MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrn0 Structured version   Visualization version   GIF version

Theorem dchrn0 26303
Description: A Dirichlet character is nonzero on the units of ℤ/n. (Contributed by Mario Carneiro, 18-Apr-2016.)
Hypotheses
Ref Expression
dchrmhm.g 𝐺 = (DChr‘𝑁)
dchrmhm.z 𝑍 = (ℤ/nℤ‘𝑁)
dchrmhm.b 𝐷 = (Base‘𝐺)
dchrn0.b 𝐵 = (Base‘𝑍)
dchrn0.u 𝑈 = (Unit‘𝑍)
dchrn0.x (𝜑𝑋𝐷)
dchrn0.a (𝜑𝐴𝐵)
Assertion
Ref Expression
dchrn0 (𝜑 → ((𝑋𝐴) ≠ 0 ↔ 𝐴𝑈))

Proof of Theorem dchrn0
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6756 . . . . . 6 (𝑥 = 𝐴 → (𝑋𝑥) = (𝑋𝐴))
21neeq1d 3002 . . . . 5 (𝑥 = 𝐴 → ((𝑋𝑥) ≠ 0 ↔ (𝑋𝐴) ≠ 0))
3 eleq1 2826 . . . . 5 (𝑥 = 𝐴 → (𝑥𝑈𝐴𝑈))
42, 3imbi12d 344 . . . 4 (𝑥 = 𝐴 → (((𝑋𝑥) ≠ 0 → 𝑥𝑈) ↔ ((𝑋𝐴) ≠ 0 → 𝐴𝑈)))
5 dchrn0.x . . . . . 6 (𝜑𝑋𝐷)
6 dchrmhm.g . . . . . . 7 𝐺 = (DChr‘𝑁)
7 dchrmhm.z . . . . . . 7 𝑍 = (ℤ/nℤ‘𝑁)
8 dchrn0.b . . . . . . 7 𝐵 = (Base‘𝑍)
9 dchrn0.u . . . . . . 7 𝑈 = (Unit‘𝑍)
10 dchrmhm.b . . . . . . . . 9 𝐷 = (Base‘𝐺)
116, 10dchrrcl 26293 . . . . . . . 8 (𝑋𝐷𝑁 ∈ ℕ)
125, 11syl 17 . . . . . . 7 (𝜑𝑁 ∈ ℕ)
136, 7, 8, 9, 12, 10dchrelbas2 26290 . . . . . 6 (𝜑 → (𝑋𝐷 ↔ (𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∧ ∀𝑥𝐵 ((𝑋𝑥) ≠ 0 → 𝑥𝑈))))
145, 13mpbid 231 . . . . 5 (𝜑 → (𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∧ ∀𝑥𝐵 ((𝑋𝑥) ≠ 0 → 𝑥𝑈)))
1514simprd 495 . . . 4 (𝜑 → ∀𝑥𝐵 ((𝑋𝑥) ≠ 0 → 𝑥𝑈))
16 dchrn0.a . . . 4 (𝜑𝐴𝐵)
174, 15, 16rspcdva 3554 . . 3 (𝜑 → ((𝑋𝐴) ≠ 0 → 𝐴𝑈))
1817imp 406 . 2 ((𝜑 ∧ (𝑋𝐴) ≠ 0) → 𝐴𝑈)
19 ax-1ne0 10871 . . . . 5 1 ≠ 0
2019a1i 11 . . . 4 ((𝜑𝐴𝑈) → 1 ≠ 0)
2112nnnn0d 12223 . . . . . . . 8 (𝜑𝑁 ∈ ℕ0)
227zncrng 20664 . . . . . . . 8 (𝑁 ∈ ℕ0𝑍 ∈ CRing)
23 crngring 19710 . . . . . . . 8 (𝑍 ∈ CRing → 𝑍 ∈ Ring)
2421, 22, 233syl 18 . . . . . . 7 (𝜑𝑍 ∈ Ring)
25 eqid 2738 . . . . . . . 8 (invr𝑍) = (invr𝑍)
26 eqid 2738 . . . . . . . 8 (.r𝑍) = (.r𝑍)
27 eqid 2738 . . . . . . . 8 (1r𝑍) = (1r𝑍)
289, 25, 26, 27unitrinv 19835 . . . . . . 7 ((𝑍 ∈ Ring ∧ 𝐴𝑈) → (𝐴(.r𝑍)((invr𝑍)‘𝐴)) = (1r𝑍))
2924, 28sylan 579 . . . . . 6 ((𝜑𝐴𝑈) → (𝐴(.r𝑍)((invr𝑍)‘𝐴)) = (1r𝑍))
3029fveq2d 6760 . . . . 5 ((𝜑𝐴𝑈) → (𝑋‘(𝐴(.r𝑍)((invr𝑍)‘𝐴))) = (𝑋‘(1r𝑍)))
3114simpld 494 . . . . . . 7 (𝜑𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)))
3231adantr 480 . . . . . 6 ((𝜑𝐴𝑈) → 𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)))
3316adantr 480 . . . . . 6 ((𝜑𝐴𝑈) → 𝐴𝐵)
349, 25, 8ringinvcl 19833 . . . . . . 7 ((𝑍 ∈ Ring ∧ 𝐴𝑈) → ((invr𝑍)‘𝐴) ∈ 𝐵)
3524, 34sylan 579 . . . . . 6 ((𝜑𝐴𝑈) → ((invr𝑍)‘𝐴) ∈ 𝐵)
36 eqid 2738 . . . . . . . 8 (mulGrp‘𝑍) = (mulGrp‘𝑍)
3736, 8mgpbas 19641 . . . . . . 7 𝐵 = (Base‘(mulGrp‘𝑍))
3836, 26mgpplusg 19639 . . . . . . 7 (.r𝑍) = (+g‘(mulGrp‘𝑍))
39 eqid 2738 . . . . . . . 8 (mulGrp‘ℂfld) = (mulGrp‘ℂfld)
40 cnfldmul 20516 . . . . . . . 8 · = (.r‘ℂfld)
4139, 40mgpplusg 19639 . . . . . . 7 · = (+g‘(mulGrp‘ℂfld))
4237, 38, 41mhmlin 18352 . . . . . 6 ((𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∧ 𝐴𝐵 ∧ ((invr𝑍)‘𝐴) ∈ 𝐵) → (𝑋‘(𝐴(.r𝑍)((invr𝑍)‘𝐴))) = ((𝑋𝐴) · (𝑋‘((invr𝑍)‘𝐴))))
