MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fta1blem Structured version   Visualization version   GIF version

Theorem fta1blem 24764
Description: Lemma for fta1b 24765. (Contributed by Mario Carneiro, 14-Jun-2015.)
Hypotheses
Ref Expression
fta1b.p 𝑃 = (Poly1𝑅)
fta1b.b 𝐵 = (Base‘𝑃)
fta1b.d 𝐷 = ( deg1𝑅)
fta1b.o 𝑂 = (eval1𝑅)
fta1b.w 𝑊 = (0g𝑅)
fta1b.z 0 = (0g𝑃)
fta1blem.k 𝐾 = (Base‘𝑅)
fta1blem.t × = (.r𝑅)
fta1blem.x 𝑋 = (var1𝑅)
fta1blem.s · = ( ·𝑠𝑃)
fta1blem.1 (𝜑𝑅 ∈ CRing)
fta1blem.2 (𝜑𝑀𝐾)
fta1blem.3 (𝜑𝑁𝐾)
fta1blem.4 (𝜑 → (𝑀 × 𝑁) = 𝑊)
fta1blem.5 (𝜑𝑀𝑊)
fta1blem.6 (𝜑 → ((𝑀 · 𝑋) ∈ (𝐵 ∖ { 0 }) → (♯‘((𝑂‘(𝑀 · 𝑋)) “ {𝑊})) ≤ (𝐷‘(𝑀 · 𝑋))))
Assertion
Ref Expression
fta1blem (𝜑𝑁 = 𝑊)

Proof of Theorem fta1blem
StepHypRef Expression
1 fta1blem.3 . . . 4 (𝜑𝑁𝐾)
2 fta1b.o . . . . . . 7 𝑂 = (eval1𝑅)
3 fta1b.p . . . . . . 7 𝑃 = (Poly1𝑅)
4 fta1blem.k . . . . . . 7 𝐾 = (Base‘𝑅)
5 fta1b.b . . . . . . 7 𝐵 = (Base‘𝑃)
6 fta1blem.1 . . . . . . 7 (𝜑𝑅 ∈ CRing)
7 fta1blem.x . . . . . . . 8 𝑋 = (var1𝑅)
82, 7, 4, 3, 5, 6, 1evl1vard 20502 . . . . . . 7 (𝜑 → (𝑋𝐵 ∧ ((𝑂𝑋)‘𝑁) = 𝑁))
9 fta1blem.2 . . . . . . 7 (𝜑𝑀𝐾)
10 fta1blem.s . . . . . . 7 · = ( ·𝑠𝑃)
11 fta1blem.t . . . . . . 7 × = (.r𝑅)
122, 3, 4, 5, 6, 1, 8, 9, 10, 11evl1vsd 20509 . . . . . 6 (𝜑 → ((𝑀 · 𝑋) ∈ 𝐵 ∧ ((𝑂‘(𝑀 · 𝑋))‘𝑁) = (𝑀 × 𝑁)))
1312simprd 498 . . . . 5 (𝜑 → ((𝑂‘(𝑀 · 𝑋))‘𝑁) = (𝑀 × 𝑁))
14 fta1blem.4 . . . . 5 (𝜑 → (𝑀 × 𝑁) = 𝑊)
1513, 14eqtrd 2858 . . . 4 (𝜑 → ((𝑂‘(𝑀 · 𝑋))‘𝑁) = 𝑊)
16 eqid 2823 . . . . . . 7 (𝑅s 𝐾) = (𝑅s 𝐾)
17 eqid 2823 . . . . . . 7 (Base‘(𝑅s 𝐾)) = (Base‘(𝑅s 𝐾))
184fvexi 6686 . . . . . . . 8 𝐾 ∈ V
1918a1i 11 . . . . . . 7 (𝜑𝐾 ∈ V)
202, 3, 16, 4evl1rhm 20497 . . . . . . . . . 10 (𝑅 ∈ CRing → 𝑂 ∈ (𝑃 RingHom (𝑅s 𝐾)))
216, 20syl 17 . . . . . . . . 9 (𝜑𝑂 ∈ (𝑃 RingHom (𝑅s 𝐾)))
225, 17rhmf 19480 . . . . . . . . 9 (𝑂 ∈ (𝑃 RingHom (𝑅s 𝐾)) → 𝑂:𝐵⟶(Base‘(𝑅s 𝐾)))
2321, 22syl 17 . . . . . . . 8 (𝜑𝑂:𝐵⟶(Base‘(𝑅s 𝐾)))
2412simpld 497 . . . . . . . 8 (𝜑 → (𝑀 · 𝑋) ∈ 𝐵)
