![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dchrn0 | Structured version Visualization version GIF version |
Description: A Dirichlet character is nonzero on the units of ℤ/nℤ. (Contributed by Mario Carneiro, 18-Apr-2016.) |
Ref | Expression |
---|---|
dchrmhm.g | ⊢ 𝐺 = (DChr‘𝑁) |
dchrmhm.z | ⊢ 𝑍 = (ℤ/nℤ‘𝑁) |
dchrmhm.b | ⊢ 𝐷 = (Base‘𝐺) |
dchrn0.b | ⊢ 𝐵 = (Base‘𝑍) |
dchrn0.u | ⊢ 𝑈 = (Unit‘𝑍) |
dchrn0.x | ⊢ (𝜑 → 𝑋 ∈ 𝐷) |
dchrn0.a | ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
Ref | Expression |
---|---|
dchrn0 | ⊢ (𝜑 → ((𝑋‘𝐴) ≠ 0 ↔ 𝐴 ∈ 𝑈)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6920 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (𝑋‘𝑥) = (𝑋‘𝐴)) | |
2 | 1 | neeq1d 3006 | . . . . 5 ⊢ (𝑥 = 𝐴 → ((𝑋‘𝑥) ≠ 0 ↔ (𝑋‘𝐴) ≠ 0)) |
3 | eleq1 2832 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ 𝑈 ↔ 𝐴 ∈ 𝑈)) | |
4 | 2, 3 | imbi12d 344 | . . . 4 ⊢ (𝑥 = 𝐴 → (((𝑋‘𝑥) ≠ 0 → 𝑥 ∈ 𝑈) ↔ ((𝑋‘𝐴) ≠ 0 → 𝐴 ∈ 𝑈))) |
5 | dchrn0.x | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ 𝐷) | |
6 | dchrmhm.g | . . . . . . 7 ⊢ 𝐺 = (DChr‘𝑁) | |
7 | dchrmhm.z | . . . . . . 7 ⊢ 𝑍 = (ℤ/nℤ‘𝑁) | |
8 | dchrn0.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝑍) | |
9 | dchrn0.u | . . . . . . 7 ⊢ 𝑈 = (Unit‘𝑍) | |
10 | dchrmhm.b | . . . . . . . . 9 ⊢ 𝐷 = (Base‘𝐺) | |
11 | 6, 10 | dchrrcl 27302 | . . . . . . . 8 ⊢ (𝑋 ∈ 𝐷 → 𝑁 ∈ ℕ) |
12 | 5, 11 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝑁 ∈ ℕ) |
13 | 6, 7, 8, 9, 12, 10 | dchrelbas2 27299 | . . . . . 6 ⊢ (𝜑 → (𝑋 ∈ 𝐷 ↔ (𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∧ ∀𝑥 ∈ 𝐵 ((𝑋‘𝑥) ≠ 0 → 𝑥 ∈ 𝑈)))) |
14 | 5, 13 | mpbid 232 | . . . . 5 ⊢ (𝜑 → (𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∧ ∀𝑥 ∈ 𝐵 ((𝑋‘𝑥) ≠ 0 → 𝑥 ∈ 𝑈))) |
15 | 14 | simprd 495 | . . . 4 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ((𝑋‘𝑥) ≠ 0 → 𝑥 ∈ 𝑈)) |
16 | dchrn0.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝐵) | |
17 | 4, 15, 16 | rspcdva 3636 | . . 3 ⊢ (𝜑 → ((𝑋‘𝐴) ≠ 0 → 𝐴 ∈ 𝑈)) |
18 | 17 | imp 406 | . 2 ⊢ ((𝜑 ∧ (𝑋‘𝐴) ≠ 0) → 𝐴 ∈ 𝑈) |
19 | ax-1ne0 11253 | . . . . 5 ⊢ 1 ≠ 0 | |
20 | 19 | a1i 11 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ∈ 𝑈) → 1 ≠ 0) |
21 | 12 | nnnn0d 12613 | . . . . . . . 8 ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
22 | 7 | zncrng 21586 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ0 → 𝑍 ∈ CRing) |
23 | crngring 20272 | . . . . . . . 8 ⊢ (𝑍 ∈ CRing → 𝑍 ∈ Ring) | |
24 | 21, 22, 23 | 3syl 18 | . . . . . . 7 ⊢ (𝜑 → 𝑍 ∈ Ring) |
25 | eqid 2740 | . . . . . . . 8 ⊢ (invr‘𝑍) = (invr‘𝑍) | |
