| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dchrn0 | Structured version Visualization version GIF version | ||
| Description: A Dirichlet character is nonzero on the units of ℤ/nℤ. (Contributed by Mario Carneiro, 18-Apr-2016.) |
| Ref | Expression |
|---|---|
| dchrmhm.g | ⊢ 𝐺 = (DChr‘𝑁) |
| dchrmhm.z | ⊢ 𝑍 = (ℤ/nℤ‘𝑁) |
| dchrmhm.b | ⊢ 𝐷 = (Base‘𝐺) |
| dchrn0.b | ⊢ 𝐵 = (Base‘𝑍) |
| dchrn0.u | ⊢ 𝑈 = (Unit‘𝑍) |
| dchrn0.x | ⊢ (𝜑 → 𝑋 ∈ 𝐷) |
| dchrn0.a | ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| dchrn0 | ⊢ (𝜑 → ((𝑋‘𝐴) ≠ 0 ↔ 𝐴 ∈ 𝑈)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6876 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (𝑋‘𝑥) = (𝑋‘𝐴)) | |
| 2 | 1 | neeq1d 2991 | . . . . 5 ⊢ (𝑥 = 𝐴 → ((𝑋‘𝑥) ≠ 0 ↔ (𝑋‘𝐴) ≠ 0)) |
| 3 | eleq1 2822 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ 𝑈 ↔ 𝐴 ∈ 𝑈)) | |
| 4 | 2, 3 | imbi12d 344 | . . . 4 ⊢ (𝑥 = 𝐴 → (((𝑋‘𝑥) ≠ 0 → 𝑥 ∈ 𝑈) ↔ ((𝑋‘𝐴) ≠ 0 → 𝐴 ∈ 𝑈))) |
| 5 | dchrn0.x | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ 𝐷) | |
| 6 | dchrmhm.g | . . . . . . 7 ⊢ 𝐺 = (DChr‘𝑁) | |
| 7 | dchrmhm.z | . . . . . . 7 ⊢ 𝑍 = (ℤ/nℤ‘𝑁) | |
| 8 | dchrn0.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝑍) | |
| 9 | dchrn0.u | . . . . . . 7 ⊢ 𝑈 = (Unit‘𝑍) | |
| 10 | dchrmhm.b | . . . . . . . . 9 ⊢ 𝐷 = (Base‘𝐺) | |
| 11 | 6, 10 | dchrrcl 27203 | . . . . . . . 8 ⊢ (𝑋 ∈ 𝐷 → 𝑁 ∈ ℕ) |
| 12 | 5, 11 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝑁 ∈ ℕ) |
| 13 | 6, 7, 8, 9, 12, 10 | dchrelbas2 27200 | . . . . . 6 ⊢ (𝜑 → (𝑋 ∈ 𝐷 ↔ (𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∧ ∀𝑥 ∈ 𝐵 ((𝑋‘𝑥) ≠ 0 → 𝑥 ∈ 𝑈)))) |
| 14 | 5, 13 | mpbid 232 | . . . . 5 ⊢ (𝜑 → (𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∧ ∀𝑥 ∈ 𝐵 ((𝑋‘𝑥) ≠ 0 → 𝑥 ∈ 𝑈))) |
| 15 | 14 | simprd 495 | . . . 4 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ((𝑋‘𝑥) ≠ 0 → 𝑥 ∈ 𝑈)) |
| 16 | dchrn0.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝐵) | |
| 17 | 4, 15, 16 | rspcdva 3602 | . . 3 ⊢ (𝜑 → ((𝑋‘𝐴) ≠ 0 → 𝐴 ∈ 𝑈)) |
| 18 | 17 | imp 406 | . 2 ⊢ ((𝜑 ∧ (𝑋‘𝐴) ≠ 0) → 𝐴 ∈ 𝑈) |
| 19 | ax-1ne0 11198 | . . . . 5 ⊢ 1 ≠ 0 | |
| 20 | 19 | a1i 11 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ∈ 𝑈) → 1 ≠ 0) |
| 21 | 12 | nnnn0d 12562 | . . . . . . . 8 ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
| 22 | 7 | zncrng 21505 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ0 → 𝑍 ∈ CRing) |
| 23 | crngring 20205 | . . . . . . . 8 ⊢ (𝑍 ∈ CRing → 𝑍 ∈ Ring) | |
| 24 | 21, 22, 23 | 3syl 18 | . . . . . . 7 ⊢ (𝜑 → 𝑍 ∈ Ring) |
| 25 | eqid 2735 | . . . . . . . 8 ⊢ (invr‘𝑍) = (invr‘𝑍) | |
