ ((iEdg‘𝐻)‘𝑥) ⊆ 𝑀} ∧ ∀𝑖 ∈ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁} (𝑓 “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(ℎ‘𝑖)))) → ℎ:{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁}–1-1-onto→{𝑥 ∈ dom (iEdg‘𝐻) ∣ ((iEdg‘𝐻)‘𝑥) ⊆ 𝑀}) |
| 20 | 6 | uspgrf1oedg 29180 |
. . . . . . . . . . . . . . 15
⊢ (𝐻 ∈ USPGraph →
(iEdg‘𝐻):dom
(iEdg‘𝐻)–1-1-onto→(Edg‘𝐻)) |
| 21 | 20 | ad2antlr 727 |
. . . . . . . . . . . . . 14
⊢ (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (ℎ:{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁}–1-1-onto→{𝑥 ∈ dom (iEdg‘𝐻) ∣ ((iEdg‘𝐻)‘𝑥) ⊆ 𝑀} ∧ ∀𝑖 ∈ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁} (𝑓 “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(ℎ‘𝑖)))) → (iEdg‘𝐻):dom (iEdg‘𝐻)–1-1-onto→(Edg‘𝐻)) |
| 22 | | ssrab2 4079 |
. . . . . . . . . . . . . . . 16
⊢ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁} ⊆ dom (iEdg‘𝐺) |
| 23 | | ssrab2 4079 |
. . . . . . . . . . . . . . . 16
⊢ {𝑥 ∈ dom (iEdg‘𝐻) ∣ ((iEdg‘𝐻)‘𝑥) ⊆ 𝑀} ⊆ dom (iEdg‘𝐻) |
| 24 | 22, 23 | pm3.2i 470 |
. . . . . . . . . . . . . . 15
⊢ ({𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁} ⊆ dom (iEdg‘𝐺) ∧ {𝑥 ∈ dom (iEdg‘𝐻) ∣ ((iEdg‘𝐻)‘𝑥) ⊆ 𝑀} ⊆ dom (iEdg‘𝐻)) |
| 25 | 24 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (ℎ:{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁}–1-1-onto→{𝑥 ∈ dom (iEdg‘𝐻) ∣ ((iEdg‘𝐻)‘𝑥) ⊆ 𝑀} ∧ ∀𝑖 ∈ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁} (𝑓 “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(ℎ‘𝑖)))) → ({𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁} ⊆ dom (iEdg‘𝐺) ∧ {𝑥 ∈ dom (iEdg‘𝐻) ∣ ((iEdg‘𝐻)‘𝑥) ⊆ 𝑀} ⊆ dom (iEdg‘𝐻))) |
| 26 | | 3f1oss1 47060 |
. . . . . . . . . . . . . 14
⊢
((((iEdg‘𝐺):dom (iEdg‘𝐺)–1-1-onto→(Edg‘𝐺) ∧ ℎ:{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁}–1-1-onto→{𝑥 ∈ dom (iEdg‘𝐻) ∣ ((iEdg‘𝐻)‘𝑥) ⊆ 𝑀} ∧ (iEdg‘𝐻):dom (iEdg‘𝐻)–1-1-onto→(Edg‘𝐻)) ∧ ({𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁} ⊆ dom (iEdg‘𝐺) ∧ {𝑥 ∈ dom (iEdg‘𝐻) ∣ ((iEdg‘𝐻)‘𝑥) ⊆ 𝑀} ⊆ dom (iEdg‘𝐻))) → (((iEdg‘𝐻) ∘ ℎ) ∘ ◡(iEdg‘𝐺)):((iEdg‘𝐺) “ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁})–1-1-onto→((iEdg‘𝐻) “ {𝑥 ∈ dom (iEdg‘𝐻) ∣ ((iEdg‘𝐻)‘𝑥) ⊆ 𝑀})) |
| 27 | 18, 19, 21, 25, 26 | syl31anc 1375 |
. . . . . . . . . . . . 13
⊢ (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (ℎ:{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁}–1-1-onto→{𝑥 ∈ dom (iEdg‘𝐻) ∣ ((iEdg‘𝐻)‘𝑥) ⊆ 𝑀} ∧ ∀𝑖 ∈ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁} (𝑓 “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(ℎ‘𝑖)))) → (((iEdg‘𝐻) ∘ ℎ) ∘ ◡(iEdg‘𝐺)):((iEdg‘𝐺) “ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁})–1-1-onto→((iEdg‘𝐻) “ {𝑥 ∈ dom (iEdg‘𝐻) ∣ ((iEdg‘𝐻)‘𝑥) ⊆ 𝑀})) |
| 28 | | eqidd 2737 |
