MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fta1blem Structured version   Visualization version   GIF version

Theorem fta1blem 24767
Description: Lemma for fta1b 24768. (Contributed by Mario Carneiro, 14-Jun-2015.)
Hypotheses
Ref Expression
fta1b.p 𝑃 = (Poly1𝑅)
fta1b.b 𝐵 = (Base‘𝑃)
fta1b.d 𝐷 = ( deg1𝑅)
fta1b.o 𝑂 = (eval1𝑅)
fta1b.w 𝑊 = (0g𝑅)
fta1b.z 0 = (0g𝑃)
fta1blem.k 𝐾 = (Base‘𝑅)
fta1blem.t × = (.r𝑅)
fta1blem.x 𝑋 = (var1𝑅)
fta1blem.s · = ( ·𝑠𝑃)
fta1blem.1 (𝜑𝑅 ∈ CRing)
fta1blem.2 (𝜑𝑀𝐾)
fta1blem.3 (𝜑𝑁𝐾)
fta1blem.4 (𝜑 → (𝑀 × 𝑁) = 𝑊)
fta1blem.5 (𝜑𝑀𝑊)
fta1blem.6 (𝜑 → ((𝑀 · 𝑋) ∈ (𝐵 ∖ { 0 }) → (♯‘((𝑂‘(𝑀 · 𝑋)) “ {𝑊})) ≤ (𝐷‘(𝑀 · 𝑋))))
Assertion
Ref Expression
fta1blem (𝜑𝑁 = 𝑊)

Proof of Theorem fta1blem
StepHypRef Expression
1 fta1blem.3 . . . 4 (𝜑𝑁𝐾)
2 fta1b.o . . . . . . 7 𝑂 = (eval1𝑅)
3 fta1b.p . . . . . . 7 𝑃 = (Poly1𝑅)
4 fta1blem.k . . . . . . 7 𝐾 = (Base‘𝑅)
5 fta1b.b . . . . . . 7 𝐵 = (Base‘𝑃)
6 fta1blem.1 . . . . . . 7 (𝜑𝑅 ∈ CRing)
7 fta1blem.x . . . . . . . 8 𝑋 = (var1𝑅)
82, 7, 4, 3, 5, 6, 1evl1vard 20959 . . . . . . 7 (𝜑 → (𝑋𝐵 ∧ ((𝑂𝑋)‘𝑁) = 𝑁))
9 fta1blem.2 . . . . . . 7 (𝜑𝑀𝐾)
10 fta1blem.s . . . . . . 7 · = ( ·𝑠𝑃)
11 fta1blem.t . . . . . . 7 × = (.r𝑅)
122, 3, 4, 5, 6, 1, 8, 9, 10, 11evl1vsd 20966 . . . . . 6 (𝜑 → ((𝑀 · 𝑋) ∈ 𝐵 ∧ ((𝑂‘(𝑀 · 𝑋))‘𝑁) = (𝑀 × 𝑁)))
1312simprd 499 . . . . 5 (𝜑 → ((𝑂‘(𝑀 · 𝑋))‘𝑁) = (𝑀 × 𝑁))
14 fta1blem.4 . . . . 5 (𝜑 → (𝑀 × 𝑁) = 𝑊)
1513, 14eqtrd 2857 . . . 4 (𝜑 → ((𝑂‘(𝑀 · 𝑋))‘𝑁) = 𝑊)
16 eqid 2822 . . . . . . 7 (𝑅s 𝐾) = (𝑅s 𝐾)
17 eqid 2822 . . . . . . 7 (Base‘(𝑅s 𝐾)) = (Base‘(𝑅s 𝐾))
184fvexi 6666 . . . . . . . 8 𝐾 ∈ V
1918a1i 11 . . . . . . 7 (𝜑𝐾 ∈ V)
202, 3, 16, 4evl1rhm 20954 . . . . . . . . . 10 (𝑅 ∈ CRing → 𝑂 ∈ (𝑃 RingHom (𝑅s 𝐾)))
216, 20syl 17 . . . . . . . . 9 (𝜑𝑂 ∈ (𝑃 RingHom (𝑅s 𝐾)))
225, 17rhmf 19472 . . . . . . . . 9 (𝑂 ∈ (𝑃 RingHom (𝑅s 𝐾)) → 𝑂:𝐵⟶(Base‘(𝑅s 𝐾)))
2321, 22syl 17 . . . . . . . 8 (𝜑𝑂:𝐵⟶(Base‘(𝑅s 𝐾)))