2523, 24ffvelrnd 6854 . . . . . . 7 (𝜑 → (𝑂‘(𝑀 · 𝑋)) ∈ (Base‘(𝑅s 𝐾)))
2616, 4, 17, 6, 19, 25pwselbas 16764 . . . . . 6 (𝜑 → (𝑂‘(𝑀 · 𝑋)):𝐾𝐾)
2726ffnd 6517 . . . . 5 (𝜑 → (𝑂‘(𝑀 · 𝑋)) Fn 𝐾)
28 fniniseg 6832 . . . . 5 ((𝑂‘(𝑀 · 𝑋)) Fn 𝐾 → (𝑁 ∈ ((𝑂‘(𝑀 · 𝑋)) “ {𝑊}) ↔ (𝑁𝐾 ∧ ((𝑂‘(𝑀 · 𝑋))‘𝑁) = 𝑊)))
2927, 28syl 17 . . . 4 (𝜑 → (𝑁 ∈ ((𝑂‘(𝑀 · 𝑋)) “ {𝑊}) ↔ (𝑁𝐾 ∧ ((𝑂‘(𝑀 · 𝑋))‘𝑁) = 𝑊)))
301, 15, 29mpbir2and 711 . . 3 (𝜑𝑁 ∈ ((𝑂‘(𝑀 · 𝑋)) “ {𝑊}))
31 fvex 6685 . . . . . . . 8 (𝑂‘(𝑀 · 𝑋)) ∈ V
3231cnvex 7632 . . . . . . 7 (𝑂‘(𝑀 · 𝑋)) ∈ V
3332imaex 7623 . . . . . 6 ((𝑂‘(𝑀 · 𝑋)) “ {𝑊}) ∈ V
3433a1i 11 . . . . 5 (𝜑 → ((𝑂‘(𝑀 · 𝑋)) “ {𝑊}) ∈ V)
35 1nn0 11916 . . . . . 6 1 ∈ ℕ0
3635a1i 11 . . . . 5 (𝜑 → 1 ∈ ℕ0)
37 crngring 19310 . . . . . . . . . . . . 13 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
386, 37syl 17 . . . . . . . . . . . 12 (𝜑𝑅 ∈ Ring)
397, 3, 5vr1cl 20387 . . . . . . . . . . . 12 (𝑅 ∈ Ring → 𝑋𝐵)
4038, 39syl 17 . . . . . . . . . . 11 (𝜑𝑋𝐵)
41 eqid 2823 . . . . . . . . . . . . 13 (mulGrp‘𝑃) = (mulGrp‘𝑃)
4241, 5mgpbas 19247 . . . . . . . . . . . 12 𝐵 = (Base‘(mulGrp‘𝑃))
43 eqid 2823 . . . . . . . . . . . 12 (.g‘(mulGrp‘𝑃)) = (.g‘(mulGrp‘𝑃))
4442, 43mulg1 18237 . . . . . . . . . . 11 (𝑋𝐵 → (1(.g‘(mulGrp‘𝑃))𝑋) = 𝑋)
4540, 44syl 17 . . . . . . . . . 10 (𝜑 → (1(.g‘(mulGrp‘𝑃))𝑋) = 𝑋)
4645oveq2d 7174 . . . . . . . . 9 (𝜑 → (𝑀 · (1(.g‘(mulGrp‘𝑃))𝑋)) = (𝑀 · 𝑋))
47 fta1blem.5 . . . . . . . . . . 11 (𝜑𝑀𝑊)
48 fta1b.w . . . . . . . . . . . . 13 𝑊 = (0g𝑅)
4948, 4, 3, 7, 10, 41, 43coe1tmfv1 20444 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ 𝑀𝐾 ∧ 1 ∈ ℕ0) → ((coe1‘(𝑀 · (1(.g‘(mulGrp‘𝑃))𝑋)))‘1) = 𝑀)
5038, 9, 36, 49syl3anc 1367 . . . . . . . . . . 11 (𝜑 → ((coe1‘(𝑀 · (1(.g‘(mulGrp‘𝑃))𝑋)))‘1) = 𝑀)
51 fta1b.z . . . . . . . . . . . . . . 15 0 = (0g𝑃)
523, 51, 48coe1z 20433 . . . . . . . . . . . . . 14 (𝑅 ∈ Ring → (coe10 ) = (ℕ0 × {𝑊}))
5338, 52syl 17 . . . . . . . . . . . . 13 (𝜑 → (coe10 ) = (ℕ0 × {𝑊}))
5453fveq1d 6674 . . . . . . . . . . . 12 (𝜑 → ((coe10 )‘1) = ((ℕ0 × {𝑊})‘1))
