![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dchrn0 | Structured version Visualization version GIF version |
Description: A Dirichlet character is nonzero on the units of ℤ/nℤ. (Contributed by Mario Carneiro, 18-Apr-2016.) |
Ref | Expression |
---|---|
dchrmhm.g | ⊢ 𝐺 = (DChr‘𝑁) |
dchrmhm.z | ⊢ 𝑍 = (ℤ/nℤ‘𝑁) |
dchrmhm.b | ⊢ 𝐷 = (Base‘𝐺) |
dchrn0.b | ⊢ 𝐵 = (Base‘𝑍) |
dchrn0.u | ⊢ 𝑈 = (Unit‘𝑍) |
dchrn0.x | ⊢ (𝜑 → 𝑋 ∈ 𝐷) |
dchrn0.a | ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
Ref | Expression |
---|---|
dchrn0 | ⊢ (𝜑 → ((𝑋‘𝐴) ≠ 0 ↔ 𝐴 ∈ 𝑈)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6842 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (𝑋‘𝑥) = (𝑋‘𝐴)) | |
2 | 1 | neeq1d 3003 | . . . . 5 ⊢ (𝑥 = 𝐴 → ((𝑋‘𝑥) ≠ 0 ↔ (𝑋‘𝐴) ≠ 0)) |
3 | eleq1 2825 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ 𝑈 ↔ 𝐴 ∈ 𝑈)) | |
4 | 2, 3 | imbi12d 344 | . . . 4 ⊢ (𝑥 = 𝐴 → (((𝑋‘𝑥) ≠ 0 → 𝑥 ∈ 𝑈) ↔ ((𝑋‘𝐴) ≠ 0 → 𝐴 ∈ 𝑈))) |
5 | dchrn0.x | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ 𝐷) | |
6 | dchrmhm.g | . . . . . . 7 ⊢ 𝐺 = (DChr‘𝑁) | |
7 | dchrmhm.z | . . . . . . 7 ⊢ 𝑍 = (ℤ/nℤ‘𝑁) | |
8 | dchrn0.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝑍) | |
9 | dchrn0.u | . . . . . . 7 ⊢ 𝑈 = (Unit‘𝑍) | |
10 | dchrmhm.b | . . . . . . . . 9 ⊢ 𝐷 = (Base‘𝐺) | |
11 | 6, 10 | dchrrcl 26588 | . . . . . . . 8 ⊢ (𝑋 ∈ 𝐷 → 𝑁 ∈ ℕ) |
12 | 5, 11 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝑁 ∈ ℕ) |
13 | 6, 7, 8, 9, 12, 10 | dchrelbas2 26585 | . . . . . 6 ⊢ (𝜑 → (𝑋 ∈ 𝐷 ↔ (𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∧ ∀𝑥 ∈ 𝐵 ((𝑋‘𝑥) ≠ 0 → 𝑥 ∈ 𝑈)))) |
14 | 5, 13 | mpbid 231 | . . . . 5 ⊢ (𝜑 → (𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∧ ∀𝑥 ∈ 𝐵 ((𝑋‘𝑥) ≠ 0 → 𝑥 ∈ 𝑈))) |
15 | 14 | simprd 496 | . . . 4 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ((𝑋‘𝑥) ≠ 0 → 𝑥 ∈ 𝑈)) |
16 | dchrn0.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝐵) | |
17 | 4, 15, 16 | rspcdva 3582 | . . 3 ⊢ (𝜑 → ((𝑋‘𝐴) ≠ 0 → 𝐴 ∈ 𝑈)) |
18 | 17 | imp 407 | . 2 ⊢ ((𝜑 ∧ (𝑋‘𝐴) ≠ 0) → 𝐴 ∈ 𝑈) |
19 | ax-1ne0 11120 | . . . . 5 ⊢ 1 ≠ 0 | |
20 | 19 | a1i 11 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ∈ 𝑈) → 1 ≠ 0) |
21 | 12 | nnnn0d 12473 | . . . . . . . 8 ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