. . . . . . . . . . . . . 14
⊢ (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (ℎ:{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁}–1-1-onto→{𝑥 ∈ dom (iEdg‘𝐻) ∣ ((iEdg‘𝐻)‘𝑥) ⊆ 𝑀} ∧ ∀𝑖 ∈ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁} (𝑓 “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(ℎ‘𝑖)))) → (((iEdg‘𝐻) ∘ ℎ) ∘ ◡(iEdg‘𝐺)) = (((iEdg‘𝐻) ∘ ℎ) ∘ ◡(iEdg‘𝐺))) |
| 29 | | uspgrlim.i |
. . . . . . . . . . . . . . . 16
⊢ 𝐼 = (Edg‘𝐺) |
| 30 | | uspgrlim.k |
. . . . . . . . . . . . . . . 16
⊢ 𝐾 = {𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ 𝑁} |
| 31 | 3, 29, 30 | uspgrlimlem1 47928 |
. . . . . . . . . . . . . . 15
⊢ (𝐺 ∈ USPGraph → 𝐾 = ((iEdg‘𝐺) “ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁})) |
| 32 | 31 | ad2antrr 726 |
. . . . . . . . . . . . . 14
⊢ (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (ℎ:{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁}–1-1-onto→{𝑥 ∈ dom (iEdg‘𝐻) ∣ ((iEdg‘𝐻)‘𝑥) ⊆ 𝑀} ∧ ∀𝑖 ∈ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁} (𝑓 “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(ℎ‘𝑖)))) → 𝐾 = ((iEdg‘𝐺) “ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁})) |
| 33 | | uspgrlim.j |
. . . . . . . . . . . . . . . 16
⊢ 𝐽 = (Edg‘𝐻) |
| 34 | | uspgrlim.l |
. . . . . . . . . . . . . . . 16
⊢ 𝐿 = {𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ 𝑀} |
| 35 | 4, 33, 34 | uspgrlimlem1 47928 |
. . . . . . . . . . . . . . 15
⊢ (𝐻 ∈ USPGraph → 𝐿 = ((iEdg‘𝐻) “ {𝑥 ∈ dom (iEdg‘𝐻) ∣ ((iEdg‘𝐻)‘𝑥) ⊆ 𝑀})) |
| 36 | 35 | ad2antlr 727 |
. . . . . . . . . . . . . 14
⊢ (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (ℎ:{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁}–1-1-onto→{𝑥 ∈ dom (iEdg‘𝐻) ∣ ((iEdg‘𝐻)‘𝑥) ⊆ 𝑀} ∧ ∀𝑖 ∈ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁} (𝑓 “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(ℎ‘𝑖)))) → 𝐿 = ((iEdg‘𝐻) “ {𝑥 ∈ dom (iEdg‘𝐻) ∣ ((iEdg‘𝐻)‘𝑥) ⊆ 𝑀})) |
| 37 | 28, 32, 36 | f1oeq123d 6840 |
. . . . . . . . . . . . 13
⊢ (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (ℎ:{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁}–1-1-onto→{𝑥 ∈ dom (iEdg‘𝐻) ∣ ((iEdg‘𝐻)‘𝑥) ⊆ 𝑀} ∧ ∀𝑖 ∈ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁} (𝑓 “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(ℎ‘𝑖)))) → ((((iEdg‘𝐻) ∘ ℎ) ∘ ◡(iEdg‘𝐺)):𝐾–1-1-onto→𝐿 ↔ (((iEdg‘𝐻) ∘ ℎ) ∘ ◡(iEdg‘𝐺)):((iEdg‘𝐺) “ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁})–1-1-onto→((iEdg‘𝐻) “ {𝑥 ∈ dom (iEdg‘𝐻) ∣ ((iEdg‘𝐻)‘𝑥) ⊆ 𝑀}))) |
| 38 | 27, 37 | mpbird 257 |
. . . . . . . . . . . 12
⊢ (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (ℎ:{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁}–1-1-onto→{𝑥 ∈ dom (iEdg‘𝐻) ∣ ((iEdg‘𝐻)‘𝑥) ⊆ 𝑀} ∧ ∀𝑖 ∈ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁} (𝑓 “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(ℎ‘𝑖)))) → (((iEdg‘𝐻) ∘ ℎ) ∘ ◡(iEdg‘𝐺)):𝐾–1-1-onto→𝐿) |