5548fvexi 6686 . . . . . . . . . . . . . 14 𝑊 ∈ V
5655fvconst2 6968 . . . . . . . . . . . . 13 (1 ∈ ℕ0 → ((ℕ0 × {𝑊})‘1) = 𝑊)
5735, 56ax-mp 5 . . . . . . . . . . . 12 ((ℕ0 × {𝑊})‘1) = 𝑊
5854, 57syl6eq 2874 . . . . . . . . . . 11 (𝜑 → ((coe10 )‘1) = 𝑊)
5947, 50, 583netr4d 3095 . . . . . . . . . 10 (𝜑 → ((coe1‘(𝑀 · (1(.g‘(mulGrp‘𝑃))𝑋)))‘1) ≠ ((coe10 )‘1))
60 fveq2 6672 . . . . . . . . . . . 12 ((𝑀 · (1(.g‘(mulGrp‘𝑃))𝑋)) = 0 → (coe1‘(𝑀 · (1(.g‘(mulGrp‘𝑃))𝑋))) = (coe10 ))
6160fveq1d 6674 . . . . . . . . . . 11 ((𝑀 · (1(.g‘(mulGrp‘𝑃))𝑋)) = 0 → ((coe1‘(𝑀 · (1(.g‘(mulGrp‘𝑃))𝑋)))‘1) = ((coe10 )‘1))
6261necon3i 3050 . . . . . . . . . 10 (((coe1‘(𝑀 · (1(.g‘(mulGrp‘𝑃))𝑋)))‘1) ≠ ((coe10 )‘1) → (𝑀 · (1(.g‘(mulGrp‘𝑃))𝑋)) ≠ 0 )
6359, 62syl 17 . . . . . . . . 9 (𝜑 → (𝑀 · (1(.g‘(mulGrp‘𝑃))𝑋)) ≠ 0 )
6446, 63eqnetrrd 3086 . . . . . . . 8 (𝜑 → (𝑀 · 𝑋) ≠ 0 )
65 eldifsn 4721 . . . . . . . 8 ((𝑀 · 𝑋) ∈ (𝐵 ∖ { 0 }) ↔ ((𝑀 · 𝑋) ∈ 𝐵 ∧ (𝑀 · 𝑋) ≠ 0 ))
6624, 64, 65sylanbrc 585 . . . . . . 7 (𝜑 → (𝑀 · 𝑋) ∈ (𝐵 ∖ { 0 }))
67 fta1blem.6 . . . . . . 7 (𝜑 → ((𝑀 · 𝑋) ∈ (𝐵 ∖ { 0 }) → (♯‘((𝑂‘(𝑀 · 𝑋)) “ {𝑊})) ≤ (𝐷‘(𝑀 · 𝑋))))
6866, 67mpd 15 . . . . . 6 (𝜑 → (♯‘((𝑂‘(𝑀 · 𝑋)) “ {𝑊})) ≤ (𝐷‘(𝑀 · 𝑋)))
6946fveq2d 6676 . . . . . . 7 (𝜑 → (𝐷‘(𝑀 · (1(.g‘(mulGrp‘𝑃))𝑋))) = (𝐷‘(𝑀 · 𝑋)))
70 fta1b.d . . . . . . . . 9 𝐷 = ( deg1𝑅)
7170, 4, 3, 7, 10, 41, 43, 48deg1tm 24714 . . . . . . . 8 ((𝑅 ∈ Ring ∧ (𝑀𝐾𝑀𝑊) ∧ 1 ∈ ℕ0) → (𝐷‘(𝑀 · (1(.g‘(mulGrp‘𝑃))𝑋))) = 1)
7238, 9, 47, 36, 71syl121anc 1371 . . . . . . 7 (𝜑 → (𝐷‘(𝑀 · (1(.g‘(mulGrp‘𝑃))𝑋))) = 1)
7369, 72eqtr3d 2860 . . . . . 6 (𝜑 → (𝐷‘(𝑀 · 𝑋)) = 1)
7468, 73breqtrd 5094 . . . . 5 (𝜑 → (♯‘((𝑂‘(𝑀 · 𝑋)) “ {𝑊})) ≤ 1)
75 hashbnd 13699 . . . . 5 ((((𝑂‘(𝑀 · 𝑋)) “ {𝑊}) ∈ V ∧ 1 ∈ ℕ0 ∧ (♯‘((𝑂‘(𝑀 · 𝑋)) “ {𝑊})) ≤ 1) → ((𝑂‘(𝑀 · 𝑋)) “ {𝑊}) ∈ Fin)
7634, 36, 74, 75syl3anc 1367 . . . 4 (𝜑 → ((𝑂‘(𝑀 · 𝑋)) “ {𝑊}) ∈ Fin)
774, 48ring0cl 19321 . . . . . . 7 (𝑅 ∈ Ring → 𝑊𝐾)
7838, 77syl 17 . . . . . 6 (𝜑𝑊𝐾)
