MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrn0 Structured version   Visualization version   GIF version

Theorem dchrn0 25265
Description: A Dirichlet character is nonzero on the units of ℤ/n. (Contributed by Mario Carneiro, 18-Apr-2016.)
Hypotheses
Ref Expression
dchrmhm.g 𝐺 = (DChr‘𝑁)
dchrmhm.z 𝑍 = (ℤ/nℤ‘𝑁)
dchrmhm.b 𝐷 = (Base‘𝐺)
dchrn0.b 𝐵 = (Base‘𝑍)
dchrn0.u 𝑈 = (Unit‘𝑍)
dchrn0.x (𝜑𝑋𝐷)
dchrn0.a (𝜑𝐴𝐵)
Assertion
Ref Expression
dchrn0 (𝜑 → ((𝑋𝐴) ≠ 0 ↔ 𝐴𝑈))

Proof of Theorem dchrn0
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6374 . . . . . 6 (𝑥 = 𝐴 → (𝑋𝑥) = (𝑋𝐴))
21neeq1d 2995 . . . . 5 (𝑥 = 𝐴 → ((𝑋𝑥) ≠ 0 ↔ (𝑋𝐴) ≠ 0))
3 eleq1 2831 . . . . 5 (𝑥 = 𝐴 → (𝑥𝑈𝐴𝑈))
42, 3imbi12d 335 . . . 4 (𝑥 = 𝐴 → (((𝑋𝑥) ≠ 0 → 𝑥𝑈) ↔ ((𝑋𝐴) ≠ 0 → 𝐴𝑈)))
5 dchrn0.x . . . . . 6 (𝜑𝑋𝐷)
6 dchrmhm.g . . . . . . 7 𝐺 = (DChr‘𝑁)
7 dchrmhm.z . . . . . . 7 𝑍 = (ℤ/nℤ‘𝑁)
8 dchrn0.b . . . . . . 7 𝐵 = (Base‘𝑍)
9 dchrn0.u . . . . . . 7 𝑈 = (Unit‘𝑍)
10 dchrmhm.b . . . . . . . . 9 𝐷 = (Base‘𝐺)
116, 10dchrrcl 25255 . . . . . . . 8 (𝑋𝐷𝑁 ∈ ℕ)
125, 11syl 17 . . . . . . 7 (𝜑𝑁 ∈ ℕ)
136, 7, 8, 9, 12, 10dchrelbas2 25252 . . . . . 6 (𝜑 → (𝑋𝐷 ↔ (𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∧ ∀𝑥𝐵 ((𝑋𝑥) ≠ 0 → 𝑥𝑈))))
145, 13mpbid 223 . . . . 5 (𝜑 → (𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∧ ∀𝑥𝐵 ((𝑋𝑥) ≠ 0 → 𝑥𝑈)))
1514simprd 489 . . . 4 (𝜑 → ∀𝑥𝐵 ((𝑋𝑥) ≠ 0 → 𝑥𝑈))
16 dchrn0.a . . . 4 (𝜑𝐴𝐵)
174, 15, 16rspcdva 3466 . . 3 (𝜑 → ((𝑋𝐴) ≠ 0 → 𝐴𝑈))
1817imp 395 . 2 ((𝜑 ∧ (𝑋𝐴) ≠ 0) → 𝐴𝑈)
19 ax-1ne0 10257 . . . . 5 1 ≠ 0
2019a1i 11 . . . 4 ((𝜑𝐴𝑈) → 1 ≠ 0)
2112nnnn0d 11597 . . . . . . . 8 (𝜑𝑁 ∈ ℕ0)
227zncrng 20164 . . . . . . . 8 (𝑁 ∈ ℕ0𝑍 ∈ CRing)
23 crngring 18824 . . . . . . . 8 (𝑍 ∈ CRing → 𝑍 ∈ Ring)
2421, 22, 233syl 18 . . . . . . 7 (𝜑𝑍 ∈ Ring)
25 eqid 2764 . . . . . . . 8 (invr𝑍) = (invr𝑍)
26 eqid 2764 . . . . . . . 8 (.r𝑍) = (.r𝑍)
27 eqid 2764 . . . . . . . 8 (1r𝑍) = (1r𝑍)
289, 25, 26, 27unitrinv 18944 . . . . . . 7 ((𝑍 ∈ Ring ∧ 𝐴𝑈) → (𝐴(.r𝑍)((invr𝑍)‘𝐴)) = (1r𝑍))
2924, 28sylan 575 . . . . . 6 ((𝜑𝐴𝑈) → (𝐴(.r𝑍)((invr𝑍)‘𝐴)) = (1r𝑍))
3029fveq2d 6378 . . . . 5 ((𝜑𝐴𝑈) → (𝑋‘(𝐴(.r𝑍)((invr𝑍)‘𝐴))) = (𝑋‘(1r𝑍)))
3114simpld 488 . . . . . . 7 (𝜑𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)))
3231adantr 472 . . . . . 6 ((𝜑𝐴𝑈) → 𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)))
3316adantr 472 . . . . . 6 ((𝜑𝐴𝑈) → 𝐴𝐵)
349, 25, 8ringinvcl 18942 . . . . . . 7 ((𝑍 ∈ Ring ∧ 𝐴𝑈) → ((invr𝑍)‘𝐴) ∈ 𝐵)
3524, 34sylan 575 . . . . . 6 ((𝜑𝐴𝑈) → ((invr𝑍)‘𝐴) ∈ 𝐵)
36 eqid 2764 . . . . . . . 8 (mulGrp‘𝑍) = (mulGrp‘𝑍)
3736, 8mgpbas 18761 . . . . . . 7 𝐵 = (Base‘(mulGrp‘𝑍))
