MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrn0 Structured version   Visualization version   GIF version

Theorem dchrn0 26598
Description: A Dirichlet character is nonzero on the units of ℤ/n. (Contributed by Mario Carneiro, 18-Apr-2016.)
Hypotheses
Ref Expression
dchrmhm.g 𝐺 = (DChr‘𝑁)
dchrmhm.z 𝑍 = (ℤ/nℤ‘𝑁)
dchrmhm.b 𝐷 = (Base‘𝐺)
dchrn0.b 𝐵 = (Base‘𝑍)
dchrn0.u 𝑈 = (Unit‘𝑍)
dchrn0.x (𝜑𝑋𝐷)
dchrn0.a (𝜑𝐴𝐵)
Assertion
Ref Expression
dchrn0 (𝜑 → ((𝑋𝐴) ≠ 0 ↔ 𝐴𝑈))

Proof of Theorem dchrn0
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6842 . . . . . 6 (𝑥 = 𝐴 → (𝑋𝑥) = (𝑋𝐴))
21neeq1d 3003 . . . . 5 (𝑥 = 𝐴 → ((𝑋𝑥) ≠ 0 ↔ (𝑋𝐴) ≠ 0))
3 eleq1 2825 . . . . 5 (𝑥 = 𝐴 → (𝑥𝑈𝐴𝑈))
42, 3imbi12d 344 . . . 4 (𝑥 = 𝐴 → (((𝑋𝑥) ≠ 0 → 𝑥𝑈) ↔ ((𝑋𝐴) ≠ 0 → 𝐴𝑈)))
5 dchrn0.x . . . . . 6 (𝜑𝑋𝐷)
6 dchrmhm.g . . . . . . 7 𝐺 = (DChr‘𝑁)
7 dchrmhm.z . . . . . . 7 𝑍 = (ℤ/nℤ‘𝑁)
8 dchrn0.b . . . . . . 7 𝐵 = (Base‘𝑍)
9 dchrn0.u . . . . . . 7 𝑈 = (Unit‘𝑍)
10 dchrmhm.b . . . . . . . . 9 𝐷 = (Base‘𝐺)
116, 10dchrrcl 26588 . . . . . . . 8 (𝑋𝐷𝑁 ∈ ℕ)
125, 11syl 17 . . . . . . 7 (𝜑𝑁 ∈ ℕ)
136, 7, 8, 9, 12, 10dchrelbas2 26585 . . . . . 6 (𝜑 → (𝑋𝐷 ↔ (𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∧ ∀𝑥𝐵 ((𝑋𝑥) ≠ 0 → 𝑥𝑈))))
145, 13mpbid 231 . . . . 5 (𝜑 → (𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∧ ∀𝑥𝐵 ((𝑋𝑥) ≠ 0 → 𝑥𝑈)))
1514simprd 496 . . . 4 (𝜑 → ∀𝑥𝐵 ((𝑋𝑥) ≠ 0 → 𝑥𝑈))
16 dchrn0.a . . . 4 (𝜑𝐴𝐵)
174, 15, 16rspcdva 3582 . . 3 (𝜑 → ((𝑋𝐴) ≠ 0 → 𝐴𝑈))
1817imp 407 . 2 ((𝜑 ∧ (𝑋𝐴) ≠ 0) → 𝐴𝑈)
19 ax-1ne0 11120 . . . . 5 1 ≠ 0
2019a1i 11 . . . 4 ((𝜑𝐴𝑈) → 1 ≠ 0)
2112nnnn0d 12473 . . . . . . . 8 (𝜑𝑁 ∈ ℕ0)
227zncrng 20951 . . . . . . . 8 (𝑁 ∈ ℕ0𝑍 ∈ CRing)
23 crngring 19976 . . . . . . . 8 (𝑍 ∈ CRing → 𝑍 ∈ Ring)
2421, 22, 233syl 18 . . . . . . 7 (𝜑𝑍 ∈ Ring)
25 eqid 2736 . . . . . . . 8 (invr𝑍) = (invr𝑍)
26 eqid 2736 . . . . . . . 8 (.r𝑍) = (.r𝑍)
27 eqid 2736 . . . . . . . 8 (1r𝑍) = (1r𝑍)
289, 25, 26, 27unitrinv 20107 . . . . . . 7 ((𝑍 ∈ Ring ∧ 𝐴𝑈) → (𝐴(.r𝑍)((invr𝑍)‘𝐴)) = (1r𝑍))
2924, 28sylan 580 . . . . . 6 ((𝜑𝐴𝑈) → (𝐴(.r𝑍)((invr𝑍)‘𝐴)) = (1r𝑍))
3029fveq2d 6846 . . . . 5 ((𝜑𝐴𝑈) → (𝑋‘(𝐴(.r𝑍)((invr𝑍)‘𝐴))) = (𝑋‘(1r𝑍)))
3114simpld 495 . . . . . . 7 (𝜑𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)))
3231adantr 481 . . . . . 6 ((𝜑𝐴𝑈) → 𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)))
3316adantr 481 . . . . . 6 ((𝜑𝐴𝑈) → 𝐴𝐵)
349, 25, 8ringinvcl 20105 . . . . . . 7 ((𝑍 ∈ Ring ∧ 𝐴𝑈) → ((invr𝑍)‘𝐴) ∈ 𝐵)
3524, 34sylan 580 . . . . . 6 ((𝜑𝐴𝑈) → ((invr𝑍)‘𝐴) ∈ 𝐵)
36 eqid 2736 . . . . . . . 8 (mulGrp‘𝑍) = (mulGrp‘𝑍)
3736, 8mgpbas 19902 . . . . . . 7 𝐵 = (Base‘(mulGrp‘𝑍))
3836, 26mgpplusg 19900 . . . . . . 7 (.r𝑍) = (+g‘(mulGrp‘𝑍))
39 eqid 2736 . . . . . . . 8 (mulGrp‘ℂfld) = (mulGrp‘ℂfld)
40 cnfldmul 20802 . . . . . . . 8 · = (.r‘ℂfld)
4139, 40mgpplusg 19900 . . . . . . 7 · = (+g‘(mulGrp‘ℂfld))
4237, 38, 41mhmlin 18609 . . . . . 6 ((𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∧ 𝐴𝐵 ∧ ((invr𝑍)‘𝐴) ∈ 𝐵) → (𝑋‘(𝐴(.r𝑍)((invr𝑍)‘𝐴))) = ((𝑋𝐴) · (𝑋‘((invr𝑍)‘𝐴))))