| 26 | eqid 2735 | . . . . . . . 8 ⊢ (.r‘𝑍) = (.r‘𝑍) | |
| 27 | eqid 2735 | . . . . . . . 8 ⊢ (1r‘𝑍) = (1r‘𝑍) | |
| 28 | 9, 25, 26, 27 | unitrinv 20354 | . . . . . . 7 ⊢ ((𝑍 ∈ Ring ∧ 𝐴 ∈ 𝑈) → (𝐴(.r‘𝑍)((invr‘𝑍)‘𝐴)) = (1r‘𝑍)) |
| 29 | 24, 28 | sylan 580 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐴 ∈ 𝑈) → (𝐴(.r‘𝑍)((invr‘𝑍)‘𝐴)) = (1r‘𝑍)) |
| 30 | 29 | fveq2d 6880 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 ∈ 𝑈) → (𝑋‘(𝐴(.r‘𝑍)((invr‘𝑍)‘𝐴))) = (𝑋‘(1r‘𝑍))) |
| 31 | 14 | simpld 494 | . . . . . . 7 ⊢ (𝜑 → 𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))) |
| 32 | 31 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐴 ∈ 𝑈) → 𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))) |
| 33 | 16 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐴 ∈ 𝑈) → 𝐴 ∈ 𝐵) |
| 34 | 9, 25, 8 | ringinvcl 20352 | . . . . . . 7 ⊢ ((𝑍 ∈ Ring ∧ 𝐴 ∈ 𝑈) → ((invr‘𝑍)‘𝐴) ∈ 𝐵) |
| 35 | 24, 34 | sylan 580 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐴 ∈ 𝑈) → ((invr‘𝑍)‘𝐴) ∈ 𝐵) |
| 36 | eqid 2735 | . . . . . . . 8 ⊢ (mulGrp‘𝑍) = (mulGrp‘𝑍) | |
| 37 | 36, 8 | mgpbas 20105 | . . . . . . 7 ⊢ 𝐵 = (Base‘(mulGrp‘𝑍)) |
| 38 | 36, 26 | mgpplusg 20104 | . . . . . . 7 ⊢ (.r‘𝑍) = (+g‘(mulGrp‘𝑍)) |
| 39 | eqid 2735 | . . . . . . . 8 ⊢ (mulGrp‘ℂfld) = (mulGrp‘ℂfld) | |
| 40 | cnfldmul 21323 | . . . . . . . 8 ⊢ · = (.r‘ℂfld) | |
| 41 | 39, 40 | mgpplusg 20104 | . . . . . . 7 ⊢ · = (+g‘(mulGrp‘ℂfld)) |
| 42 | 37, 38, 41 | mhmlin 18771 | . . . . . 6 ⊢ ((𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∧ 𝐴 ∈ 𝐵 ∧ ((invr‘𝑍)‘𝐴) ∈ 𝐵) → (𝑋‘(𝐴(.r‘𝑍)((invr‘𝑍)‘𝐴))) = ((𝑋‘𝐴) · (𝑋‘((invr‘𝑍)‘𝐴)))) |
| 43 | 32, 33, 35, 42 | syl3anc 1373 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 ∈ 𝑈) → (𝑋‘(𝐴(.r‘𝑍)((invr‘𝑍)‘𝐴))) = ((𝑋‘𝐴) · (𝑋‘((invr‘𝑍)‘𝐴)))) |
| 44 | 36, 27 | ringidval 20143 | . . . . . . 7 ⊢ (1r‘𝑍) = (0g‘(mulGrp‘𝑍)) |
| 45 | cnfld1 21356 | . . . . . . . 8 ⊢ 1 = (1r‘ℂfld) | |
| 46 | 39, 45 | ringidval 20143 | . . . . . . 7 ⊢ 1 = (0g‘(mulGrp‘ℂfld)) |
| 47 | 44, 46 | mhm0 18772 | . . . . . 6 ⊢ (𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) → (𝑋‘(1r‘𝑍)) = 1) |
| 48 | 32, 47 | syl 17 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 ∈ 𝑈) → (𝑋‘(1r‘𝑍)) = 1) |
| 49 | 30, 43, 48 | 3eqtr3d 2778 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ∈ 𝑈) → ((𝑋‘𝐴) · (𝑋‘((invr‘𝑍)‘𝐴))) = 1) |
| 50 | cnfldbas 21319 | . . . . . . . . 9 ⊢ ℂ = (Base‘ℂfld) | |
| 51 | 39, 50 | mgpbas 20105 | . . . . . . . 8 ⊢ ℂ = (Base‘(mulGrp‘ℂfld)) |
| 52 | 37, 51 | mhmf 18767 | . . . . . . 7 ⊢ (𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) → 𝑋:𝐵⟶ℂ) |