| 39 | | simpll 767 |
. . . . . . . . . . . . . 14
⊢ (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (ℎ:{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁}–1-1-onto→{𝑥 ∈ dom (iEdg‘𝐻) ∣ ((iEdg‘𝐻)‘𝑥) ⊆ 𝑀} ∧ ∀𝑖 ∈ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁} (𝑓 “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(ℎ‘𝑖)))) → 𝐺 ∈ USPGraph) |
| 40 | | simprr 773 |
. . . . . . . . . . . . . 14
⊢ (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (ℎ:{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁}–1-1-onto→{𝑥 ∈ dom (iEdg‘𝐻) ∣ ((iEdg‘𝐻)‘𝑥) ⊆ 𝑀} ∧ ∀𝑖 ∈ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁} (𝑓 “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(ℎ‘𝑖)))) → ∀𝑖 ∈ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁} (𝑓 “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(ℎ‘𝑖))) |
| 41 | 1, 2, 3, 4, 29, 33, 30, 34 | uspgrlimlem3 47930 |
. . . . . . . . . . . . . 14
⊢ ((𝐺 ∈ USPGraph ∧ ℎ:{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁}–1-1-onto→{𝑥 ∈ dom (iEdg‘𝐻) ∣ ((iEdg‘𝐻)‘𝑥) ⊆ 𝑀} ∧ ∀𝑖 ∈ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁} (𝑓 “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(ℎ‘𝑖))) → (𝑒 ∈ 𝐾 → (𝑓 “ 𝑒) = ((((iEdg‘𝐻) ∘ ℎ) ∘ ◡(iEdg‘𝐺))‘𝑒))) |
| 42 | 39, 19, 40, 41 | syl3anc 1373 |
. . . . . . . . . . . . 13
⊢ (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (ℎ:{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁}–1-1-onto→{𝑥 ∈ dom (iEdg‘𝐻) ∣ ((iEdg‘𝐻)‘𝑥) ⊆ 𝑀} ∧ ∀𝑖 ∈ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁} (𝑓 “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(ℎ‘𝑖)))) → (𝑒 ∈ 𝐾 → (𝑓 “ 𝑒) = ((((iEdg‘𝐻) ∘ ℎ) ∘ ◡(iEdg‘𝐺))‘𝑒))) |
| 43 | 42 | ralrimiv 3144 |
. . . . . . . . . . . 12
⊢ (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (ℎ:{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁}–1-1-onto→{𝑥 ∈ dom (iEdg‘𝐻) ∣ ((iEdg‘𝐻)‘𝑥) ⊆ 𝑀} ∧ ∀𝑖 ∈ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁} (𝑓 “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(ℎ‘𝑖)))) → ∀𝑒 ∈ 𝐾 (𝑓 “ 𝑒) = ((((iEdg‘𝐻) ∘ ℎ) ∘ ◡(iEdg‘𝐺))‘𝑒)) |
| 44 | 38, 43 | jca 511 |
. . . . . . . . . . 11
⊢ (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (ℎ:{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁}–1-1-onto→{𝑥 ∈ dom (iEdg‘𝐻) ∣ ((iEdg‘𝐻)‘𝑥) ⊆ 𝑀} ∧ ∀𝑖 ∈ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁} (𝑓 “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(ℎ‘𝑖)))) → ((((iEdg‘𝐻) ∘ ℎ) ∘ ◡(iEdg‘𝐺)):𝐾–1-1-onto→𝐿 ∧ ∀𝑒 ∈ 𝐾 (𝑓 “ 𝑒) = ((((iEdg‘𝐻) ∘ ℎ) ∘ ◡(iEdg‘𝐺))‘𝑒))) |
| 45 | | f1oeq1 6834 |
. . . . . . . . . . . 12
⊢ (𝑔 = (((iEdg‘𝐻) ∘ ℎ) ∘ ◡(iEdg‘𝐺)) → (𝑔:𝐾–1-1-onto→𝐿 ↔ (((iEdg‘𝐻) ∘ ℎ) ∘ ◡(iEdg‘𝐺)):𝐾–1-1-onto→𝐿)) |
