MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrn0 Structured version   Visualization version   GIF version

Theorem dchrn0 27294
Description: A Dirichlet character is nonzero on the units of ℤ/n. (Contributed by Mario Carneiro, 18-Apr-2016.)
Hypotheses
Ref Expression
dchrmhm.g 𝐺 = (DChr‘𝑁)
dchrmhm.z 𝑍 = (ℤ/nℤ‘𝑁)
dchrmhm.b 𝐷 = (Base‘𝐺)
dchrn0.b 𝐵 = (Base‘𝑍)
dchrn0.u 𝑈 = (Unit‘𝑍)
dchrn0.x (𝜑𝑋𝐷)
dchrn0.a (𝜑𝐴𝐵)
Assertion
Ref Expression
dchrn0 (𝜑 → ((𝑋𝐴) ≠ 0 ↔ 𝐴𝑈))

Proof of Theorem dchrn0
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6906 . . . . . 6 (𝑥 = 𝐴 → (𝑋𝑥) = (𝑋𝐴))
21neeq1d 3000 . . . . 5 (𝑥 = 𝐴 → ((𝑋𝑥) ≠ 0 ↔ (𝑋𝐴) ≠ 0))
3 eleq1 2829 . . . . 5 (𝑥 = 𝐴 → (𝑥𝑈𝐴𝑈))
42, 3imbi12d 344 . . . 4 (𝑥 = 𝐴 → (((𝑋𝑥) ≠ 0 → 𝑥𝑈) ↔ ((𝑋𝐴) ≠ 0 → 𝐴𝑈)))
5 dchrn0.x . . . . . 6 (𝜑𝑋𝐷)
6 dchrmhm.g . . . . . . 7 𝐺 = (DChr‘𝑁)
7 dchrmhm.z . . . . . . 7 𝑍 = (ℤ/nℤ‘𝑁)
8 dchrn0.b . . . . . . 7 𝐵 = (Base‘𝑍)
9 dchrn0.u . . . . . . 7 𝑈 = (Unit‘𝑍)
10 dchrmhm.b . . . . . . . . 9 𝐷 = (Base‘𝐺)
116, 10dchrrcl 27284 . . . . . . . 8 (𝑋𝐷𝑁 ∈ ℕ)
125, 11syl 17 . . . . . . 7 (𝜑𝑁 ∈ ℕ)
136, 7, 8, 9, 12, 10dchrelbas2 27281 . . . . . 6 (𝜑 → (𝑋𝐷 ↔ (𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∧ ∀𝑥𝐵 ((𝑋𝑥) ≠ 0 → 𝑥𝑈))))
145, 13mpbid 232 . . . . 5 (𝜑 → (𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∧ ∀𝑥𝐵 ((𝑋𝑥) ≠ 0 → 𝑥𝑈)))
1514simprd 495 . . . 4 (𝜑 → ∀𝑥𝐵 ((𝑋𝑥) ≠ 0 → 𝑥𝑈))
16 dchrn0.a . . . 4 (𝜑𝐴𝐵)
174, 15, 16rspcdva 3623 . . 3 (𝜑 → ((𝑋𝐴) ≠ 0 → 𝐴𝑈))
1817imp 406 . 2 ((𝜑 ∧ (𝑋𝐴) ≠ 0) → 𝐴𝑈)
19 ax-1ne0 11224 . . . . 5 1 ≠ 0
2019a1i 11 . . . 4 ((𝜑𝐴𝑈) → 1 ≠ 0)
2112nnnn0d 12587 . . . . . . . 8 (𝜑𝑁 ∈ ℕ0)
227zncrng 21563 . . . . . . . 8 (𝑁 ∈ ℕ0𝑍 ∈ CRing)
23 crngring 20242 . . . . . . . 8 (𝑍 ∈ CRing → 𝑍 ∈ Ring)
2421, 22, 233syl 18 . . . . . . 7 (𝜑𝑍 ∈ Ring)
25 eqid 2737 . . . . . . . 8 (invr𝑍) = (invr𝑍)
26 eqid 2737 . . . . . . . 8 (.r𝑍) = (.r𝑍)
27 eqid 2737 . . . . . . . 8 (1r𝑍) = (1r𝑍)
289, 25, 26, 27unitrinv 20394 . . . . . . 7 ((𝑍 ∈ Ring ∧ 𝐴𝑈) → (𝐴(.r𝑍)((invr𝑍)‘𝐴)) = (1r𝑍))
2924, 28sylan 580 . . . . . 6 ((𝜑𝐴𝑈) → (𝐴(.r𝑍)((invr𝑍)‘𝐴)) = (1r𝑍))
3029fveq2d 6910 . . . . 5 ((𝜑𝐴𝑈) → (𝑋‘(𝐴(.r𝑍)((invr𝑍)‘𝐴))) = (𝑋‘(1r𝑍)))
3114simpld 494 . . . . . . 7 (𝜑𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)))
3231adantr 480 . . . . . 6 ((𝜑𝐴𝑈) → 𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)))
3316adantr 480 . . . . . 6 ((𝜑𝐴𝑈) → 𝐴𝐵)
349, 25, 8ringinvcl 20392 . . . . . . 7 ((𝑍 ∈ Ring ∧ 𝐴𝑈) → ((invr𝑍)‘𝐴) ∈ 𝐵)
3524, 34sylan 580 . . . . . 6 ((𝜑𝐴𝑈) → ((invr𝑍)‘𝐴) ∈ 𝐵)
36 eqid 2737 . . . . . . . 8 (mulGrp‘𝑍) = (mulGrp‘𝑍)
3736, 8mgpbas 20142 . . . . . . 7 𝐵 = (Base‘(mulGrp‘𝑍))
3836, 26mgpplusg 20141 . . . . . . 7 (.r𝑍) = (+g‘(mulGrp‘𝑍))
39 eqid 2737 . . . . . . . 8 (mulGrp‘ℂfld) = (mulGrp‘ℂfld)
40 cnfldmul 21372 . . . . . . . 8 · = (.r‘ℂfld)
4139, 40mgpplusg 20141 . . . . . . 7 · = (+g‘(mulGrp‘ℂfld))
4237, 38, 41mhmlin 18806 . . . . . 6 ((𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∧ 𝐴𝐵 ∧ ((invr𝑍)‘𝐴) ∈ 𝐵) → (𝑋‘(𝐴(.r𝑍)((invr𝑍)‘𝐴))) = ((𝑋𝐴) · (𝑋‘((invr𝑍)‘𝐴))))