3836, 26mgpplusg 18759 . . . . . . 7 (.r𝑍) = (+g‘(mulGrp‘𝑍))
39 eqid 2764 . . . . . . . 8 (mulGrp‘ℂfld) = (mulGrp‘ℂfld)
40 cnfldmul 20024 . . . . . . . 8 · = (.r‘ℂfld)
4139, 40mgpplusg 18759 . . . . . . 7 · = (+g‘(mulGrp‘ℂfld))
4237, 38, 41mhmlin 17609 . . . . . 6 ((𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∧ 𝐴𝐵 ∧ ((invr𝑍)‘𝐴) ∈ 𝐵) → (𝑋‘(𝐴(.r𝑍)((invr𝑍)‘𝐴))) = ((𝑋𝐴) · (𝑋‘((invr𝑍)‘𝐴))))
4332, 33, 35, 42syl3anc 1490 . . . . 5 ((𝜑𝐴𝑈) → (𝑋‘(𝐴(.r𝑍)((invr𝑍)‘𝐴))) = ((𝑋𝐴) · (𝑋‘((invr𝑍)‘𝐴))))
4436, 27ringidval 18769 . . . . . . 7 (1r𝑍) = (0g‘(mulGrp‘𝑍))
45 cnfld1 20043 . . . . . . . 8 1 = (1r‘ℂfld)
4639, 45ringidval 18769 . . . . . . 7 1 = (0g‘(mulGrp‘ℂfld))
4744, 46mhm0 17610 . . . . . 6 (𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) → (𝑋‘(1r𝑍)) = 1)
4832, 47syl 17 . . . . 5 ((𝜑𝐴𝑈) → (𝑋‘(1r𝑍)) = 1)
4930, 43, 483eqtr3d 2806 . . . 4 ((𝜑𝐴𝑈) → ((𝑋𝐴) · (𝑋‘((invr𝑍)‘𝐴))) = 1)
50 cnfldbas 20022 . . . . . . . . 9 ℂ = (Base‘ℂfld)
5139, 50mgpbas 18761 . . . . . . . 8 ℂ = (Base‘(mulGrp‘ℂfld))
5237, 51mhmf 17607 . . . . . . 7 (𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) → 𝑋:𝐵⟶ℂ)
5332, 52syl 17 . . . . . 6 ((𝜑𝐴𝑈) → 𝑋:𝐵⟶ℂ)
5453, 35ffvelrnd 6549 . . . . 5 ((𝜑𝐴𝑈) → (𝑋‘((invr𝑍)‘𝐴)) ∈ ℂ)
5554mul02d 10487 . . . 4 ((𝜑𝐴𝑈) → (0 · (𝑋‘((invr𝑍)‘𝐴))) = 0)
5620, 49, 553netr4d 3013 . . 3 ((𝜑𝐴𝑈) → ((𝑋𝐴) · (𝑋‘((invr𝑍)‘𝐴))) ≠ (0 · (𝑋‘((invr𝑍)‘𝐴))))
57 oveq1 6848 . . . 4 ((𝑋𝐴) = 0 → ((𝑋𝐴) · (𝑋‘((invr𝑍)‘𝐴))) = (0 · (𝑋‘((invr𝑍)‘𝐴))))
5857necon3i 2968 . . 3 (((𝑋𝐴) · (𝑋‘((invr𝑍)‘𝐴))) ≠ (0 · (𝑋‘((invr𝑍)‘𝐴))) → (𝑋𝐴) ≠ 0)
5956, 58syl 17 . 2 ((𝜑𝐴𝑈) → (𝑋𝐴) ≠ 0)
6018, 59impbida 835 1 (𝜑 → ((𝑋𝐴) ≠ 0 ↔ 𝐴𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384   = wceq 1652  wcel 2155  wne 2936  wral 3054  wf 6063  cfv 6067  (class class class)co 6841  cc 10186  0cc0 10188  1c1 10189   · cmul 10193  cn 11273  0cn0 11537  Basecbs 16131  .rcmulr 16216   MndHom cmhm 17600  mulGrpcmgp 18755  1rcur 18767  Ringcrg 18813  CRingccrg 18814  Unitcui 18905  invrcinvr 18937  fldccnfld 20018  ℤ/nczn 20123  DChrcdchr 25247
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2069  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2349  ax-ext 2742  ax-rep 4929  ax-sep 4940  ax-nul 4948  ax-pow 5000  ax-pr 5061  ax-un 7146  ax-cnex 10244  ax-resscn 10245  ax-1cn 10246  ax-icn 10247  ax-addcl 10248  ax-addrcl 10249  ax-mulcl 10250  ax-mulrcl 10251  ax-mulcom 10252  ax-addass 10253  ax-mulass 10254  ax-distr 10255  ax-i2m1 10256  ax-1ne0 10257  ax-1rid 10258  ax-rnegex 10259  ax-rrecex 10260  ax-cnre 10261  ax-pre-lttri 10262  ax-pre-lttrn 10263  ax-pre-ltadd 10264  ax-pre-mulgt0 10265  ax-addf 10267  ax-mulf 10268