| 46 | | fveq1 6903 |
. . . . . . . . . . . . . 14
⊢ (𝑔 = (((iEdg‘𝐻) ∘ ℎ) ∘ ◡(iEdg‘𝐺)) → (𝑔‘𝑒) = ((((iEdg‘𝐻) ∘ ℎ) ∘ ◡(iEdg‘𝐺))‘𝑒)) |
| 47 | 46 | eqeq2d 2747 |
. . . . . . . . . . . . 13
⊢ (𝑔 = (((iEdg‘𝐻) ∘ ℎ) ∘ ◡(iEdg‘𝐺)) → ((𝑓 “ 𝑒) = (𝑔‘𝑒) ↔ (𝑓 “ 𝑒) = ((((iEdg‘𝐻) ∘ ℎ) ∘ ◡(iEdg‘𝐺))‘𝑒))) |
| 48 | 47 | ralbidv 3177 |
. . . . . . . . . . . 12
⊢ (𝑔 = (((iEdg‘𝐻) ∘ ℎ) ∘ ◡(iEdg‘𝐺)) → (∀𝑒 ∈ 𝐾 (𝑓 “ 𝑒) = (𝑔‘𝑒) ↔ ∀𝑒 ∈ 𝐾 (𝑓 “ 𝑒) = ((((iEdg‘𝐻) ∘ ℎ) ∘ ◡(iEdg‘𝐺))‘𝑒))) |
| 49 | 45, 48 | anbi12d 632 |
. . . . . . . . . . 11
⊢ (𝑔 = (((iEdg‘𝐻) ∘ ℎ) ∘ ◡(iEdg‘𝐺)) → ((𝑔:𝐾–1-1-onto→𝐿 ∧ ∀𝑒 ∈ 𝐾 (𝑓 “ 𝑒) = (𝑔‘𝑒)) ↔ ((((iEdg‘𝐻) ∘ ℎ) ∘ ◡(iEdg‘𝐺)):𝐾–1-1-onto→𝐿 ∧ ∀𝑒 ∈ 𝐾 (𝑓 “ 𝑒) = ((((iEdg‘𝐻) ∘ ℎ) ∘ ◡(iEdg‘𝐺))‘𝑒)))) |
| 50 | 16, 44, 49 | spcedv 3597 |
. . . . . . . . . 10
⊢ (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (ℎ:{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁}–1-1-onto→{𝑥 ∈ dom (iEdg‘𝐻) ∣ ((iEdg‘𝐻)‘𝑥) ⊆ 𝑀} ∧ ∀𝑖 ∈ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁} (𝑓 “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(ℎ‘𝑖)))) → ∃𝑔(𝑔:𝐾–1-1-onto→𝐿 ∧ ∀𝑒 ∈ 𝐾 (𝑓 “ 𝑒) = (𝑔‘𝑒))) |
| 51 | 50 | ex 412 |
. . . . . . . . 9
⊢ ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) → ((ℎ:{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁}–1-1-onto→{𝑥 ∈ dom (iEdg‘𝐻) ∣ ((iEdg‘𝐻)‘𝑥) ⊆ 𝑀} ∧ ∀𝑖 ∈ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁} (𝑓 “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(ℎ‘𝑖))) → ∃𝑔(𝑔:𝐾–1-1-onto→𝐿 ∧ ∀𝑒 ∈ 𝐾 (𝑓 “ 𝑒) = (𝑔‘𝑒)))) |
| 52 | 51 | exlimdv 1933 |
. . . . . . . 8
⊢ ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) →
(∃ℎ(ℎ:{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁}–1-1-onto→{𝑥 ∈ dom (iEdg‘𝐻) ∣ ((iEdg‘𝐻)‘𝑥) ⊆ 𝑀} ∧ ∀𝑖 ∈ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁} (𝑓 “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(ℎ‘𝑖))) → ∃𝑔(𝑔:𝐾–1-1-onto→𝐿 ∧ ∀𝑒 ∈ 𝐾 (𝑓 “ 𝑒) = (𝑔‘𝑒)))) |
| 53 | 10 | cnvex 7943 |
. . . . . . . . . . . . . 14
⊢ ◡(iEdg‘𝐻) ∈ V |
| 54 | | vex 3483 |
. . . . . . . . . . . . . 14
⊢ 𝑔 ∈ V |
| 55 | 53, 54 | coex 7948 |
. . . . . . . . . . . . 13
⊢ (◡(iEdg‘𝐻) ∘ 𝑔) ∈ V |
| 56 | 55, 13 | coex 7948 |
. . . . . . . . . . . 12
⊢ ((◡(iEdg‘𝐻) ∘ 𝑔) ∘ (iEdg‘𝐺)) ∈ V |
| 57 | 56 | a1i 11 |
. . . . . . . . . . 11
⊢ (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝑔:𝐾–1-1-onto→𝐿 ∧ ∀𝑒 ∈ 𝐾 (𝑓 “ 𝑒) = (𝑔‘𝑒))) → ((◡(iEdg‘𝐻) ∘ 𝑔) ∘ (iEdg‘𝐺)) ∈ V) |
| 58 | 17 | ad2antrr 726 |
. . . . . . . . . . . . . 14
⊢ (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝑔:𝐾–1-1-onto→𝐿 ∧ ∀𝑒 ∈ 𝐾 (𝑓 “ 𝑒) = (𝑔‘𝑒))) → (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1-onto→(Edg‘𝐺)) |
| 59 | | simprl 771 |
. . . . . . . . . . . . . 14
⊢ (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝑔:𝐾–1-1-onto→𝐿 ∧ ∀𝑒 ∈ 𝐾 (𝑓 “ 𝑒) = (𝑔‘𝑒))) → 𝑔:𝐾–1-1-onto→𝐿) |