2412simpld 498 . . . . . . . 8 (𝜑 → (𝑀 · 𝑋) ∈ 𝐵)
2523, 24ffvelrnd 6834 . . . . . . 7 (𝜑 → (𝑂‘(𝑀 · 𝑋)) ∈ (Base‘(𝑅s 𝐾)))
2616, 4, 17, 6, 19, 25pwselbas 16753 . . . . . 6 (𝜑 → (𝑂‘(𝑀 · 𝑋)):𝐾𝐾)
2726ffnd 6495 . . . . 5 (𝜑 → (𝑂‘(𝑀 · 𝑋)) Fn 𝐾)
28 fniniseg 6812 . . . . 5 ((𝑂‘(𝑀 · 𝑋)) Fn 𝐾 → (𝑁 ∈ ((𝑂‘(𝑀 · 𝑋)) “ {𝑊}) ↔ (𝑁𝐾 ∧ ((𝑂‘(𝑀 · 𝑋))‘𝑁) = 𝑊)))
2927, 28syl 17 . . . 4 (𝜑 → (𝑁 ∈ ((𝑂‘(𝑀 · 𝑋)) “ {𝑊}) ↔ (𝑁𝐾 ∧ ((𝑂‘(𝑀 · 𝑋))‘𝑁) = 𝑊)))
301, 15, 29mpbir2and 712 . . 3 (𝜑𝑁 ∈ ((𝑂‘(𝑀 · 𝑋)) “ {𝑊}))
31 fvex 6665 . . . . . . . 8 (𝑂‘(𝑀 · 𝑋)) ∈ V
3231cnvex 7616 . . . . . . 7 (𝑂‘(𝑀 · 𝑋)) ∈ V
3332imaex 7607 . . . . . 6 ((𝑂‘(𝑀 · 𝑋)) “ {𝑊}) ∈ V
3433a1i 11 . . . . 5 (𝜑 → ((𝑂‘(𝑀 · 𝑋)) “ {𝑊}) ∈ V)
35 1nn0 11901 . . . . . 6 1 ∈ ℕ0
3635a1i 11 . . . . 5 (𝜑 → 1 ∈ ℕ0)
37 crngring 19300 . . . . . . . . . . . . 13 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
386, 37syl 17 . . . . . . . . . . . 12 (𝜑𝑅 ∈ Ring)
397, 3, 5vr1cl 20844 . . . . . . . . . . . 12 (𝑅 ∈ Ring → 𝑋𝐵)
4038, 39syl 17 . . . . . . . . . . 11 (𝜑𝑋𝐵)
41 eqid 2822 . . . . . . . . . . . . 13 (mulGrp‘𝑃) = (mulGrp‘𝑃)
4241, 5mgpbas 19236 . . . . . . . . . . . 12 𝐵 = (Base‘(mulGrp‘𝑃))
43 eqid 2822 . . . . . . . . . . . 12 (.g‘(mulGrp‘𝑃)) = (.g‘(mulGrp‘𝑃))
4442, 43mulg1 18226 . . . . . . . . . . 11 (𝑋𝐵 → (1(.g‘(mulGrp‘𝑃))𝑋) = 𝑋)
4540, 44syl 17 . . . . . . . . . 10 (𝜑 → (1(.g‘(mulGrp‘𝑃))𝑋) = 𝑋)
4645oveq2d 7156 . . . . . . . . 9 (𝜑 → (𝑀 · (1(.g‘(mulGrp‘𝑃))𝑋)) = (𝑀 · 𝑋))
47 fta1blem.5 . . . . . . . . . . 11 (𝜑𝑀𝑊)
48 fta1b.w . . . . . . . . . . . . 13 𝑊 = (0g𝑅)
4948, 4, 3, 7, 10, 41, 43coe1tmfv1 20901 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ 𝑀𝐾 ∧ 1 ∈ ℕ0) → ((coe1‘(𝑀 · (1(.g‘(mulGrp‘𝑃))𝑋)))‘1) = 𝑀)
5038, 9, 36, 49syl3anc 1368 . . . . . . . . . . 11 (𝜑 → ((coe1‘(𝑀 · (1(.g‘(mulGrp‘𝑃))𝑋)))‘1) = 𝑀)
51 fta1b.z . . . . . . . . . . . . . . 15 0 = (0g𝑃)
523, 51, 48coe1z 20890 . . . . . . . . . . . . . 14 (𝑅 ∈ Ring → (coe10 ) = (ℕ0 × {𝑊}))