| 53 | 32, 52 | syl 17 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐴 ∈ 𝑈) → 𝑋:𝐵⟶ℂ) |
| 54 | 53, 35 | ffvelcdmd 7075 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 ∈ 𝑈) → (𝑋‘((invr‘𝑍)‘𝐴)) ∈ ℂ) |
| 55 | 54 | mul02d 11433 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ∈ 𝑈) → (0 · (𝑋‘((invr‘𝑍)‘𝐴))) = 0) |
| 56 | 20, 49, 55 | 3netr4d 3009 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ∈ 𝑈) → ((𝑋‘𝐴) · (𝑋‘((invr‘𝑍)‘𝐴))) ≠ (0 · (𝑋‘((invr‘𝑍)‘𝐴)))) |
| 57 | oveq1 7412 | . . . 4 ⊢ ((𝑋‘𝐴) = 0 → ((𝑋‘𝐴) · (𝑋‘((invr‘𝑍)‘𝐴))) = (0 · (𝑋‘((invr‘𝑍)‘𝐴)))) | |
| 58 | 57 | necon3i 2964 | . . 3 ⊢ (((𝑋‘𝐴) · (𝑋‘((invr‘𝑍)‘𝐴))) ≠ (0 · (𝑋‘((invr‘𝑍)‘𝐴))) → (𝑋‘𝐴) ≠ 0) |
| 59 | 56, 58 | syl 17 | . 2 ⊢ ((𝜑 ∧ 𝐴 ∈ 𝑈) → (𝑋‘𝐴) ≠ 0) |
| 60 | 18, 59 | impbida 800 | 1 ⊢ (𝜑 → ((𝑋‘𝐴) ≠ 0 ↔ 𝐴 ∈ 𝑈)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ≠ wne 2932 ∀wral 3051 ⟶wf 6527 ‘cfv 6531 (class class class)co 7405 ℂcc 11127 0cc0 11129 1c1 11130 · cmul 11134 ℕcn 12240 ℕ0cn0 12501 Basecbs 17228 .rcmulr 17272 MndHom cmhm 18759 mulGrpcmgp 20100 1rcur 20141 Ringcrg 20193 CRingccrg 20194 Unitcui 20315 invrcinvr 20347 ℂfldccnfld 21315 ℤ/nℤczn 21463 DChrcdchr 27195 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 ax-addf 11208 ax-mulf 11209 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-tpos 8225 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8719 df-ec 8721 df-qs 8725 df-map 8842 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-sup 9454 df-inf 9455 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-7 12308 df-8 12309 df-9 12310 df-n0 12502 df-z 12589 df-dec 12709 df-uz 12853 df-fz 13525 df-struct 17166 df-sets 17183 df-slot 17201 df-ndx 17213 df-base 17229 df-ress 17252 df-plusg 17284 df-mulr 17285 df-starv 17286 df-sca 17287 df-vsca 17288 df-ip 17289 df-tset 17290 df-ple 17291 df-ds 17293 df-unif 17294 df-0g 17455 df-imas 17522 df-qus 17523 df-mgm 18618 df-sgrp 18697 df-mnd 18713 df-mhm 18761 df-grp 18919 df-minusg 18920 df-sbg 18921 df-subg 19106 df-nsg 19107 df-eqg 19108 df-cmn 19763 df-abl 19764 df-mgp 20101 df-rng 20113 df-ur 20142 df-ring 20195 df-cring 20196 df-oppr 20297 df-dvdsr 20317 df-unit 20318 df-invr 20348 df-subrng 20506 df-subrg 20530 df-lmod 20819 df-lss 20889 df-lsp 20929 df-sra 21131 df-rgmod 21132 df-lidl 21169 df-rsp 21170 df-2idl 21211 df-cnfld 21316 df-zring 21408 df-zn 21467 df-dchr 27196 |
| This theorem is referenced by: dchrinvcl 27216 dchrfi 27218 dchrghm 27219 dchreq 27221 dchrabs 27223 dchrabs2 27225 dchr1re 27226 dchrpt 27230 dchrsum 27232 sum2dchr 27237 rpvmasumlem 27450 dchrisum0flblem1 27471 |
| Copyright terms: Public domain | W3C validator |