| 60 | 20 | ad2antlr 727 |
. . . . . . . . . . . . . 14
⊢ (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝑔:𝐾–1-1-onto→𝐿 ∧ ∀𝑒 ∈ 𝐾 (𝑓 “ 𝑒) = (𝑔‘𝑒))) → (iEdg‘𝐻):dom (iEdg‘𝐻)–1-1-onto→(Edg‘𝐻)) |
| 61 | 29 | rabeqi 3449 |
. . . . . . . . . . . . . . . . . 18
⊢ {𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ 𝑁} = {𝑥 ∈ (Edg‘𝐺) ∣ 𝑥 ⊆ 𝑁} |
| 62 | 30, 61 | eqtri 2764 |
. . . . . . . . . . . . . . . . 17
⊢ 𝐾 = {𝑥 ∈ (Edg‘𝐺) ∣ 𝑥 ⊆ 𝑁} |
| 63 | 62 | ssrab3 4081 |
. . . . . . . . . . . . . . . 16
⊢ 𝐾 ⊆ (Edg‘𝐺) |
| 64 | 33 | rabeqi 3449 |
. . . . . . . . . . . . . . . . . 18
⊢ {𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ 𝑀} = {𝑥 ∈ (Edg‘𝐻) ∣ 𝑥 ⊆ 𝑀} |
| 65 | 34, 64 | eqtri 2764 |
. . . . . . . . . . . . . . . . 17
⊢ 𝐿 = {𝑥 ∈ (Edg‘𝐻) ∣ 𝑥 ⊆ 𝑀} |
| 66 | 65 | ssrab3 4081 |
. . . . . . . . . . . . . . . 16
⊢ 𝐿 ⊆ (Edg‘𝐻) |
| 67 | 63, 66 | pm3.2i 470 |
. . . . . . . . . . . . . . 15
⊢ (𝐾 ⊆ (Edg‘𝐺) ∧ 𝐿 ⊆ (Edg‘𝐻)) |
| 68 | 67 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝑔:𝐾–1-1-onto→𝐿 ∧ ∀𝑒 ∈ 𝐾 (𝑓 “ 𝑒) = (𝑔‘𝑒))) → (𝐾 ⊆ (Edg‘𝐺) ∧ 𝐿 ⊆ (Edg‘𝐻))) |
| 69 | | 3f1oss2 47061 |
. . . . . . . . . . . . . 14
⊢
((((iEdg‘𝐺):dom (iEdg‘𝐺)–1-1-onto→(Edg‘𝐺) ∧ 𝑔:𝐾–1-1-onto→𝐿 ∧ (iEdg‘𝐻):dom (iEdg‘𝐻)–1-1-onto→(Edg‘𝐻)) ∧ (𝐾 ⊆ (Edg‘𝐺) ∧ 𝐿 ⊆ (Edg‘𝐻))) → ((◡(iEdg‘𝐻) ∘ 𝑔) ∘ (iEdg‘𝐺)):(◡(iEdg‘𝐺) “ 𝐾)–1-1-onto→(◡(iEdg‘𝐻) “ 𝐿)) |
| 70 | 58, 59, 60, 68, 69 | syl31anc 1375 |
. . . . . . . . . . . . 13
⊢ (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝑔:𝐾–1-1-onto→𝐿 ∧ ∀𝑒 ∈ 𝐾 (𝑓 “ 𝑒) = (𝑔‘𝑒))) → ((◡(iEdg‘𝐻) ∘ 𝑔) ∘ (iEdg‘𝐺)):(◡(iEdg‘𝐺) “ 𝐾)–1-1-onto→(◡(iEdg‘𝐻) “ 𝐿)) |
| 71 | | eqidd 2737 |
. . . . . . . . . . . . . 14
⊢ (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝑔:𝐾–1-1-onto→𝐿 ∧ ∀𝑒 ∈ 𝐾 (𝑓 “ 𝑒) = (𝑔‘𝑒))) → ((◡(iEdg‘𝐻) ∘ 𝑔) ∘ (iEdg‘𝐺)) = ((◡(iEdg‘𝐻) ∘ 𝑔) ∘ (iEdg‘𝐺))) |
| 72 | 3, 29, 30 | uspgrlimlem2 47929 |
. . . . . . . . . . . . . . 15
⊢ (𝐺 ∈ USPGraph → (◡(iEdg‘𝐺) “ 𝐾) = {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁}) |
| 73 | 72 | ad2antrr 726 |
. . . . . . . . . . . . . 14
⊢ (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝑔:𝐾–1-1-onto→𝐿 ∧ ∀𝑒 ∈ 𝐾 (𝑓 “ 𝑒) = (𝑔‘𝑒))) → (◡(iEdg‘𝐺) “ 𝐾) = {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁}) |
| 74 | 4, 33, 34 | uspgrlimlem2 47929 |
. . . . . . . . . . . . . . 15
⊢ (𝐻 ∈ USPGraph → (◡(iEdg‘𝐻) “ 𝐿) = {𝑥 ∈ dom (iEdg‘𝐻) ∣ ((iEdg‘𝐻)‘𝑥) ⊆ 𝑀}) |
| 75 | 74 | ad2antlr 727 |
. . . . . . . . . . . . . 14
⊢ (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝑔:𝐾–1-1-onto→𝐿 ∧ ∀𝑒 ∈ 𝐾 (𝑓 “ 𝑒) = (𝑔‘𝑒))) → (◡(iEdg‘𝐻) “ 𝐿) = {𝑥 ∈ dom (iEdg‘𝐻) ∣ ((iEdg‘𝐻)‘𝑥) ⊆ 𝑀}) |
| 76 | 71, 73, 75 | f1oeq123d 6840 |
. . . . . . . . . . . . 13
