MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrn0 Structured version   Visualization version   GIF version

Theorem dchrn0 25496
Description: A Dirichlet character is nonzero on the units of ℤ/n. (Contributed by Mario Carneiro, 18-Apr-2016.)
Hypotheses
Ref Expression
dchrmhm.g 𝐺 = (DChr‘𝑁)
dchrmhm.z 𝑍 = (ℤ/nℤ‘𝑁)
dchrmhm.b 𝐷 = (Base‘𝐺)
dchrn0.b 𝐵 = (Base‘𝑍)
dchrn0.u 𝑈 = (Unit‘𝑍)
dchrn0.x (𝜑𝑋𝐷)
dchrn0.a (𝜑𝐴𝐵)
Assertion
Ref Expression
dchrn0 (𝜑 → ((𝑋𝐴) ≠ 0 ↔ 𝐴𝑈))

Proof of Theorem dchrn0
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6530 . . . . . 6 (𝑥 = 𝐴 → (𝑋𝑥) = (𝑋𝐴))
21neeq1d 3041 . . . . 5 (𝑥 = 𝐴 → ((𝑋𝑥) ≠ 0 ↔ (𝑋𝐴) ≠ 0))
3 eleq1 2868 . . . . 5 (𝑥 = 𝐴 → (𝑥𝑈𝐴𝑈))
42, 3imbi12d 346 . . . 4 (𝑥 = 𝐴 → (((𝑋𝑥) ≠ 0 → 𝑥𝑈) ↔ ((𝑋𝐴) ≠ 0 → 𝐴𝑈)))
5 dchrn0.x . . . . . 6 (𝜑𝑋𝐷)
6 dchrmhm.g . . . . . . 7 𝐺 = (DChr‘𝑁)
7 dchrmhm.z . . . . . . 7 𝑍 = (ℤ/nℤ‘𝑁)
8 dchrn0.b . . . . . . 7 𝐵 = (Base‘𝑍)
9 dchrn0.u . . . . . . 7 𝑈 = (Unit‘𝑍)
10 dchrmhm.b . . . . . . . . 9 𝐷 = (Base‘𝐺)
116, 10dchrrcl 25486 . . . . . . . 8 (𝑋𝐷𝑁 ∈ ℕ)
125, 11syl 17 . . . . . . 7 (𝜑𝑁 ∈ ℕ)
136, 7, 8, 9, 12, 10dchrelbas2 25483 . . . . . 6 (𝜑 → (𝑋𝐷 ↔ (𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∧ ∀𝑥𝐵 ((𝑋𝑥) ≠ 0 → 𝑥𝑈))))
145, 13mpbid 233 . . . . 5 (𝜑 → (𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∧ ∀𝑥𝐵 ((𝑋𝑥) ≠ 0 → 𝑥𝑈)))
1514simprd 496 . . . 4 (𝜑 → ∀𝑥𝐵 ((𝑋𝑥) ≠ 0 → 𝑥𝑈))
16 dchrn0.a . . . 4 (𝜑𝐴𝐵)
174, 15, 16rspcdva 3560 . . 3 (𝜑 → ((𝑋𝐴) ≠ 0 → 𝐴𝑈))
1817imp 407 . 2 ((𝜑 ∧ (𝑋𝐴) ≠ 0) → 𝐴𝑈)
19 ax-1ne0 10441 . . . . 5 1 ≠ 0
2019a1i 11 . . . 4 ((𝜑𝐴𝑈) → 1 ≠ 0)
2112nnnn0d 11792 . . . . . . . 8 (𝜑𝑁 ∈ ℕ0)
227zncrng 20361 . . . . . . . 8 (𝑁 ∈ ℕ0𝑍 ∈ CRing)
23 crngring 18986 . . . . . . . 8 (𝑍 ∈ CRing → 𝑍 ∈ Ring)
2421, 22, 233syl 18 . . . . . . 7 (𝜑𝑍 ∈ Ring)
25 eqid 2793 . . . . . . . 8 (invr𝑍) = (invr𝑍)
26 eqid 2793 . . . . . . . 8 (.r𝑍) = (.r𝑍)
27 eqid 2793 . . . . . . . 8 (1r𝑍) = (1r𝑍)
289, 25, 26, 27unitrinv 19106 . . . . . . 7 ((𝑍 ∈ Ring ∧ 𝐴𝑈) → (𝐴(.r𝑍)((invr𝑍)‘𝐴)) = (1r𝑍))
2924, 28sylan 580 . . . . . 6 ((𝜑𝐴𝑈) → (𝐴(.r𝑍)((invr𝑍)‘𝐴)) = (1r𝑍))
3029fveq2d 6534 . . . . 5 ((𝜑𝐴𝑈) → (𝑋‘(𝐴(.r𝑍)((invr𝑍)‘𝐴))) = (𝑋‘(1r𝑍)))
3114simpld 495 . . . . . . 7 (𝜑𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)))
3231adantr 481 . . . . . 6 ((𝜑𝐴𝑈) → 𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)))
3316adantr 481 . . . . . 6 ((𝜑𝐴𝑈) → 𝐴𝐵)
349, 25, 8ringinvcl 19104 . . . . . . 7 ((𝑍 ∈ Ring ∧ 𝐴𝑈) → ((invr𝑍)‘𝐴) ∈ 𝐵)
3524, 34sylan 580 . . . . . 6 ((𝜑𝐴𝑈) → ((invr𝑍)‘𝐴) ∈ 𝐵)
36 eqid 2793 . . . . . . . 8 (mulGrp‘𝑍) = (mulGrp‘𝑍)
3736, 8mgpbas 18923 . . . . . . 7 𝐵 = (Base‘(mulGrp‘𝑍))