5338, 52syl 17 . . . . . . . . . . . . 13 (𝜑 → (coe10 ) = (ℕ0 × {𝑊}))
5453fveq1d 6654 . . . . . . . . . . . 12 (𝜑 → ((coe10 )‘1) = ((ℕ0 × {𝑊})‘1))
5548fvexi 6666 . . . . . . . . . . . . . 14 𝑊 ∈ V
5655fvconst2 6948 . . . . . . . . . . . . 13 (1 ∈ ℕ0 → ((ℕ0 × {𝑊})‘1) = 𝑊)
5735, 56ax-mp 5 . . . . . . . . . . . 12 ((ℕ0 × {𝑊})‘1) = 𝑊
5854, 57syl6eq 2873 . . . . . . . . . . 11 (𝜑 → ((coe10 )‘1) = 𝑊)
5947, 50, 583netr4d 3088 . . . . . . . . . 10 (𝜑 → ((coe1‘(𝑀 · (1(.g‘(mulGrp‘𝑃))𝑋)))‘1) ≠ ((coe10 )‘1))
60 fveq2 6652 . . . . . . . . . . . 12 ((𝑀 · (1(.g‘(mulGrp‘𝑃))𝑋)) = 0 → (coe1‘(𝑀 · (1(.g‘(mulGrp‘𝑃))𝑋))) = (coe10 ))
6160fveq1d 6654 . . . . . . . . . . 11 ((𝑀 · (1(.g‘(mulGrp‘𝑃))𝑋)) = 0 → ((coe1‘(𝑀 · (1(.g‘(mulGrp‘𝑃))𝑋)))‘1) = ((coe10 )‘1))
6261necon3i 3043 . . . . . . . . . 10 (((coe1‘(𝑀 · (1(.g‘(mulGrp‘𝑃))𝑋)))‘1) ≠ ((coe10 )‘1) → (𝑀 · (1(.g‘(mulGrp‘𝑃))𝑋)) ≠ 0 )
6359, 62syl 17 . . . . . . . . 9 (𝜑 → (𝑀 · (1(.g‘(mulGrp‘𝑃))𝑋)) ≠ 0 )
6446, 63eqnetrrd 3079 . . . . . . . 8 (𝜑 → (𝑀 · 𝑋) ≠ 0 )
65 eldifsn 4693 . . . . . . . 8 ((𝑀 · 𝑋) ∈ (𝐵 ∖ { 0 }) ↔ ((𝑀 · 𝑋) ∈ 𝐵 ∧ (𝑀 · 𝑋) ≠ 0 ))
6624, 64, 65sylanbrc 586 . . . . . . 7 (𝜑 → (𝑀 · 𝑋) ∈ (𝐵 ∖ { 0 }))
67 fta1blem.6 . . . . . . 7 (𝜑 → ((𝑀 · 𝑋) ∈ (𝐵 ∖ { 0 }) → (♯‘((𝑂‘(𝑀 · 𝑋)) “ {𝑊})) ≤ (𝐷‘(𝑀 · 𝑋))))
6866, 67mpd 15 . . . . . 6 (𝜑 → (♯‘((𝑂‘(𝑀 · 𝑋)) “ {𝑊})) ≤ (𝐷‘(𝑀 · 𝑋)))
6946fveq2d 6656 . . . . . . 7 (𝜑 → (𝐷‘(𝑀 · (1(.g‘(mulGrp‘𝑃))𝑋))) = (𝐷‘(𝑀 · 𝑋)))
70 fta1b.d . . . . . . . . 9 𝐷 = ( deg1𝑅)
7170, 4, 3, 7, 10, 41, 43, 48deg1tm 24717 . . . . . . . 8 ((𝑅 ∈ Ring ∧ (𝑀𝐾𝑀𝑊) ∧ 1 ∈ ℕ0) → (𝐷‘(𝑀 · (1(.g‘(mulGrp‘𝑃))𝑋))) = 1)
7238, 9, 47, 36, 71syl121anc 1372 . . . . . . 7 (𝜑 → (𝐷‘(𝑀 · (1(.g‘(mulGrp‘𝑃))𝑋))) = 1)
7369, 72eqtr3d 2859 . . . . . 6 (𝜑 → (𝐷‘(𝑀 · 𝑋)) = 1)
7468, 73breqtrd 5068 . . . . 5 (𝜑 → (♯‘((𝑂‘(𝑀 · 𝑋)) “ {𝑊})) ≤ 1)
75 hashbnd 13692 . . . . 5 ((((𝑂‘(𝑀 · 𝑋)) “ {𝑊}) ∈ V ∧ 1 ∈ ℕ0 ∧ (♯‘((𝑂‘(𝑀 · 𝑋)) “ {𝑊})) ≤ 1) → ((𝑂‘(𝑀 · 𝑋)) “ {𝑊}) ∈ Fin)
