| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dchrn0 | Structured version Visualization version GIF version | ||
| Description: A Dirichlet character is nonzero on the units of ℤ/nℤ. (Contributed by Mario Carneiro, 18-Apr-2016.) |
| Ref | Expression |
|---|---|
| dchrmhm.g | ⊢ 𝐺 = (DChr‘𝑁) |
| dchrmhm.z | ⊢ 𝑍 = (ℤ/nℤ‘𝑁) |
| dchrmhm.b | ⊢ 𝐷 = (Base‘𝐺) |
| dchrn0.b | ⊢ 𝐵 = (Base‘𝑍) |
| dchrn0.u | ⊢ 𝑈 = (Unit‘𝑍) |
| dchrn0.x | ⊢ (𝜑 → 𝑋 ∈ 𝐷) |
| dchrn0.a | ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| dchrn0 | ⊢ (𝜑 → ((𝑋‘𝐴) ≠ 0 ↔ 𝐴 ∈ 𝑈)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6858 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (𝑋‘𝑥) = (𝑋‘𝐴)) | |
| 2 | 1 | neeq1d 2984 | . . . . 5 ⊢ (𝑥 = 𝐴 → ((𝑋‘𝑥) ≠ 0 ↔ (𝑋‘𝐴) ≠ 0)) |
| 3 | eleq1 2816 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ 𝑈 ↔ 𝐴 ∈ 𝑈)) | |
| 4 | 2, 3 | imbi12d 344 | . . . 4 ⊢ (𝑥 = 𝐴 → (((𝑋‘𝑥) ≠ 0 → 𝑥 ∈ 𝑈) ↔ ((𝑋‘𝐴) ≠ 0 → 𝐴 ∈ 𝑈))) |
| 5 | dchrn0.x | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ 𝐷) | |
| 6 | dchrmhm.g | . . . . . . 7 ⊢ 𝐺 = (DChr‘𝑁) | |
| 7 | dchrmhm.z | . . . . . . 7 ⊢ 𝑍 = (ℤ/nℤ‘𝑁) | |
| 8 | dchrn0.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝑍) | |
| 9 | dchrn0.u | . . . . . . 7 ⊢ 𝑈 = (Unit‘𝑍) | |
| 10 | dchrmhm.b | . . . . . . . . 9 ⊢ 𝐷 = (Base‘𝐺) | |
| 11 | 6, 10 | dchrrcl 27151 | . . . . . . . 8 ⊢ (𝑋 ∈ 𝐷 → 𝑁 ∈ ℕ) |
| 12 | 5, 11 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝑁 ∈ ℕ) |
| 13 | 6, 7, 8, 9, 12, 10 | dchrelbas2 27148 | . . . . . 6 ⊢ (𝜑 → (𝑋 ∈ 𝐷 ↔ (𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∧ ∀𝑥 ∈ 𝐵 ((𝑋‘𝑥) ≠ 0 → 𝑥 ∈ 𝑈)))) |
| 14 | 5, 13 | mpbid 232 | . . . . 5 ⊢ (𝜑 → (𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∧ ∀𝑥 ∈ 𝐵 ((𝑋‘𝑥) ≠ 0 → 𝑥 ∈ 𝑈))) |
| 15 | 14 | simprd 495 | . . . 4 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ((𝑋‘𝑥) ≠ 0 → 𝑥 ∈ 𝑈)) |
| 16 | dchrn0.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝐵) | |
| 17 | 4, 15, 16 | rspcdva 3589 | . . 3 ⊢ (𝜑 → ((𝑋‘𝐴) ≠ 0 → 𝐴 ∈ 𝑈)) |
| 18 | 17 | imp 406 | . 2 ⊢ ((𝜑 ∧ (𝑋‘𝐴) ≠ 0) → 𝐴 ∈ 𝑈) |
| 19 | ax-1ne0 11137 | . . . . 5 ⊢ 1 ≠ 0 | |
| 20 | 19 | a1i 11 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ∈ 𝑈) → 1 ≠ 0) |
| 21 | 12 | nnnn0d 12503 | . . . . . . . 8 ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
| 22 | 7 | zncrng 21454 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ0 → 𝑍 ∈ CRing) |
| 23 | crngring 20154 | . . . . . . . 8 ⊢ (𝑍 ∈ CRing → 𝑍 ∈ Ring) | |
| 24 | 21, 22, 23 | 3syl 18 | . . . . . . 7 ⊢ (𝜑 → 𝑍 ∈ Ring) |
| 25 | eqid 2729 | . . . . . . . 8 ⊢ (invr‘𝑍) = (invr‘𝑍) | |