4332, 33, 35, 42syl3anc 1371 . . . . 5 ((𝜑𝐴𝑈) → (𝑋‘(𝐴(.r𝑍)((invr𝑍)‘𝐴))) = ((𝑋𝐴) · (𝑋‘((invr𝑍)‘𝐴))))
4436, 27ringidval 19915 . . . . . . 7 (1r𝑍) = (0g‘(mulGrp‘𝑍))
45 cnfld1 20822 . . . . . . . 8 1 = (1r‘ℂfld)
4639, 45ringidval 19915 . . . . . . 7 1 = (0g‘(mulGrp‘ℂfld))
4744, 46mhm0 18610 . . . . . 6 (𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) → (𝑋‘(1r𝑍)) = 1)
4832, 47syl 17 . . . . 5 ((𝜑𝐴𝑈) → (𝑋‘(1r𝑍)) = 1)
4930, 43, 483eqtr3d 2784 . . . 4 ((𝜑𝐴𝑈) → ((𝑋𝐴) · (𝑋‘((invr𝑍)‘𝐴))) = 1)
50 cnfldbas 20800 . . . . . . . . 9 ℂ = (Base‘ℂfld)
5139, 50mgpbas 19902 . . . . . . . 8 ℂ = (Base‘(mulGrp‘ℂfld))
5237, 51mhmf 18607 . . . . . . 7 (𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) → 𝑋:𝐵⟶ℂ)
5332, 52syl 17 . . . . . 6 ((𝜑𝐴𝑈) → 𝑋:𝐵⟶ℂ)
5453, 35ffvelcdmd 7036 . . . . 5 ((𝜑𝐴𝑈) → (𝑋‘((invr𝑍)‘𝐴)) ∈ ℂ)
5554mul02d 11353 . . . 4 ((𝜑𝐴𝑈) → (0 · (𝑋‘((invr𝑍)‘𝐴))) = 0)
5620, 49, 553netr4d 3021 . . 3 ((𝜑𝐴𝑈) → ((𝑋𝐴) · (𝑋‘((invr𝑍)‘𝐴))) ≠ (0 · (𝑋‘((invr𝑍)‘𝐴))))
57 oveq1 7364 . . . 4 ((𝑋𝐴) = 0 → ((𝑋𝐴) · (𝑋‘((invr𝑍)‘𝐴))) = (0 · (𝑋‘((invr𝑍)‘𝐴))))
5857necon3i 2976 . . 3 (((𝑋𝐴) · (𝑋‘((invr𝑍)‘𝐴))) ≠ (0 · (𝑋‘((invr𝑍)‘𝐴))) → (𝑋𝐴) ≠ 0)
5956, 58syl 17 . 2 ((𝜑𝐴𝑈) → (𝑋𝐴) ≠ 0)
6018, 59impbida 799 1 (𝜑 → ((𝑋𝐴) ≠ 0 ↔ 𝐴𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wne 2943  wral 3064  wf 6492  cfv 6496  (class class class)co 7357  cc 11049  0cc0 11051  1c1 11052   · cmul 11056  cn 12153  0cn0 12413  Basecbs 17083  .rcmulr 17134   MndHom cmhm 18599  mulGrpcmgp 19896  1rcur 19913  Ringcrg 19964  CRingccrg 19965  Unitcui 20068  invrcinvr 20100  fldccnfld 20796  ℤ/nczn 20903  DChrcdchr 26580
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-addf 11130  ax-mulf 11131
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-tpos 8157  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-ec 8650  df-qs 8654  df-map 8767  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-sup 9378  df-inf 9379  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-dec 12619  df-uz 12764  df-fz 13425  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-starv 17148  df-sca 17149  df-vsca 17150  df-ip 17151  df-tset 17152  df-ple 17153  df-ds 17155  df-unif 17156  df-0g 17323  df-imas 17390  df-qus 17391  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-mhm 18601  df-grp 18751  df-minusg 18752  df-sbg 18753  df-subg 18925  df-nsg 18926  df-eqg 18927  df-cmn 19564  df-abl 19565  df-mgp 19897  df-ur 19914  df-ring 19966  df-cring 19967  df-oppr 20049  df-dvdsr 20070  df-unit 20071  df-invr 20101  df-subrg 20220  df-lmod 20324  df-lss 20393  df-lsp 20433  df-sra 20633  df-rgmod 20634  df-lidl 20635  df-rsp 20636  df-2idl 20702  df-cnfld 20797  df-zring 20870  df-zn 20907  df-dchr 26581
This theorem is referenced by:  dchrinvcl  26601  dchrfi  26603  dchrghm  26604  dchreq  26606  dchrabs  26608  dchrabs2  26610  dchr1re  26611  dchrpt  26615  dchrsum  26617  sum2dchr  26622  rpvmasumlem  26835  dchrisum0flblem1  26856
  Copyright terms: Public domain W3C validator