26 | eqid 2740 | . . . . . . . 8 ⊢ (.r‘𝑍) = (.r‘𝑍) | |
27 | eqid 2740 | . . . . . . . 8 ⊢ (1r‘𝑍) = (1r‘𝑍) | |
28 | 9, 25, 26, 27 | unitrinv 20420 | . . . . . . 7 ⊢ ((𝑍 ∈ Ring ∧ 𝐴 ∈ 𝑈) → (𝐴(.r‘𝑍)((invr‘𝑍)‘𝐴)) = (1r‘𝑍)) |
29 | 24, 28 | sylan 579 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐴 ∈ 𝑈) → (𝐴(.r‘𝑍)((invr‘𝑍)‘𝐴)) = (1r‘𝑍)) |
30 | 29 | fveq2d 6924 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 ∈ 𝑈) → (𝑋‘(𝐴(.r‘𝑍)((invr‘𝑍)‘𝐴))) = (𝑋‘(1r‘𝑍))) |
31 | 14 | simpld 494 | . . . . . . 7 ⊢ (𝜑 → 𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))) |
32 | 31 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐴 ∈ 𝑈) → 𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))) |
33 | 16 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐴 ∈ 𝑈) → 𝐴 ∈ 𝐵) |
34 | 9, 25, 8 | ringinvcl 20418 | . . . . . . 7 ⊢ ((𝑍 ∈ Ring ∧ 𝐴 ∈ 𝑈) → ((invr‘𝑍)‘𝐴) ∈ 𝐵) |
35 | 24, 34 | sylan 579 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐴 ∈ 𝑈) → ((invr‘𝑍)‘𝐴) ∈ 𝐵) |
36 | eqid 2740 | . . . . . . . 8 ⊢ (mulGrp‘𝑍) = (mulGrp‘𝑍) | |
37 | 36, 8 | mgpbas 20167 | . . . . . . 7 ⊢ 𝐵 = (Base‘(mulGrp‘𝑍)) |
38 | 36, 26 | mgpplusg 20165 | . . . . . . 7 ⊢ (.r‘𝑍) = (+g‘(mulGrp‘𝑍)) |
39 | eqid 2740 | . . . . . . . 8 ⊢ (mulGrp‘ℂfld) = (mulGrp‘ℂfld) | |
40 | cnfldmul 21395 | . . . . . . . 8 ⊢ · = (.r‘ℂfld) | |
41 | 39, 40 | mgpplusg 20165 | . . . . . . 7 ⊢ · = (+g‘(mulGrp‘ℂfld)) |
42 | 37, 38, 41 | mhmlin 18828 | . . . . . 6 ⊢ ((𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∧ 𝐴 ∈ 𝐵 ∧ ((invr‘𝑍)‘𝐴) ∈ 𝐵) → (𝑋‘(𝐴(.r‘𝑍)((invr‘𝑍)‘𝐴))) = ((𝑋‘𝐴) · (𝑋‘((invr‘𝑍)‘𝐴)))) |
43 | 32, 33, 35, 42 | syl3anc 1371 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 ∈ 𝑈) → (𝑋‘(𝐴(.r‘𝑍)((invr‘𝑍)‘𝐴))) = ((𝑋‘𝐴) · (𝑋‘((invr‘𝑍)‘𝐴)))) |
44 | 36, 27 | ringidval 20210 | . . . . . . 7 ⊢ (1r‘𝑍) = (0g‘(mulGrp‘𝑍)) |
45 | cnfld1 21429 | . . . . . . . 8 ⊢ 1 = (1r‘ℂfld) | |
46 | 39, 45 | ringidval 20210 | . . . . . . 7 ⊢ 1 = (0g‘(mulGrp‘ℂfld)) |
47 | 44, 46 | mhm0 18829 | . . . . . 6 ⊢ (𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) → (𝑋‘(1r‘𝑍)) = 1) |
48 | 32, 47 | syl 17 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 ∈ 𝑈) → (𝑋‘(1r‘𝑍)) = 1) |
49 | 30, 43, 48 | 3eqtr3d 2788 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ∈ 𝑈) → ((𝑋‘𝐴) · (𝑋‘((invr‘𝑍)‘𝐴))) = 1) |
50 | cnfldbas 21391 | . . . . . . . . 9 ⊢ ℂ = (Base‘ℂfld) | |
51 | 39, 50 | mgpbas 20167 | . . . . . . . 8 ⊢ ℂ = (Base‘(mulGrp‘ℂfld)) |
52 | 37, 51 | mhmf 18824 | . . . . . . 7 ⊢ (𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) → 𝑋:𝐵⟶ℂ) |