| 26 | eqid 2729 | . . . . . . . 8 ⊢ (.r‘𝑍) = (.r‘𝑍) | |
| 27 | eqid 2729 | . . . . . . . 8 ⊢ (1r‘𝑍) = (1r‘𝑍) | |
| 28 | 9, 25, 26, 27 | unitrinv 20303 | . . . . . . 7 ⊢ ((𝑍 ∈ Ring ∧ 𝐴 ∈ 𝑈) → (𝐴(.r‘𝑍)((invr‘𝑍)‘𝐴)) = (1r‘𝑍)) |
| 29 | 24, 28 | sylan 580 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐴 ∈ 𝑈) → (𝐴(.r‘𝑍)((invr‘𝑍)‘𝐴)) = (1r‘𝑍)) |
| 30 | 29 | fveq2d 6862 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 ∈ 𝑈) → (𝑋‘(𝐴(.r‘𝑍)((invr‘𝑍)‘𝐴))) = (𝑋‘(1r‘𝑍))) |
| 31 | 14 | simpld 494 | . . . . . . 7 ⊢ (𝜑 → 𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))) |
| 32 | 31 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐴 ∈ 𝑈) → 𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))) |
| 33 | 16 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐴 ∈ 𝑈) → 𝐴 ∈ 𝐵) |
| 34 | 9, 25, 8 | ringinvcl 20301 | . . . . . . 7 ⊢ ((𝑍 ∈ Ring ∧ 𝐴 ∈ 𝑈) → ((invr‘𝑍)‘𝐴) ∈ 𝐵) |
| 35 | 24, 34 | sylan 580 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐴 ∈ 𝑈) → ((invr‘𝑍)‘𝐴) ∈ 𝐵) |
| 36 | eqid 2729 | . . . . . . . 8 ⊢ (mulGrp‘𝑍) = (mulGrp‘𝑍) | |
| 37 | 36, 8 | mgpbas 20054 | . . . . . . 7 ⊢ 𝐵 = (Base‘(mulGrp‘𝑍)) |
| 38 | 36, 26 | mgpplusg 20053 | . . . . . . 7 ⊢ (.r‘𝑍) = (+g‘(mulGrp‘𝑍)) |
| 39 | eqid 2729 | . . . . . . . 8 ⊢ (mulGrp‘ℂfld) = (mulGrp‘ℂfld) | |
| 40 | cnfldmul 21272 | . . . . . . . 8 ⊢ · = (.r‘ℂfld) | |
| 41 | 39, 40 | mgpplusg 20053 | . . . . . . 7 ⊢ · = (+g‘(mulGrp‘ℂfld)) |
| 42 | 37, 38, 41 | mhmlin 18720 | . . . . . 6 ⊢ ((𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∧ 𝐴 ∈ 𝐵 ∧ ((invr‘𝑍)‘𝐴) ∈ 𝐵) → (𝑋‘(𝐴(.r‘𝑍)((invr‘𝑍)‘𝐴))) = ((𝑋‘𝐴) · (𝑋‘((invr‘𝑍)‘𝐴)))) |
| 43 | 32, 33, 35, 42 | syl3anc 1373 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 ∈ 𝑈) → (𝑋‘(𝐴(.r‘𝑍)((invr‘𝑍)‘𝐴))) = ((𝑋‘𝐴) · (𝑋‘((invr‘𝑍)‘𝐴)))) |
| 44 | 36, 27 | ringidval 20092 | . . . . . . 7 ⊢ (1r‘𝑍) = (0g‘(mulGrp‘𝑍)) |
| 45 | cnfld1 21305 | . . . . . . . 8 ⊢ 1 = (1r‘ℂfld) | |
| 46 | 39, 45 | ringidval 20092 | . . . . . . 7 ⊢ 1 = (0g‘(mulGrp‘ℂfld)) |
| 47 | 44, 46 | mhm0 18721 | . . . . . 6 ⊢ (𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) → (𝑋‘(1r‘𝑍)) = 1) |
| 48 | 32, 47 | syl 17 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 ∈ 𝑈) → (𝑋‘(1r‘𝑍)) = 1) |
| 49 | 30, 43, 48 | 3eqtr3d 2772 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ∈ 𝑈) → ((𝑋‘𝐴) · (𝑋‘((invr‘𝑍)‘𝐴))) = 1) |
| 50 | cnfldbas 21268 | . . . . . . . . 9 ⊢ ℂ = (Base‘ℂfld) | |
| 51 | 39, 50 | mgpbas 20054 | . . . . . . . 8 ⊢ ℂ = (Base‘(mulGrp‘ℂfld)) |
| 52 | 37, 51 | mhmf 18716 | . . . . . . 7 ⊢ (𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) → 𝑋:𝐵⟶ℂ) |