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2062  df-mo 2564  df-eu 2581  df-clab 2751  df-cleq 2757  df-clel 2760  df-nfc 2895  df-ne 2937  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rmo 3062  df-rab 3063  df-v 3351  df-sbc 3596  df-csb 3691  df-dif 3734  df-un 3736  df-in 3738  df-ss 3745  df-pss 3747  df-nul 4079  df-if 4243  df-pw 4316  df-sn 4334  df-pr 4336  df-tp 4338  df-op 4340  df-uni 4594  df-int 4633  df-iun 4677  df-br 4809  df-opab 4871  df-mpt 4888  df-tr 4911  df-id 5184  df-eprel 5189  df-po 5197  df-so 5198  df-fr 5235  df-we 5237  df-xp 5282  df-rel 5283  df-cnv 5284  df-co 5285  df-dm 5286  df-rn 5287  df-res 5288  df-ima 5289  df-pred 5864  df-ord 5910  df-on 5911  df-lim 5912  df-suc 5913  df-iota 6030  df-fun 6069  df-fn 6070  df-f 6071  df-f1 6072  df-fo 6073  df-f1o 6074  df-fv 6075  df-riota 6802  df-ov 6844  df-oprab 6845  df-mpt2 6846  df-om 7263  df-1st 7365  df-2nd 7366  df-tpos 7554  df-wrecs 7609  df-recs 7671  df-rdg 7709  df-1o 7763  df-oadd 7767  df-er 7946  df-ec 7948  df-qs 7952  df-map 8061  df-en 8160  df-dom 8161  df-sdom 8162  df-fin 8163  df-sup 8554  df-inf 8555  df-pnf 10329  df-mnf 10330  df-xr 10331  df-ltxr 10332  df-le 10333  df-sub 10521  df-neg 10522  df-nn 11274  df-2 11334  df-3 11335  df-4 11336  df-5 11337  df-6 11338  df-7 11339  df-8 11340  df-9 11341  df-n0 11538  df-z 11624  df-dec 11740  df-uz 11886  df-fz 12533  df-struct 16133  df-ndx 16134  df-slot 16135  df-base 16137  df-sets 16138  df-ress 16139  df-plusg 16228  df-mulr 16229  df-starv 16230  df-sca 16231  df-vsca 16232  df-ip 16233  df-tset 16234  df-ple 16235  df-ds 16237  df-unif 16238  df-0g 16369  df-imas 16435  df-qus 16436  df-mgm 17509  df-sgrp 17551  df-mnd 17562  df-mhm 17602  df-grp 17693  df-minusg 17694  df-sbg 17695  df-subg 17856  df-nsg 17857  df-eqg 17858  df-cmn 18460  df-abl 18461  df-mgp 18756  df-ur 18768  df-ring 18815  df-cring 18816  df-oppr 18889  df-dvdsr 18907  df-unit 18908  df-invr 18938  df-subrg 19046  df-lmod 19133  df-lss 19201  df-lsp 19243  df-sra 19445  df-rgmod 19446  df-lidl 19447  df-rsp 19448  df-2idl 19505  df-cnfld 20019  df-zring 20091  df-zn 20127  df-dchr 25248
This theorem is referenced by:  dchrinvcl  25268  dchrfi  25270  dchrghm  25271  dchreq  25273  dchrabs  25275  dchrabs2  25277  dchr1re  25278  dchrpt  25282  dchrsum  25284  sum2dchr  25289  rpvmasumlem  25466  dchrisum0flblem1  25487
  Copyright terms: Public domain W3C validator