⊢ (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝑔:𝐾–1-1-onto→𝐿 ∧ ∀𝑒 ∈ 𝐾 (𝑓 “ 𝑒) = (𝑔‘𝑒))) → (((◡(iEdg‘𝐻) ∘ 𝑔) ∘ (iEdg‘𝐺)):(◡(iEdg‘𝐺) “ 𝐾)–1-1-onto→(◡(iEdg‘𝐻) “ 𝐿) ↔ ((◡(iEdg‘𝐻) ∘ 𝑔) ∘ (iEdg‘𝐺)):{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁}–1-1-onto→{𝑥 ∈ dom (iEdg‘𝐻) ∣ ((iEdg‘𝐻)‘𝑥) ⊆ 𝑀})) |
| 77 | 70, 76 | mpbid 232 |
. . . . . . . . . . . 12
⊢ (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝑔:𝐾–1-1-onto→𝐿 ∧ ∀𝑒 ∈ 𝐾 (𝑓 “ 𝑒) = (𝑔‘𝑒))) → ((◡(iEdg‘𝐻) ∘ 𝑔) ∘ (iEdg‘𝐺)):{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁}–1-1-onto→{𝑥 ∈ dom (iEdg‘𝐻) ∣ ((iEdg‘𝐻)‘𝑥) ⊆ 𝑀}) |
| 78 | | fveq2 6904 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝑖 → ((iEdg‘𝐺)‘𝑥) = ((iEdg‘𝐺)‘𝑖)) |
| 79 | 78 | sseq1d 4014 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑖 → (((iEdg‘𝐺)‘𝑥) ⊆ 𝑁 ↔ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑁)) |
| 80 | 79 | elrab 3691 |
. . . . . . . . . . . . . 14
⊢ (𝑖 ∈ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁} ↔ (𝑖 ∈ dom (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑁)) |
| 81 | 1, 2, 3, 4, 29, 33, 30, 34 | uspgrlimlem4 47931 |
. . . . . . . . . . . . . 14
⊢ (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝑔:𝐾–1-1-onto→𝐿 ∧ ∀𝑒 ∈ 𝐾 (𝑓 “ 𝑒) = (𝑔‘𝑒))) → ((𝑖 ∈ dom (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑁) → (𝑓 “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(((◡(iEdg‘𝐻) ∘ 𝑔) ∘ (iEdg‘𝐺))‘𝑖)))) |
| 82 | 80, 81 | biimtrid 242 |
. . . . . . . . . . . . 13
⊢ (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝑔:𝐾–1-1-onto→𝐿 ∧ ∀𝑒 ∈ 𝐾 (𝑓 “ 𝑒) = (𝑔‘𝑒))) → (𝑖 ∈ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁} → (𝑓 “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(((◡(iEdg‘𝐻) ∘ 𝑔) ∘ (iEdg‘𝐺))‘𝑖)))) |
| 83 | 82 | ralrimiv 3144 |
. . . . . . . . . . . 12
⊢ (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝑔:𝐾–1-1-onto→𝐿 ∧ ∀𝑒 ∈ 𝐾 (𝑓 “ 𝑒) = (𝑔‘𝑒))) → ∀𝑖 ∈ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁} (𝑓 “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(((◡(iEdg‘𝐻) ∘ 𝑔) ∘ (iEdg‘𝐺))‘𝑖))) |
| 84 | 77, 83 | jca 511 |
. . . . . . . . . . 11
⊢ (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝑔:𝐾–1-1-onto→𝐿 ∧ ∀𝑒 ∈ 𝐾 (𝑓 “ 𝑒) = (𝑔‘𝑒))) → (((◡(iEdg‘𝐻) ∘ 𝑔) ∘ (iEdg‘𝐺)):{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁}–1-1-onto→{𝑥 ∈ dom (iEdg‘𝐻) ∣ ((iEdg‘𝐻)‘𝑥) ⊆ 𝑀} ∧ ∀𝑖 ∈ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁} (𝑓 “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(((◡(iEdg‘𝐻) ∘ 𝑔) ∘ (iEdg‘𝐺))‘𝑖)))) |
| 85 | | f1oeq1 6834 |
. . . . . . . . . . . 12
⊢ (ℎ = ((◡(iEdg‘𝐻) ∘ 𝑔) ∘ (iEdg‘𝐺)) → (ℎ:{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁}–1-1-onto→{𝑥 ∈ dom (iEdg‘𝐻) ∣ ((iEdg‘𝐻)‘𝑥) ⊆ 𝑀} ↔ ((◡(iEdg‘𝐻) ∘ 𝑔) ∘ (iEdg‘𝐺)):{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁}–1-1-onto→{𝑥 ∈ dom (iEdg‘𝐻) ∣ ((iEdg‘𝐻)‘𝑥) ⊆ 𝑀})) |
| 86 | | fveq1 6903 |
. . . . . . . . . . . . . . 15