| 53 | 32, 52 | syl 17 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐴 ∈ 𝑈) → 𝑋:𝐵⟶ℂ) |
| 54 | 53, 35 | ffvelcdmd 7057 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 ∈ 𝑈) → (𝑋‘((invr‘𝑍)‘𝐴)) ∈ ℂ) |
| 55 | 54 | mul02d 11372 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ∈ 𝑈) → (0 · (𝑋‘((invr‘𝑍)‘𝐴))) = 0) |
| 56 | 20, 49, 55 | 3netr4d 3002 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ∈ 𝑈) → ((𝑋‘𝐴) · (𝑋‘((invr‘𝑍)‘𝐴))) ≠ (0 · (𝑋‘((invr‘𝑍)‘𝐴)))) |
| 57 | oveq1 7394 | . . . 4 ⊢ ((𝑋‘𝐴) = 0 → ((𝑋‘𝐴) · (𝑋‘((invr‘𝑍)‘𝐴))) = (0 · (𝑋‘((invr‘𝑍)‘𝐴)))) | |
| 58 | 57 | necon3i 2957 | . . 3 ⊢ (((𝑋‘𝐴) · (𝑋‘((invr‘𝑍)‘𝐴))) ≠ (0 · (𝑋‘((invr‘𝑍)‘𝐴))) → (𝑋‘𝐴) ≠ 0) |
| 59 | 56, 58 | syl 17 | . 2 ⊢ ((𝜑 ∧ 𝐴 ∈ 𝑈) → (𝑋‘𝐴) ≠ 0) |
| 60 | 18, 59 | impbida 800 | 1 ⊢ (𝜑 → ((𝑋‘𝐴) ≠ 0 ↔ 𝐴 ∈ 𝑈)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∀wral 3044 ⟶wf 6507 ‘cfv 6511 (class class class)co 7387 ℂcc 11066 0cc0 11068 1c1 11069 · cmul 11073 ℕcn 12186 ℕ0cn0 12442 Basecbs 17179 .rcmulr 17221 MndHom cmhm 18708 mulGrpcmgp 20049 1rcur 20090 Ringcrg 20142 CRingccrg 20143 Unitcui 20264 invrcinvr 20296 ℂfldccnfld 21264 ℤ/nℤczn 21412 DChrcdchr 27143 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-addf 11147 ax-mulf 11148 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-tpos 8205 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-er 8671 df-ec 8673 df-qs 8677 df-map 8801 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-sup 9393 df-inf 9394 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-z 12530 df-dec 12650 df-uz 12794 df-fz 13469 df-struct 17117 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-plusg 17233 df-mulr 17234 df-starv 17235 df-sca 17236 df-vsca 17237 df-ip 17238 df-tset 17239 df-ple 17240 df-ds 17242 df-unif 17243 df-0g 17404 df-imas 17471 df-qus 17472 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-mhm 18710 df-grp 18868 df-minusg 18869 df-sbg 18870 df-subg 19055 df-nsg 19056 df-eqg 19057 df-cmn 19712 df-abl 19713 df-mgp 20050 df-rng 20062 df-ur 20091 df-ring 20144 df-cring 20145 df-oppr 20246 df-dvdsr 20266 df-unit 20267 df-invr 20297 df-subrng 20455 df-subrg 20479 df-lmod 20768 df-lss 20838 df-lsp 20878 df-sra 21080 df-rgmod 21081 df-lidl 21118 df-rsp 21119 df-2idl 21160 df-cnfld 21265 df-zring 21357 df-zn 21416 df-dchr 27144 |
| This theorem is referenced by: dchrinvcl 27164 dchrfi 27166 dchrghm 27167 dchreq 27169 dchrabs 27171 dchrabs2 27173 dchr1re 27174 dchrpt 27178 dchrsum 27180 sum2dchr 27185 rpvmasumlem 27398 dchrisum0flblem1 27419 |
| Copyright terms: Public domain | W3C validator |