3836, 26mgpplusg 18921 . . . . . . 7 (.r𝑍) = (+g‘(mulGrp‘𝑍))
39 eqid 2793 . . . . . . . 8 (mulGrp‘ℂfld) = (mulGrp‘ℂfld)
40 cnfldmul 20221 . . . . . . . 8 · = (.r‘ℂfld)
4139, 40mgpplusg 18921 . . . . . . 7 · = (+g‘(mulGrp‘ℂfld))
4237, 38, 41mhmlin 17769 . . . . . 6 ((𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∧ 𝐴𝐵 ∧ ((invr𝑍)‘𝐴) ∈ 𝐵) → (𝑋‘(𝐴(.r𝑍)((invr𝑍)‘𝐴))) = ((𝑋𝐴) · (𝑋‘((invr𝑍)‘𝐴))))
4332, 33, 35, 42syl3anc 1362 . . . . 5 ((𝜑𝐴𝑈) → (𝑋‘(𝐴(.r𝑍)((invr𝑍)‘𝐴))) = ((𝑋𝐴) · (𝑋‘((invr𝑍)‘𝐴))))
4436, 27ringidval 18931 . . . . . . 7 (1r𝑍) = (0g‘(mulGrp‘𝑍))
45 cnfld1 20240 . . . . . . . 8 1 = (1r‘ℂfld)
4639, 45ringidval 18931 . . . . . . 7 1 = (0g‘(mulGrp‘ℂfld))
4744, 46mhm0 17770 . . . . . 6 (𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) → (𝑋‘(1r𝑍)) = 1)
4832, 47syl 17 . . . . 5 ((𝜑𝐴𝑈) → (𝑋‘(1r𝑍)) = 1)
4930, 43, 483eqtr3d 2837 . . . 4 ((𝜑𝐴𝑈) → ((𝑋𝐴) · (𝑋‘((invr𝑍)‘𝐴))) = 1)
50 cnfldbas 20219 . . . . . . . . 9 ℂ = (Base‘ℂfld)
5139, 50mgpbas 18923 . . . . . . . 8 ℂ = (Base‘(mulGrp‘ℂfld))
5237, 51mhmf 17767 . . . . . . 7 (𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) → 𝑋:𝐵⟶ℂ)
5332, 52syl 17 . . . . . 6 ((𝜑𝐴𝑈) → 𝑋:𝐵⟶ℂ)
5453, 35ffvelrnd 6708 . . . . 5 ((𝜑𝐴𝑈) → (𝑋‘((invr𝑍)‘𝐴)) ∈ ℂ)
5554mul02d 10674 . . . 4 ((𝜑𝐴𝑈) → (0 · (𝑋‘((invr𝑍)‘𝐴))) = 0)
5620, 49, 553netr4d 3059 . . 3 ((𝜑𝐴𝑈) → ((𝑋𝐴) · (𝑋‘((invr𝑍)‘𝐴))) ≠ (0 · (𝑋‘((invr𝑍)‘𝐴))))
57 oveq1 7014 . . . 4 ((𝑋𝐴) = 0 → ((𝑋𝐴) · (𝑋‘((invr𝑍)‘𝐴))) = (0 · (𝑋‘((invr𝑍)‘𝐴))))
5857necon3i 3014 . . 3 (((𝑋𝐴) · (𝑋‘((invr𝑍)‘𝐴))) ≠ (0 · (𝑋‘((invr𝑍)‘𝐴))) → (𝑋𝐴) ≠ 0)
5956, 58syl 17 . 2 ((𝜑𝐴𝑈) → (𝑋𝐴) ≠ 0)
6018, 59impbida 797 1 (𝜑 → ((𝑋𝐴) ≠ 0 ↔ 𝐴𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396   = wceq 1520  wcel 2079  wne 2982  wral 3103  wf 6213  cfv 6217  (class class class)co 7007  cc 10370  0cc0 10372  1c1 10373   · cmul 10377  cn 11475  0cn0 11734  Basecbs 16300  .rcmulr 16383   MndHom cmhm 17760  mulGrpcmgp 18917  1rcur 18929  Ringcrg 18975  CRingccrg 18976  Unitcui 19067  invrcinvr 19099  fldccnfld 20215  ℤ/nczn 20320  DChrcdchr 25478
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1775  ax-4 1789  ax-5 1886  ax-6 1945  ax-7 1990  ax-8 2081  ax-9 2089  ax-10 2110  ax-11 2124  ax-12 2139  ax-13 2342  ax-ext 2767  ax-rep 5075  ax-sep 5088  ax-nul 5095  ax-pow 5150  ax-pr 5214  ax-un 7310  ax-cnex 10428  ax-resscn 10429  ax-1cn 10430  ax-icn 10431  ax-addcl 10432  ax-addrcl 10433  ax-mulcl 10434  ax-mulrcl 10435  ax-mulcom 10436  ax-addass 10437  ax-mulass 10438  ax-distr 10439  ax-i2m1 10440  ax-1ne0 10441  ax-1rid 10442  ax-rnegex 10443  ax-rrecex 10444  ax-cnre 10445  ax-pre-lttri 10446  ax-pre-lttrn 10447  ax-pre-ltadd 10448  ax-pre-mulgt0 10449  ax-addf 10451  ax-mulf 10452