22 | 7 | zncrng 20951 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ0 → 𝑍 ∈ CRing) |
23 | crngring 19976 | . . . . . . . 8 ⊢ (𝑍 ∈ CRing → 𝑍 ∈ Ring) | |
24 | 21, 22, 23 | 3syl 18 | . . . . . . 7 ⊢ (𝜑 → 𝑍 ∈ Ring) |
25 | eqid 2736 | . . . . . . . 8 ⊢ (invr‘𝑍) = (invr‘𝑍) | |
26 | eqid 2736 | . . . . . . . 8 ⊢ (.r‘𝑍) = (.r‘𝑍) | |
27 | eqid 2736 | . . . . . . . 8 ⊢ (1r‘𝑍) = (1r‘𝑍) | |
28 | 9, 25, 26, 27 | unitrinv 20107 | . . . . . . 7 ⊢ ((𝑍 ∈ Ring ∧ 𝐴 ∈ 𝑈) → (𝐴(.r‘𝑍)((invr‘𝑍)‘𝐴)) = (1r‘𝑍)) |
29 | 24, 28 | sylan 580 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐴 ∈ 𝑈) → (𝐴(.r‘𝑍)((invr‘𝑍)‘𝐴)) = (1r‘𝑍)) |
30 | 29 | fveq2d 6846 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 ∈ 𝑈) → (𝑋‘(𝐴(.r‘𝑍)((invr‘𝑍)‘𝐴))) = (𝑋‘(1r‘𝑍))) |
31 | 14 | simpld 495 | . . . . . . 7 ⊢ (𝜑 → 𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))) |
32 | 31 | adantr 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐴 ∈ 𝑈) → 𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))) |
33 | 16 | adantr 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐴 ∈ 𝑈) → 𝐴 ∈ 𝐵) |
34 | 9, 25, 8 | ringinvcl 20105 | . . . . . . 7 ⊢ ((𝑍 ∈ Ring ∧ 𝐴 ∈ 𝑈) → ((invr‘𝑍)‘𝐴) ∈ 𝐵) |
35 | 24, 34 | sylan 580 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐴 ∈ 𝑈) → ((invr‘𝑍)‘𝐴) ∈ 𝐵) |
36 | eqid 2736 | . . . . . . . 8 ⊢ (mulGrp‘𝑍) = (mulGrp‘𝑍) | |
37 | 36, 8 | mgpbas 19902 | . . . . . . 7 ⊢ 𝐵 = (Base‘(mulGrp‘𝑍)) |
38 | 36, 26 | mgpplusg 19900 | . . . . . . 7 ⊢ (.r‘𝑍) = (+g‘(mulGrp‘𝑍)) |
39 | eqid 2736 | . . . . . . . 8 ⊢ (mulGrp‘ℂfld) = (mulGrp‘ℂfld) | |
40 | cnfldmul 20802 | . . . . . . . 8 ⊢ · = (.r‘ℂfld) | |
41 | 39, 40 | mgpplusg 19900 | . . . . . . 7 ⊢ · = (+g‘(mulGrp‘ℂfld)) |
42 | 37, 38, 41 | mhmlin 18609 | . . . . . 6 ⊢ ((𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∧ 𝐴 ∈ 𝐵 ∧ ((invr‘𝑍)‘𝐴) ∈ 𝐵) → (𝑋‘(𝐴(.r‘𝑍)((invr‘𝑍)‘𝐴))) = ((𝑋‘𝐴) · (𝑋‘((invr‘𝑍)‘𝐴)))) |
43 | 32, 33, 35, 42 | syl3anc 1371 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 ∈ 𝑈) → (𝑋‘(𝐴(.r‘𝑍)((invr‘𝑍)‘𝐴))) = ((𝑋‘𝐴) · (𝑋‘((invr‘𝑍)‘𝐴)))) |
44 | 36, 27 | ringidval 19915 | . . . . . . 7 ⊢ (1r‘𝑍) = (0g‘(mulGrp‘𝑍)) |
45 | cnfld1 20822 | . . . . . . . 8 ⊢ 1 = (1r‘ℂfld) | |
46 | 39, 45 | ringidval 19915 | . . . . . . 7 ⊢ 1 = (0g‘(mulGrp‘ℂfld)) |