7634, 36, 74, 75syl3anc 1368 . . . 4 (𝜑 → ((𝑂‘(𝑀 · 𝑋)) “ {𝑊}) ∈ Fin)
774, 48ring0cl 19313 . . . . . . 7 (𝑅 ∈ Ring → 𝑊𝐾)
7838, 77syl 17 . . . . . 6 (𝜑𝑊𝐾)
79 eqid 2822 . . . . . . . . . . . . 13 (algSc‘𝑃) = (algSc‘𝑃)
803, 79, 4, 5ply1sclf 20912 . . . . . . . . . . . 12 (𝑅 ∈ Ring → (algSc‘𝑃):𝐾𝐵)
8138, 80syl 17 . . . . . . . . . . 11 (𝜑 → (algSc‘𝑃):𝐾𝐵)
8281, 9ffvelrnd 6834 . . . . . . . . . 10 (𝜑 → ((algSc‘𝑃)‘𝑀) ∈ 𝐵)
83 eqid 2822 . . . . . . . . . . 11 (.r𝑃) = (.r𝑃)
84 eqid 2822 . . . . . . . . . . 11 (.r‘(𝑅s 𝐾)) = (.r‘(𝑅s 𝐾))
855, 83, 84rhmmul 19473 . . . . . . . . . 10 ((𝑂 ∈ (𝑃 RingHom (𝑅s 𝐾)) ∧ ((algSc‘𝑃)‘𝑀) ∈ 𝐵𝑋𝐵) → (𝑂‘(((algSc‘𝑃)‘𝑀)(.r𝑃)𝑋)) = ((𝑂‘((algSc‘𝑃)‘𝑀))(.r‘(𝑅s 𝐾))(𝑂𝑋)))
8621, 82, 40, 85syl3anc 1368 . . . . . . . . 9 (𝜑 → (𝑂‘(((algSc‘𝑃)‘𝑀)(.r𝑃)𝑋)) = ((𝑂‘((algSc‘𝑃)‘𝑀))(.r‘(𝑅s 𝐾))(𝑂𝑋)))
873ply1assa 20826 . . . . . . . . . . . 12 (𝑅 ∈ CRing → 𝑃 ∈ AssAlg)
886, 87syl 17 . . . . . . . . . . 11 (𝜑𝑃 ∈ AssAlg)
893ply1sca 20880 . . . . . . . . . . . . . . 15 (𝑅 ∈ CRing → 𝑅 = (Scalar‘𝑃))
906, 89syl 17 . . . . . . . . . . . . . 14 (𝜑𝑅 = (Scalar‘𝑃))
9190fveq2d 6656 . . . . . . . . . . . . 13 (𝜑 → (Base‘𝑅) = (Base‘(Scalar‘𝑃)))
924, 91syl5eq 2869 . . . . . . . . . . . 12 (𝜑𝐾 = (Base‘(Scalar‘𝑃)))
939, 92eleqtrd 2916 . . . . . . . . . . 11 (𝜑𝑀 ∈ (Base‘(Scalar‘𝑃)))
94 eqid 2822 . . . . . . . . . . . 12 (Scalar‘𝑃) = (Scalar‘𝑃)
95 eqid 2822 . . . . . . . . . . . 12 (Base‘(Scalar‘𝑃)) = (Base‘(Scalar‘𝑃))
9679, 94, 95, 5, 83, 10asclmul1 20569 . . . . . . . . . . 11 ((𝑃 ∈ AssAlg ∧ 𝑀 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑋𝐵) → (((algSc‘𝑃)‘𝑀)(.r𝑃)𝑋) = (𝑀 · 𝑋))
9788, 93, 40, 96syl3anc 1368 . . . . . . . . . 10 (𝜑 → (((algSc‘𝑃)‘𝑀)(.r𝑃)𝑋) = (𝑀 · 𝑋))
9897fveq2d 6656 . . . . . . . . 9 (𝜑 → (𝑂‘(((algSc‘𝑃)‘𝑀)(.r𝑃)𝑋)) = (𝑂‘(𝑀 · 𝑋)))
9923, 82ffvelrnd 6834 . . . . . . . . . . 11 (𝜑 → (𝑂‘((algSc‘𝑃)‘𝑀)) ∈ (Base‘(𝑅s 𝐾)))
10023, 40ffvelrnd 6834 . . . . . . . . . . 11 (𝜑 → (𝑂𝑋) ∈ (Base‘(𝑅s 𝐾)))