4332, 33, 35, 42syl3anc 1369 . . . . 5 ((𝜑𝐴𝑈) → (𝑋‘(𝐴(.r𝑍)((invr𝑍)‘𝐴))) = ((𝑋𝐴) · (𝑋‘((invr𝑍)‘𝐴))))
4436, 27ringidval 19654 . . . . . . 7 (1r𝑍) = (0g‘(mulGrp‘𝑍))
45 cnfld1 20535 . . . . . . . 8 1 = (1r‘ℂfld)
4639, 45ringidval 19654 . . . . . . 7 1 = (0g‘(mulGrp‘ℂfld))
4744, 46mhm0 18353 . . . . . 6 (𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) → (𝑋‘(1r𝑍)) = 1)
4832, 47syl 17 . . . . 5 ((𝜑𝐴𝑈) → (𝑋‘(1r𝑍)) = 1)
4930, 43, 483eqtr3d 2786 . . . 4 ((𝜑𝐴𝑈) → ((𝑋𝐴) · (𝑋‘((invr𝑍)‘𝐴))) = 1)
50 cnfldbas 20514 . . . . . . . . 9 ℂ = (Base‘ℂfld)
5139, 50mgpbas 19641 . . . . . . . 8 ℂ = (Base‘(mulGrp‘ℂfld))
5237, 51mhmf 18350 . . . . . . 7 (𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) → 𝑋:𝐵⟶ℂ)
5332, 52syl 17 . . . . . 6 ((𝜑𝐴𝑈) → 𝑋:𝐵⟶ℂ)
5453, 35ffvelrnd 6944 . . . . 5 ((𝜑𝐴𝑈) → (𝑋‘((invr𝑍)‘𝐴)) ∈ ℂ)
5554mul02d 11103 . . . 4 ((𝜑𝐴𝑈) → (0 · (𝑋‘((invr𝑍)‘𝐴))) = 0)
5620, 49, 553netr4d 3020 . . 3 ((𝜑𝐴𝑈) → ((𝑋𝐴) · (𝑋‘((invr𝑍)‘𝐴))) ≠ (0 · (𝑋‘((invr𝑍)‘𝐴))))
57 oveq1 7262 . . . 4 ((𝑋𝐴) = 0 → ((𝑋𝐴) · (𝑋‘((invr𝑍)‘𝐴))) = (0 · (𝑋‘((invr𝑍)‘𝐴))))
5857necon3i 2975 . . 3 (((𝑋𝐴) · (𝑋‘((invr𝑍)‘𝐴))) ≠ (0 · (𝑋‘((invr𝑍)‘𝐴))) → (𝑋𝐴) ≠ 0)
5956, 58syl 17 . 2 ((𝜑𝐴𝑈) → (𝑋𝐴) ≠ 0)
6018, 59impbida 797 1 (𝜑 → ((𝑋𝐴) ≠ 0 ↔ 𝐴𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wne 2942  wral 3063  wf 6414  cfv 6418  (class class class)co 7255  cc 10800  0cc0 10802  1c1 10803   · cmul 10807  cn 11903  0cn0 12163  Basecbs 16840  .rcmulr 16889   MndHom cmhm 18343  mulGrpcmgp 19635  1rcur 19652  Ringcrg 19698  CRingccrg 19699  Unitcui 19796  invrcinvr 19828  fldccnfld 20510  ℤ/nczn 20616  DChrcdchr 26285
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-addf 10881  ax-mulf 10882
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-tpos 8013  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-ec 8458  df-qs 8462  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-inf 9132  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-fz 13169  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-starv 16903  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-0g 17069  df-imas 17136  df-qus 17137  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-mhm 18345  df-grp 18495  df-minusg 18496  df-sbg 18497  df-subg 18667  df-nsg 18668  df-eqg 18669  df-cmn 19303  df-abl 19304  df-mgp 19636  df-ur 19653  df-ring 19700  df-cring 19701  df-oppr 19777  df-dvdsr 19798  df-unit 19799  df-invr 19829  df-subrg 19937  df-lmod 20040  df-lss 20109  df-lsp 20149  df-sra 20349  df-rgmod 20350  df-lidl 20351  df-rsp 20352  df-2idl 20416  df-cnfld 20511  df-zring 20583  df-zn 20620  df-dchr 26286
This theorem is referenced by:  dchrinvcl  26306  dchrfi  26308  dchrghm  26309  dchreq  26311  dchrabs  26313  dchrabs2  26315  dchr1re  26316  dchrpt  26320  dchrsum  26322  sum2dchr  26327  rpvmasumlem  26540  dchrisum0flblem1  26561
  Copyright terms: Public domain W3C validator