⊢ (ℎ = ((◡(iEdg‘𝐻) ∘ 𝑔) ∘ (iEdg‘𝐺)) → (ℎ‘𝑖) = (((◡(iEdg‘𝐻) ∘ 𝑔) ∘ (iEdg‘𝐺))‘𝑖)) |
| 87 | 86 | fveq2d 6908 |
. . . . . . . . . . . . . 14
⊢ (ℎ = ((◡(iEdg‘𝐻) ∘ 𝑔) ∘ (iEdg‘𝐺)) → ((iEdg‘𝐻)‘(ℎ‘𝑖)) = ((iEdg‘𝐻)‘(((◡(iEdg‘𝐻) ∘ 𝑔) ∘ (iEdg‘𝐺))‘𝑖))) |
| 88 | 87 | eqeq2d 2747 |
. . . . . . . . . . . . 13
⊢ (ℎ = ((◡(iEdg‘𝐻) ∘ 𝑔) ∘ (iEdg‘𝐺)) → ((𝑓 “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(ℎ‘𝑖)) ↔ (𝑓 “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(((◡(iEdg‘𝐻) ∘ 𝑔) ∘ (iEdg‘𝐺))‘𝑖)))) |
| 89 | 88 | ralbidv 3177 |
. . . . . . . . . . . 12
⊢ (ℎ = ((◡(iEdg‘𝐻) ∘ 𝑔) ∘ (iEdg‘𝐺)) → (∀𝑖 ∈ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁} (𝑓 “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(ℎ‘𝑖)) ↔ ∀𝑖 ∈ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁} (𝑓 “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(((◡(iEdg‘𝐻) ∘ 𝑔) ∘ (iEdg‘𝐺))‘𝑖)))) |
| 90 | 85, 89 | anbi12d 632 |
. . . . . . . . . . 11
⊢ (ℎ = ((◡(iEdg‘𝐻) ∘ 𝑔) ∘ (iEdg‘𝐺)) → ((ℎ:{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁}–1-1-onto→{𝑥 ∈ dom (iEdg‘𝐻) ∣ ((iEdg‘𝐻)‘𝑥) ⊆ 𝑀} ∧ ∀𝑖 ∈ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁} (𝑓 “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(ℎ‘𝑖))) ↔ (((◡(iEdg‘𝐻) ∘ 𝑔) ∘ (iEdg‘𝐺)):{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁}–1-1-onto→{𝑥 ∈ dom (iEdg‘𝐻) ∣ ((iEdg‘𝐻)‘𝑥) ⊆ 𝑀} ∧ ∀𝑖 ∈ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁} (𝑓 “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(((◡(iEdg‘𝐻) ∘ 𝑔) ∘ (iEdg‘𝐺))‘𝑖))))) |
| 91 | 57, 84, 90 | spcedv 3597 |
. . . . . . . . . 10
⊢ (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝑔:𝐾–1-1-onto→𝐿 ∧ ∀𝑒 ∈ 𝐾 (𝑓 “ 𝑒) = (𝑔‘𝑒))) → ∃ℎ(ℎ:{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁}–1-1-onto→{𝑥 ∈ dom (iEdg‘𝐻) ∣ ((iEdg‘𝐻)‘𝑥) ⊆ 𝑀} ∧ ∀𝑖 ∈ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁} (𝑓 “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(ℎ‘𝑖)))) |
| 92 | 91 | ex 412 |
. . . . . . . . 9
⊢ ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) → ((𝑔:𝐾–1-1-onto→𝐿 ∧ ∀𝑒 ∈ 𝐾 (𝑓 “ 𝑒) = (𝑔‘𝑒)) → ∃ℎ(ℎ:{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁}–1-1-onto→{𝑥 ∈ dom (iEdg‘𝐻) ∣ ((iEdg‘𝐻)‘𝑥) ⊆ 𝑀} ∧ ∀𝑖 ∈ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁} (𝑓 “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(ℎ‘𝑖))))) |
| 93 | 92 | exlimdv 1933 |
. . . . . . . 8
⊢ ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) →
(∃𝑔(𝑔:𝐾–1-1-onto→𝐿 ∧ ∀𝑒 ∈ 𝐾 (𝑓 “ 𝑒) = (𝑔‘𝑒)) → ∃ℎ(ℎ:{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁}–1-1-onto→{𝑥 ∈ dom (iEdg‘𝐻) ∣ ((iEdg‘𝐻)‘𝑥) ⊆ 𝑀} ∧ ∀𝑖 ∈ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁} (𝑓 “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(ℎ‘𝑖))))) |
| 94 | 52, 93 | impbid 212 |
. . . . . . 7
⊢ ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) →