47 | 44, 46 | mhm0 18610 | . . . . . 6 ⊢ (𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) → (𝑋‘(1r‘𝑍)) = 1) |
48 | 32, 47 | syl 17 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 ∈ 𝑈) → (𝑋‘(1r‘𝑍)) = 1) |
49 | 30, 43, 48 | 3eqtr3d 2784 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ∈ 𝑈) → ((𝑋‘𝐴) · (𝑋‘((invr‘𝑍)‘𝐴))) = 1) |
50 | cnfldbas 20800 | . . . . . . . . 9 ⊢ ℂ = (Base‘ℂfld) | |
51 | 39, 50 | mgpbas 19902 | . . . . . . . 8 ⊢ ℂ = (Base‘(mulGrp‘ℂfld)) |
52 | 37, 51 | mhmf 18607 | . . . . . . 7 ⊢ (𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) → 𝑋:𝐵⟶ℂ) |
53 | 32, 52 | syl 17 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐴 ∈ 𝑈) → 𝑋:𝐵⟶ℂ) |
54 | 53, 35 | ffvelcdmd 7036 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 ∈ 𝑈) → (𝑋‘((invr‘𝑍)‘𝐴)) ∈ ℂ) |
55 | 54 | mul02d 11353 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ∈ 𝑈) → (0 · (𝑋‘((invr‘𝑍)‘𝐴))) = 0) |
56 | 20, 49, 55 | 3netr4d 3021 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ∈ 𝑈) → ((𝑋‘𝐴) · (𝑋‘((invr‘𝑍)‘𝐴))) ≠ (0 · (𝑋‘((invr‘𝑍)‘𝐴)))) |
57 | oveq1 7364 | . . . 4 ⊢ ((𝑋‘𝐴) = 0 → ((𝑋‘𝐴) · (𝑋‘((invr‘𝑍)‘𝐴))) = (0 · (𝑋‘((invr‘𝑍)‘𝐴)))) | |
58 | 57 | necon3i 2976 | . . 3 ⊢ (((𝑋‘𝐴) · (𝑋‘((invr‘𝑍)‘𝐴))) ≠ (0 · (𝑋‘((invr‘𝑍)‘𝐴))) → (𝑋‘𝐴) ≠ 0) |
59 | 56, 58 | syl 17 | . 2 ⊢ ((𝜑 ∧ 𝐴 ∈ 𝑈) → (𝑋‘𝐴) ≠ 0) |
60 | 18, 59 | impbida 799 | 1 ⊢ (𝜑 → ((𝑋‘𝐴) ≠ 0 ↔ 𝐴 ∈ 𝑈)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ≠ wne 2943 ∀wral 3064 ⟶wf 6492 ‘cfv 6496 (class class class)co 7357 ℂcc 11049 0cc0 11051 1c1 11052 · cmul 11056 ℕcn 12153 ℕ0cn0 12413 Basecbs 17083 .rcmulr 17134 MndHom cmhm 18599 mulGrpcmgp 19896 1rcur 19913 Ringcrg 19964 CRingccrg 19965 Unitcui 20068 invrcinvr 20100 ℂfldccnfld 20796 ℤ/nℤczn 20903 DChrcdchr 26580 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2707 ax-rep 5242 ax-sep 5256 ax-nul 5263 ax-pow 5320 ax-pr 5384 ax-un 7672 ax-cnex 11107 ax-resscn 11108 ax-1cn 11109 ax-icn 11110 ax-addcl 11111 ax-addrcl 11112 ax-mulcl 11113 ax-mulrcl 11114 ax-mulcom 11115 ax-addass 11116 ax-mulass 11117 ax-distr 11118 ax-i2m1 11119 ax-1ne0 11120 ax-1rid 11121 ax-rnegex 11122 ax-rrecex 11123 ax-cnre 11124 ax-pre-lttri 11125 ax-pre-lttrn 11126 ax-pre-ltadd 11127 