4332, 33, 35, 42syl3anc 1373 . . . . 5 ((𝜑𝐴𝑈) → (𝑋‘(𝐴(.r𝑍)((invr𝑍)‘𝐴))) = ((𝑋𝐴) · (𝑋‘((invr𝑍)‘𝐴))))
4436, 27ringidval 20180 . . . . . . 7 (1r𝑍) = (0g‘(mulGrp‘𝑍))
45 cnfld1 21406 . . . . . . . 8 1 = (1r‘ℂfld)
4639, 45ringidval 20180 . . . . . . 7 1 = (0g‘(mulGrp‘ℂfld))
4744, 46mhm0 18807 . . . . . 6 (𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) → (𝑋‘(1r𝑍)) = 1)
4832, 47syl 17 . . . . 5 ((𝜑𝐴𝑈) → (𝑋‘(1r𝑍)) = 1)
4930, 43, 483eqtr3d 2785 . . . 4 ((𝜑𝐴𝑈) → ((𝑋𝐴) · (𝑋‘((invr𝑍)‘𝐴))) = 1)
50 cnfldbas 21368 . . . . . . . . 9 ℂ = (Base‘ℂfld)
5139, 50mgpbas 20142 . . . . . . . 8 ℂ = (Base‘(mulGrp‘ℂfld))
5237, 51mhmf 18802 . . . . . . 7 (𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) → 𝑋:𝐵⟶ℂ)
5332, 52syl 17 . . . . . 6 ((𝜑𝐴𝑈) → 𝑋:𝐵⟶ℂ)
5453, 35ffvelcdmd 7105 . . . . 5 ((𝜑𝐴𝑈) → (𝑋‘((invr𝑍)‘𝐴)) ∈ ℂ)
5554mul02d 11459 . . . 4 ((𝜑𝐴𝑈) → (0 · (𝑋‘((invr𝑍)‘𝐴))) = 0)
5620, 49, 553netr4d 3018 . . 3 ((𝜑𝐴𝑈) → ((𝑋𝐴) · (𝑋‘((invr𝑍)‘𝐴))) ≠ (0 · (𝑋‘((invr𝑍)‘𝐴))))
57 oveq1 7438 . . . 4 ((𝑋𝐴) = 0 → ((𝑋𝐴) · (𝑋‘((invr𝑍)‘𝐴))) = (0 · (𝑋‘((invr𝑍)‘𝐴))))
5857necon3i 2973 . . 3 (((𝑋𝐴) · (𝑋‘((invr𝑍)‘𝐴))) ≠ (0 · (𝑋‘((invr𝑍)‘𝐴))) → (𝑋𝐴) ≠ 0)
5956, 58syl 17 . 2 ((𝜑𝐴𝑈) → (𝑋𝐴) ≠ 0)
6018, 59impbida 801 1 (𝜑 → ((𝑋𝐴) ≠ 0 ↔ 𝐴𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wne 2940  wral 3061  wf 6557  cfv 6561  (class class class)co 7431  cc 11153  0cc0 11155  1c1 11156   · cmul 11160  cn 12266  0cn0 12526  Basecbs 17247  .rcmulr 17298   MndHom cmhm 18794  mulGrpcmgp 20137  1rcur 20178  Ringcrg 20230  CRingccrg 20231  Unitcui 20355  invrcinvr 20387  fldccnfld 21364  ℤ/nczn 21513  DChrcdchr 27276
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-addf 11234  ax-mulf 11235
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-tpos 8251  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-ec 8747  df-qs 8751  df-map 8868  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-sup 9482  df-inf 9483  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-fz 13548  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-0g 17486  df-imas 17553  df-qus 17554  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-mhm 18796  df-grp 18954  df-minusg 18955  df-sbg 18956  df-subg 19141  df-nsg 19142  df-eqg 19143  df-cmn 19800  df-abl 19801  df-mgp 20138  df-rng 20150  df-ur 20179  df-ring 20232  df-cring 20233  df-oppr 20334  df-dvdsr 20357  df-unit 20358  df-invr 20388  df-subrng 20546  df-subrg 20570  df-lmod 20860  df-lss 20930  df-lsp 20970  df-sra 21172  df-rgmod 21173  df-lidl 21218  df-rsp 21219  df-2idl 21260  df-cnfld 21365  df-zring 21458  df-zn 21517  df-dchr 27277
This theorem is referenced by:  dchrinvcl  27297  dchrfi  27299  dchrghm  27300  dchreq  27302  dchrabs  27304  dchrabs2  27306  dchr1re  27307  dchrpt  27311  dchrsum  27313  sum2dchr  27318  rpvmasumlem  27531  dchrisum0flblem1  27552
  Copyright terms: Public domain W3C validator