10116, 17, 6, 19, 99, 100, 11, 84pwsmulrval 16755 . . . . . . . . . 10 (𝜑 → ((𝑂‘((algSc‘𝑃)‘𝑀))(.r‘(𝑅s 𝐾))(𝑂𝑋)) = ((𝑂‘((algSc‘𝑃)‘𝑀)) ∘f × (𝑂𝑋)))
1022, 3, 4, 79evl1sca 20956 . . . . . . . . . . . 12 ((𝑅 ∈ CRing ∧ 𝑀𝐾) → (𝑂‘((algSc‘𝑃)‘𝑀)) = (𝐾 × {𝑀}))
1036, 9, 102syl2anc 587 . . . . . . . . . . 11 (𝜑 → (𝑂‘((algSc‘𝑃)‘𝑀)) = (𝐾 × {𝑀}))
1042, 7, 4evl1var 20958 . . . . . . . . . . . 12 (𝑅 ∈ CRing → (𝑂𝑋) = ( I ↾ 𝐾))
1056, 104syl 17 . . . . . . . . . . 11 (𝜑 → (𝑂𝑋) = ( I ↾ 𝐾))
106103, 105oveq12d 7158 . . . . . . . . . 10 (𝜑 → ((𝑂‘((algSc‘𝑃)‘𝑀)) ∘f × (𝑂𝑋)) = ((𝐾 × {𝑀}) ∘f × ( I ↾ 𝐾)))
107101, 106eqtrd 2857 . . . . . . . . 9 (𝜑 → ((𝑂‘((algSc‘𝑃)‘𝑀))(.r‘(𝑅s 𝐾))(𝑂𝑋)) = ((𝐾 × {𝑀}) ∘f × ( I ↾ 𝐾)))
10886, 98, 1073eqtr3d 2865 . . . . . . . 8 (𝜑 → (𝑂‘(𝑀 · 𝑋)) = ((𝐾 × {𝑀}) ∘f × ( I ↾ 𝐾)))
109108fveq1d 6654 . . . . . . 7 (𝜑 → ((𝑂‘(𝑀 · 𝑋))‘𝑊) = (((𝐾 × {𝑀}) ∘f × ( I ↾ 𝐾))‘𝑊))
110 fnconstg 6548 . . . . . . . . . 10 (𝑀𝐾 → (𝐾 × {𝑀}) Fn 𝐾)
1119, 110syl 17 . . . . . . . . 9 (𝜑 → (𝐾 × {𝑀}) Fn 𝐾)
112 fnresi 6456 . . . . . . . . . 10 ( I ↾ 𝐾) Fn 𝐾
113112a1i 11 . . . . . . . . 9 (𝜑 → ( I ↾ 𝐾) Fn 𝐾)
114 fnfvof 7408 . . . . . . . . 9 ((((𝐾 × {𝑀}) Fn 𝐾 ∧ ( I ↾ 𝐾) Fn 𝐾) ∧ (𝐾 ∈ V ∧ 𝑊𝐾)) → (((𝐾 × {𝑀}) ∘f × ( I ↾ 𝐾))‘𝑊) = (((𝐾 × {𝑀})‘𝑊) × (( I ↾ 𝐾)‘𝑊)))
115111, 113, 19, 78, 114syl22anc 837 . . . . . . . 8 (𝜑 → (((𝐾 × {𝑀}) ∘f × ( I ↾ 𝐾))‘𝑊) = (((𝐾 × {𝑀})‘𝑊) × (( I ↾ 𝐾)‘𝑊)))
116 fvconst2g 6946 . . . . . . . . . . 11 ((𝑀𝐾𝑊𝐾) → ((𝐾 × {𝑀})‘𝑊) = 𝑀)
1179, 78, 116syl2anc 587 . . . . . . . . . 10 (𝜑 → ((𝐾 × {𝑀})‘𝑊) = 𝑀)
118 fvresi 6917 . . . . . . . . . . 11 (𝑊𝐾 → (( I ↾ 𝐾)‘𝑊) = 𝑊)
11978, 118syl 17 . . . . . . . . . 10 (𝜑 → (( I ↾ 𝐾)‘𝑊) = 𝑊)
120117, 119oveq12d 7158 . . . . . . . . 9 (𝜑 → (((𝐾 × {𝑀})‘𝑊) × (( I ↾ 𝐾)‘𝑊)) = (𝑀 × 𝑊))
1214, 11, 48ringrz 19332 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝑀𝐾) → (𝑀 × 𝑊) = 𝑊)
12238, 9, 121syl2anc 587 . . . . . . . . 9 (𝜑 → (𝑀 × 𝑊) = 𝑊)
123120, 122eqtrd 2857 . . . . . . . 8 (𝜑 → (((𝐾 × {𝑀})‘𝑊) × (( I ↾ 𝐾)‘𝑊)) = 𝑊)