ax-pre-mulgt0 11128 ax-addf 11130 ax-mulf 11131 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3065 df-rex 3074 df-rmo 3353 df-reu 3354 df-rab 3408 df-v 3447 df-sbc 3740 df-csb 3856 df-dif 3913 df-un 3915 df-in 3917 df-ss 3927 df-pss 3929 df-nul 4283 df-if 4487 df-pw 4562 df-sn 4587 df-pr 4589 df-tp 4591 df-op 4593 df-uni 4866 df-int 4908 df-iun 4956 df-br 5106 df-opab 5168 df-mpt 5189 df-tr 5223 df-id 5531 df-eprel 5537 df-po 5545 df-so 5546 df-fr 5588 df-we 5590 df-xp 5639 df-rel 5640 df-cnv 5641 df-co 5642 df-dm 5643 df-rn 5644 df-res 5645 df-ima 5646 df-pred 6253 df-ord 6320 df-on 6321 df-lim 6322 df-suc 6323 df-iota 6448 df-fun 6498 df-fn 6499 df-f 6500 df-f1 6501 df-fo 6502 df-f1o 6503 df-fv 6504 df-riota 7313 df-ov 7360 df-oprab 7361 df-mpo 7362 df-om 7803 df-1st 7921 df-2nd 7922 df-tpos 8157 df-frecs 8212 df-wrecs 8243 df-recs 8317 df-rdg 8356 df-1o 8412 df-er 8648 df-ec 8650 df-qs 8654 df-map 8767 df-en 8884 df-dom 8885 df-sdom 8886 df-fin 8887 df-sup 9378 df-inf 9379 df-pnf 11191 df-mnf 11192 df-xr 11193 df-ltxr 11194 df-le 11195 df-sub 11387 df-neg 11388 df-nn 12154 df-2 12216 df-3 12217 df-4 12218 df-5 12219 df-6 12220 df-7 12221 df-8 12222 df-9 12223 df-n0 12414 df-z 12500 df-dec 12619 df-uz 12764 df-fz 13425 df-struct 17019 df-sets 17036 df-slot 17054 df-ndx 17066 df-base 17084 df-ress 17113 df-plusg 17146 df-mulr 17147 df-starv 17148 df-sca 17149 df-vsca 17150 df-ip 17151 df-tset 17152 df-ple 17153 df-ds 17155 df-unif 17156 df-0g 17323 df-imas 17390 df-qus 17391 df-mgm 18497 df-sgrp 18546 df-mnd 18557 df-mhm 18601 df-grp 18751 df-minusg 18752 df-sbg 18753 df-subg 18925 df-nsg 18926 df-eqg 18927 df-cmn 19564 df-abl 19565 df-mgp 19897 df-ur 19914 df-ring 19966 df-cring 19967 df-oppr 20049 df-dvdsr 20070 df-unit 20071 df-invr 20101 df-subrg 20220 df-lmod 20324 df-lss 20393 df-lsp 20433 df-sra 20633 df-rgmod 20634 df-lidl 20635 df-rsp 20636 df-2idl 20702 df-cnfld 20797 df-zring 20870 df-zn 20907 df-dchr 26581 |
This theorem is referenced by: dchrinvcl 26601 dchrfi 26603 dchrghm 26604 dchreq 26606 dchrabs 26608 dchrabs2 26610 dchr1re 26611 dchrpt 26615 dchrsum 26617 sum2dchr 26622 rpvmasumlem 26835 dchrisum0flblem1 26856 |
Copyright terms: Public domain | W3C validator |