(∃ℎ(ℎ:{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁}–1-1-onto→{𝑥 ∈ dom (iEdg‘𝐻) ∣ ((iEdg‘𝐻)‘𝑥) ⊆ 𝑀} ∧ ∀𝑖 ∈ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁} (𝑓 “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(ℎ‘𝑖))) ↔ ∃𝑔(𝑔:𝐾–1-1-onto→𝐿 ∧ ∀𝑒 ∈ 𝐾 (𝑓 “ 𝑒) = (𝑔‘𝑒)))) |
| 95 | 94 | anbi2d 630 |
. . . . . 6
⊢ ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) → ((𝑓:𝑁–1-1-onto→𝑀 ∧ ∃ℎ(ℎ:{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁}–1-1-onto→{𝑥 ∈ dom (iEdg‘𝐻) ∣ ((iEdg‘𝐻)‘𝑥) ⊆ 𝑀} ∧ ∀𝑖 ∈ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁} (𝑓 “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(ℎ‘𝑖)))) ↔ (𝑓:𝑁–1-1-onto→𝑀 ∧ ∃𝑔(𝑔:𝐾–1-1-onto→𝐿 ∧ ∀𝑒 ∈ 𝐾 (𝑓 “ 𝑒) = (𝑔‘𝑒))))) |
| 96 | 95 | exbidv 1921 |
. . . . 5
⊢ ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) →
(∃𝑓(𝑓:𝑁–1-1-onto→𝑀 ∧ ∃ℎ(ℎ:{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁}–1-1-onto→{𝑥 ∈ dom (iEdg‘𝐻) ∣ ((iEdg‘𝐻)‘𝑥) ⊆ 𝑀} ∧ ∀𝑖 ∈ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁} (𝑓 “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(ℎ‘𝑖)))) ↔ ∃𝑓(𝑓:𝑁–1-1-onto→𝑀 ∧ ∃𝑔(𝑔:𝐾–1-1-onto→𝐿 ∧ ∀𝑒 ∈ 𝐾 (𝑓 “ 𝑒) = (𝑔‘𝑒))))) |
| 97 | 96 | ralbidv 3177 |
. . . 4
⊢ ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) →
(∀𝑣 ∈ 𝑉 ∃𝑓(𝑓:𝑁–1-1-onto→𝑀 ∧ ∃ℎ(ℎ:{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁}–1-1-onto→{𝑥 ∈ dom (iEdg‘𝐻) ∣ ((iEdg‘𝐻)‘𝑥) ⊆ 𝑀} ∧ ∀𝑖 ∈ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁} (𝑓 “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(ℎ‘𝑖)))) ↔ ∀𝑣 ∈ 𝑉 ∃𝑓(𝑓:𝑁–1-1-onto→𝑀 ∧ ∃𝑔(𝑔:𝐾–1-1-onto→𝐿 ∧ ∀𝑒 ∈ 𝐾 (𝑓 “ 𝑒) = (𝑔‘𝑒))))) |
| 98 | 97 | anbi2d 630 |
. . 3
⊢ ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) → ((𝐹:𝑉–1-1-onto→𝑊 ∧ ∀𝑣 ∈ 𝑉 ∃𝑓(𝑓:𝑁–1-1-onto→𝑀 ∧ ∃ℎ(ℎ:{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁}–1-1-onto→{𝑥 ∈ dom (iEdg‘𝐻) ∣ ((iEdg‘𝐻)‘𝑥) ⊆ 𝑀} ∧ ∀𝑖 ∈ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁} (𝑓 “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(ℎ‘𝑖))))) ↔ (𝐹:𝑉–1-1-onto→𝑊 ∧ ∀𝑣 ∈ 𝑉 ∃𝑓(𝑓:𝑁–1-1-onto→𝑀 ∧ ∃𝑔(𝑔:𝐾–1-1-onto→𝐿 ∧ ∀𝑒 ∈ 𝐾 (𝑓 “ 𝑒) = (𝑔‘𝑒)))))) |
| 99 | 98 | 3adant3 1133 |
. 2
⊢ ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑍) → ((𝐹:𝑉–1-1-onto→𝑊 ∧ ∀𝑣 ∈ 𝑉 ∃𝑓(𝑓:𝑁–1-1-onto→𝑀 ∧ ∃ℎ(ℎ:{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁}–1-1-onto→{𝑥 ∈ dom (iEdg‘𝐻) ∣ ((iEdg‘𝐻)‘𝑥) ⊆ 𝑀} ∧ ∀𝑖 ∈ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁} (𝑓 “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(ℎ‘𝑖))))) ↔ (𝐹:𝑉–1-1-onto→𝑊 ∧ ∀𝑣 ∈ 𝑉 ∃𝑓(𝑓:𝑁–1-1-onto→𝑀 ∧ ∃𝑔(𝑔:𝐾–1-1-onto→𝐿 ∧ ∀𝑒 ∈ 𝐾 (𝑓 “ 𝑒) = (𝑔‘𝑒)))))) |
| 100 | 9, 99 | bitrd 279 |
1
⊢ ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑍) → (𝐹 ∈ (𝐺 GraphLocIso 𝐻) ↔ (𝐹:𝑉–1-1-onto→𝑊 ∧ ∀𝑣 ∈ 𝑉 ∃𝑓(𝑓:𝑁–1-1-onto→𝑀 ∧ ∃𝑔(𝑔:𝐾–1-1-onto→𝐿 ∧ ∀𝑒 ∈ 𝐾 (𝑓 “ 𝑒) = (𝑔‘𝑒)))))) |