124115, 123eqtrd 2857 . . . . . . 7 (𝜑 → (((𝐾 × {𝑀}) ∘f × ( I ↾ 𝐾))‘𝑊) = 𝑊)
125109, 124eqtrd 2857 . . . . . 6 (𝜑 → ((𝑂‘(𝑀 · 𝑋))‘𝑊) = 𝑊)
126 fniniseg 6812 . . . . . . 7 ((𝑂‘(𝑀 · 𝑋)) Fn 𝐾 → (𝑊 ∈ ((𝑂‘(𝑀 · 𝑋)) “ {𝑊}) ↔ (𝑊𝐾 ∧ ((𝑂‘(𝑀 · 𝑋))‘𝑊) = 𝑊)))
12727, 126syl 17 . . . . . 6 (𝜑 → (𝑊 ∈ ((𝑂‘(𝑀 · 𝑋)) “ {𝑊}) ↔ (𝑊𝐾 ∧ ((𝑂‘(𝑀 · 𝑋))‘𝑊) = 𝑊)))
12878, 125, 127mpbir2and 712 . . . . 5 (𝜑𝑊 ∈ ((𝑂‘(𝑀 · 𝑋)) “ {𝑊}))
129128snssd 4715 . . . 4 (𝜑 → {𝑊} ⊆ ((𝑂‘(𝑀 · 𝑋)) “ {𝑊}))
130 hashsng 13726 . . . . . . 7 (𝑊𝐾 → (♯‘{𝑊}) = 1)
13178, 130syl 17 . . . . . 6 (𝜑 → (♯‘{𝑊}) = 1)
132 ssdomg 8542 . . . . . . . . . 10 (((𝑂‘(𝑀 · 𝑋)) “ {𝑊}) ∈ V → ({𝑊} ⊆ ((𝑂‘(𝑀 · 𝑋)) “ {𝑊}) → {𝑊} ≼ ((𝑂‘(𝑀 · 𝑋)) “ {𝑊})))
13333, 129, 132mpsyl 68 . . . . . . . . 9 (𝜑 → {𝑊} ≼ ((𝑂‘(𝑀 · 𝑋)) “ {𝑊}))
134 snfi 8581 . . . . . . . . . 10 {𝑊} ∈ Fin
135 hashdom 13736 . . . . . . . . . 10 (({𝑊} ∈ Fin ∧ ((𝑂‘(𝑀 · 𝑋)) “ {𝑊}) ∈ V) → ((♯‘{𝑊}) ≤ (♯‘((𝑂‘(𝑀 · 𝑋)) “ {𝑊})) ↔ {𝑊} ≼ ((𝑂‘(𝑀 · 𝑋)) “ {𝑊})))
136134, 33, 135mp2an 691 . . . . . . . . 9 ((♯‘{𝑊}) ≤ (♯‘((𝑂‘(𝑀 · 𝑋)) “ {𝑊})) ↔ {𝑊} ≼ ((𝑂‘(𝑀 · 𝑋)) “ {𝑊}))
137133, 136sylibr 237 . . . . . . . 8 (𝜑 → (♯‘{𝑊}) ≤ (♯‘((𝑂‘(𝑀 · 𝑋)) “ {𝑊})))
138131, 137eqbrtrrd 5066 . . . . . . 7 (𝜑 → 1 ≤ (♯‘((𝑂‘(𝑀 · 𝑋)) “ {𝑊})))
139 hashcl 13713 . . . . . . . . . 10 (((𝑂‘(𝑀 · 𝑋)) “ {𝑊}) ∈ Fin → (♯‘((𝑂‘(𝑀 · 𝑋)) “ {𝑊})) ∈ ℕ0)
14076, 139syl 17 . . . . . . . . 9 (𝜑 → (♯‘((𝑂‘(𝑀 · 𝑋)) “ {𝑊})) ∈ ℕ0)
141140nn0red 11944 . . . . . . . 8 (𝜑 → (♯‘((𝑂‘(𝑀 · 𝑋)) “ {𝑊})) ∈ ℝ)
142 1re 10630 . . . . . . . 8 1 ∈ ℝ
143 letri3 10715 . . . . . . . 8 (((♯‘((𝑂‘(𝑀 · 𝑋)) “ {𝑊})) ∈ ℝ ∧ 1 ∈ ℝ) → ((♯‘((𝑂‘(𝑀 · 𝑋)) “ {𝑊})) = 1 ↔ ((♯‘((𝑂‘(𝑀 · 𝑋)) “ {𝑊})) ≤ 1 ∧ 1 ≤ (♯‘((𝑂‘(𝑀 · 𝑋)) “ {𝑊})))))
144141, 142, 143sylancl 589 . . . . . . 7 (𝜑 → ((♯‘((𝑂‘(𝑀 · 𝑋)) “ {𝑊})) = 1 ↔ ((♯‘((𝑂‘(𝑀 · 𝑋)) “ {𝑊})) ≤ 1 ∧ 1 ≤ (♯‘((𝑂‘(𝑀 · 𝑋)) “ {𝑊})))))
14574, 138, 144mpbir2and 712 . . . . . 6 (𝜑 → (♯‘((𝑂‘(𝑀 · 𝑋)) “ {𝑊})) = 1)