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1079  df-3an 1080  df-tru 1523  df-ex 1760  df-nf 1764  df-sb 2041  df-mo 2574  df-eu 2610  df-clab 2774  df-cleq 2786  df-clel 2861  df-nfc 2933  df-ne 2983  df-nel 3089  df-ral 3108  df-rex 3109  df-reu 3110  df-rmo 3111  df-rab 3112  df-v 3434  df-sbc 3702  df-csb 3807  df-dif 3857  df-un 3859  df-in 3861  df-ss 3869  df-pss 3871  df-nul 4207  df-if 4376  df-pw 4449  df-sn 4467  df-pr 4469  df-tp 4471  df-op 4473  df-uni 4740  df-int 4777  df-iun 4821  df-br 4957  df-opab 5019  df-mpt 5036  df-tr 5058  df-id 5340  df-eprel 5345  df-po 5354  df-so 5355  df-fr 5394  df-we 5396  df-xp 5441  df-rel 5442  df-cnv 5443  df-co 5444  df-dm 5445  df-rn 5446  df-res 5447  df-ima 5448  df-pred 6015  df-ord 6061  df-on 6062  df-lim 6063  df-suc 6064  df-iota 6181  df-fun 6219  df-fn 6220  df-f 6221  df-f1 6222  df-fo 6223  df-f1o 6224  df-fv 6225  df-riota 6968  df-ov 7010  df-oprab 7011  df-mpo 7012  df-om 7428  df-1st 7536  df-2nd 7537  df-tpos 7734  df-wrecs 7789  df-recs 7851  df-rdg 7889  df-1o 7944  df-oadd 7948  df-er 8130  df-ec 8132  df-qs 8136  df-map 8249  df-en 8348  df-dom 8349  df-sdom 8350  df-fin 8351  df-sup 8742  df-inf 8743  df-pnf 10512  df-mnf 10513  df-xr 10514  df-ltxr 10515  df-le 10516  df-sub 10708  df-neg 10709  df-nn 11476  df-2 11537  df-3 11538  df-4 11539  df-5 11540  df-6 11541  df-7 11542  df-8 11543  df-9 11544  df-n0 11735  df-z 11819  df-dec 11937  df-uz 12083  df-fz 12732  df-struct 16302  df-ndx 16303  df-slot 16304  df-base 16306  df-sets 16307  df-ress 16308  df-plusg 16395  df-mulr 16396  df-starv 16397  df-sca 16398  df-vsca 16399  df-ip 16400  df-tset 16401  df-ple 16402  df-ds 16404  df-unif 16405  df-0g 16532  df-imas 16598  df-qus 16599  df-mgm 17669  df-sgrp 17711  df-mnd 17722  df-mhm 17762  df-grp 17852  df-minusg 17853  df-sbg 17854  df-subg 18018  df-nsg 18019  df-eqg 18020  df-cmn 18623  df-abl 18624  df-mgp 18918  df-ur 18930  df-ring 18977  df-cring 18978  df-oppr 19051  df-dvdsr 19069  df-unit 19070  df-invr 19100  df-subrg 19211  df-lmod 19314  df-lss 19382  df-lsp 19422  df-sra 19622  df-rgmod 19623  df-lidl 19624  df-rsp 19625  df-2idl 19682  df-cnfld 20216  df-zring 20288  df-zn 20324  df-dchr 25479
This theorem is referenced by:  dchrinvcl  25499  dchrfi  25501  dchrghm  25502  dchreq  25504  dchrabs  25506  dchrabs2  25508  dchr1re  25509  dchrpt  25513  dchrsum  25515  sum2dchr  25520  rpvmasumlem  25733  dchrisum0flblem1  25754
  Copyright terms: Public domain W3C validator