53 | 32, 52 | syl 17 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐴 ∈ 𝑈) → 𝑋:𝐵⟶ℂ) |
54 | 53, 35 | ffvelcdmd 7119 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 ∈ 𝑈) → (𝑋‘((invr‘𝑍)‘𝐴)) ∈ ℂ) |
55 | 54 | mul02d 11488 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ∈ 𝑈) → (0 · (𝑋‘((invr‘𝑍)‘𝐴))) = 0) |
56 | 20, 49, 55 | 3netr4d 3024 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ∈ 𝑈) → ((𝑋‘𝐴) · (𝑋‘((invr‘𝑍)‘𝐴))) ≠ (0 · (𝑋‘((invr‘𝑍)‘𝐴)))) |
57 | oveq1 7455 | . . . 4 ⊢ ((𝑋‘𝐴) = 0 → ((𝑋‘𝐴) · (𝑋‘((invr‘𝑍)‘𝐴))) = (0 · (𝑋‘((invr‘𝑍)‘𝐴)))) | |
58 | 57 | necon3i 2979 | . . 3 ⊢ (((𝑋‘𝐴) · (𝑋‘((invr‘𝑍)‘𝐴))) ≠ (0 · (𝑋‘((invr‘𝑍)‘𝐴))) → (𝑋‘𝐴) ≠ 0) |
59 | 56, 58 | syl 17 | . 2 ⊢ ((𝜑 ∧ 𝐴 ∈ 𝑈) → (𝑋‘𝐴) ≠ 0) |
60 | 18, 59 | impbida 800 | 1 ⊢ (𝜑 → ((𝑋‘𝐴) ≠ 0 ↔ 𝐴 ∈ 𝑈)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 ∀wral 3067 ⟶wf 6569 ‘cfv 6573 (class class class)co 7448 ℂcc 11182 0cc0 11184 1c1 11185 · cmul 11189 ℕcn 12293 ℕ0cn0 12553 Basecbs 17258 .rcmulr 17312 MndHom cmhm 18816 mulGrpcmgp 20161 1rcur 20208 Ringcrg 20260 CRingccrg 20261 Unitcui 20381 invrcinvr 20413 ℂfldccnfld 21387 ℤ/nℤczn 21536 DChrcdchr 27294 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-addf 11263 ax-mulf 11264 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-tpos 8267 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-er 8763 df-ec 8765 df-qs 8769 df-map 8886 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-sup 9511 df-inf 9512 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-z 12640 df-dec 12759 df-uz 12904 df-fz 13568 df-struct 17194 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-ress 17288 df-plusg 17324 df-mulr 17325 df-starv 17326 df-sca 17327 df-vsca 17328 df-ip 17329 df-tset 17330 df-ple 17331 df-ds 17333 df-unif 17334 df-0g 17501 df-imas 17568 df-qus 17569 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-mhm 18818 df-grp 18976 df-minusg 18977 df-sbg 18978 df-subg 19163 df-nsg 19164 df-eqg 19165 df-cmn 19824 df-abl 19825 df-mgp 20162 df-rng 20180 df-ur 20209 df-ring 20262 df-cring 20263 df-oppr 20360 df-dvdsr 20383 df-unit 20384 df-invr 20414 df-subrng 20572 df-subrg 20597 df-lmod 20882 df-lss 20953 df-lsp 20993 df-sra 21195 df-rgmod 21196 df-lidl 21241 df-rsp 21242 df-2idl 21283 df-cnfld 21388 df-zring 21481 df-zn 21540 df-dchr 27295 |
This theorem is referenced by: dchrinvcl 27315 dchrfi 27317 dchrghm 27318 dchreq 27320 dchrabs 27322 dchrabs2 27324 dchr1re 27325 dchrpt 27329 dchrsum 27331 sum2dchr 27336 rpvmasumlem 27549 dchrisum0flblem1 27570 |
Copyright terms: Public domain | W3C validator |