146131, 145eqtr4d 2860 . . . . 5 (𝜑 → (♯‘{𝑊}) = (♯‘((𝑂‘(𝑀 · 𝑋)) “ {𝑊})))
147 hashen 13703 . . . . . 6 (({𝑊} ∈ Fin ∧ ((𝑂‘(𝑀 · 𝑋)) “ {𝑊}) ∈ Fin) → ((♯‘{𝑊}) = (♯‘((𝑂‘(𝑀 · 𝑋)) “ {𝑊})) ↔ {𝑊} ≈ ((𝑂‘(𝑀 · 𝑋)) “ {𝑊})))
148134, 76, 147sylancr 590 . . . . 5 (𝜑 → ((♯‘{𝑊}) = (♯‘((𝑂‘(𝑀 · 𝑋)) “ {𝑊})) ↔ {𝑊} ≈ ((𝑂‘(𝑀 · 𝑋)) “ {𝑊})))
149146, 148mpbid 235 . . . 4 (𝜑 → {𝑊} ≈ ((𝑂‘(𝑀 · 𝑋)) “ {𝑊}))
150 fisseneq 8717 . . . 4 ((((𝑂‘(𝑀 · 𝑋)) “ {𝑊}) ∈ Fin ∧ {𝑊} ⊆ ((𝑂‘(𝑀 · 𝑋)) “ {𝑊}) ∧ {𝑊} ≈ ((𝑂‘(𝑀 · 𝑋)) “ {𝑊})) → {𝑊} = ((𝑂‘(𝑀 · 𝑋)) “ {𝑊}))
15176, 129, 149, 150syl3anc 1368 . . 3 (𝜑 → {𝑊} = ((𝑂‘(𝑀 · 𝑋)) “ {𝑊}))
15230, 151eleqtrrd 2917 . 2 (𝜑𝑁 ∈ {𝑊})
153 elsni 4556 . 2 (𝑁 ∈ {𝑊} → 𝑁 = 𝑊)
154152, 153syl 17 1 (𝜑𝑁 = 𝑊)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2114  wne 3011  Vcvv 3469  cdif 3905  wss 3908  {csn 4539   class class class wbr 5042   I cid 5436   × cxp 5530  ccnv 5531  cres 5534  cima 5535   Fn wfn 6329  wf 6330  cfv 6334  (class class class)co 7140  f cof 7392  cen 8493  cdom 8494  Fincfn 8496  cr 10525  1c1 10527  cle 10665  0cn0 11885  chash 13686  Basecbs 16474  .rcmulr 16557  Scalarcsca 16559   ·𝑠 cvsca 16560  0gc0g 16704  s cpws 16711  .gcmg 18215  mulGrpcmgp 19230  Ringcrg 19288  CRingccrg 19289   RingHom crh 19458  AssAlgcasa 20537  algSccascl 20539  var1cv1 20803  Poly1cpl1 20804  coe1cco1 20805  eval1ce1 20936   deg1 cdg1 24653
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-rep 5166  ax-sep 5179  ax-nul 5186  ax-pow 5243  ax-pr 5307  ax-un 7446  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-addf 10605  ax-mulf 10606
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ne 3012  df-nel 3116  df-ral 3135  df-rex 3136  df-reu 3137  df-rmo 3138  df-rab 3139  df-v 3471  df-sbc 3748  df-csb 3856  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-tp 4544  df-op 4546  df-uni 4814  df-int 4852  df-iun 4896  df-iin 4897  df-br 5043  df-opab 5105  df-mpt 5123  df-tr 5149  df-id 5437  df-eprel 5442  df-po 5451  df-so 5452  df-fr 5491  df-se 5492  df-we 5493  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-rn 5543  df-res 5544  df-ima 5545  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6293  df-fun 6336  df-fn 6337  df-f 6338  df-f1 6339  df-fo 6340  df-f1o 6341  df-fv 6342  df-isom 6343  df-riota 7098  df-ov 7143  df-oprab 7144  df-mpo 7145  df-of 7394  df-ofr 7395  df-om 7566  df-1st 7675  df-2nd 7676  df-supp 7818  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-2o 8090  df-oadd 8093  df-er 8276  df-map 8395  df-pm 8396  df-ixp 8449  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-fsupp 8822  df-sup 8894  df-oi 8962  df-card 9356  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-xnn0 11956  df-z 11970  df-dec 12087  df-uz 12232  df-fz 12886  df-fzo 13029  df-seq 13365  df-hash 13687  df-struct 16476  df-ndx 16477  df-slot 16478  df-base 16480  df-sets 16481  df-ress 16482  df-plusg 16569  df-mulr 16570  df-starv 16571  df-sca 16572  df-vsca 16573  df-ip 16574  df-tset 16575  df-ple 16576  df-ds 16578  df-unif 16579  df-hom 16580  df-cco 16581  df-0g 16706  df-gsum 16707  df-prds 16712  df-pws 16714  df-mre 16848  df-mrc 16849  df-acs 16851  df-mgm 17843  df-sgrp 17892  df-mnd 17903  df-mhm 17947  df-submnd 17948  df-grp 18097  df-minusg 18098  df-sbg 18099  df-mulg 18216  df-subg 18267  df-ghm 18347  df-cntz 18438  df-cmn 18899  df-abl 18900  df-mgp 19231  df-ur 19243  df-srg 19247  df-ring 19290  df-cring 19291  df-rnghom 19461  df-subrg 19524  df-lmod 19627  df-lss 19695  df-lsp 19735  df-cnfld 20090  df-assa 20540  df-asp 20541  df-ascl 20542  df-psr 20592  df-mvr 20593  df-mpl 20594  df-opsr 20596  df-evls 20743  df-evl 20744  df-psr1 20807  df-vr1 20808  df-ply1 20809  df-coe1 20810  df-evl1 20938  df-mdeg 24654  df-deg1 24655
This theorem is referenced by:  fta1b  24768
  Copyright terms: Public domain W3C validator