79 eqid 2823 . . . . . . . . . . . . 13 (algSc‘𝑃) = (algSc‘𝑃)
803, 79, 4, 5ply1sclf 20455 . . . . . . . . . . . 12 (𝑅 ∈ Ring → (algSc‘𝑃):𝐾𝐵)
8138, 80syl 17 . . . . . . . . . . 11 (𝜑 → (algSc‘𝑃):𝐾𝐵)
8281, 9ffvelrnd 6854 . . . . . . . . . 10 (𝜑 → ((algSc‘𝑃)‘𝑀) ∈ 𝐵)
83 eqid 2823 . . . . . . . . . . 11 (.r𝑃) = (.r𝑃)
84 eqid 2823 . . . . . . . . . . 11 (.r‘(𝑅s 𝐾)) = (.r‘(𝑅s 𝐾))
855, 83, 84rhmmul 19481 . . . . . . . . . 10 ((𝑂 ∈ (𝑃 RingHom (𝑅s 𝐾)) ∧ ((algSc‘𝑃)‘𝑀) ∈ 𝐵𝑋𝐵) → (𝑂‘(((algSc‘𝑃)‘𝑀)(.r𝑃)𝑋)) = ((𝑂‘((algSc‘𝑃)‘𝑀))(.r‘(𝑅s 𝐾))(𝑂𝑋)))
8621, 82, 40, 85syl3anc 1367 . . . . . . . . 9 (𝜑 → (𝑂‘(((algSc‘𝑃)‘𝑀)(.r𝑃)𝑋)) = ((𝑂‘((algSc‘𝑃)‘𝑀))(.r‘(𝑅s 𝐾))(𝑂𝑋)))
873ply1assa 20369 . . . . . . . . . . . 12 (𝑅 ∈ CRing → 𝑃 ∈ AssAlg)
886, 87syl 17 . . . . . . . . . . 11 (𝜑𝑃 ∈ AssAlg)
893ply1sca 20423 . . . . . . . . . . . . . . 15 (𝑅 ∈ CRing → 𝑅 = (Scalar‘𝑃))
906, 89syl 17 . . . . . . . . . . . . . 14 (𝜑𝑅 = (Scalar‘𝑃))
9190fveq2d 6676 . . . . . . . . . . . . 13 (𝜑 → (Base‘𝑅) = (Base‘(Scalar‘𝑃)))
924, 91syl5eq 2870 . . . . . . . . . . . 12 (𝜑𝐾 = (Base‘(Scalar‘𝑃)))
939, 92eleqtrd 2917 . . . . . . . . . . 11 (𝜑𝑀 ∈ (Base‘(Scalar‘𝑃)))
94 eqid 2823 . . . . . . . . . . . 12 (Scalar‘𝑃) = (Scalar‘𝑃)
95 eqid 2823 . . . . . . . . . . . 12 (Base‘(Scalar‘𝑃)) = (Base‘(Scalar‘𝑃))
9679, 94, 95, 5, 83, 10asclmul1 20116 . . . . . . . . . . 11 ((𝑃 ∈ AssAlg ∧ 𝑀 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑋𝐵) → (((algSc‘𝑃)‘𝑀)(.r𝑃)𝑋) = (𝑀 · 𝑋))
9788, 93, 40, 96syl3anc 1367 . . . . . . . . . 10 (𝜑 → (((algSc‘𝑃)‘𝑀)(.r𝑃)𝑋) = (𝑀 · 𝑋))
9897fveq2d 6676 . . . . . . . . 9 (𝜑 → (𝑂‘(((algSc‘𝑃)‘𝑀)(.r𝑃)𝑋)) = (𝑂‘(𝑀 · 𝑋)))
9923, 82ffvelrnd 6854 . . . . . . . . . . 11 (𝜑 → (𝑂‘((algSc‘𝑃)‘𝑀)) ∈ (Base‘(𝑅s 𝐾)))
10023, 40ffvelrnd 6854 . . . . . . . . . . 11 (𝜑 → (𝑂𝑋) ∈ (Base‘(𝑅s 𝐾)))
10116, 17, 6, 19, 99, 100, 11, 84pwsmulrval 16766 . . . . . . . . . 10 (𝜑 → ((𝑂‘((algSc‘𝑃)‘𝑀))(.r‘(𝑅s 𝐾))(𝑂𝑋)) = ((𝑂‘((algSc‘𝑃)‘𝑀)) ∘f × (𝑂𝑋)))
1022, 3, 4, 79evl1sca 20499 . . . . . . . . . . . 12 ((𝑅 ∈ CRing ∧ 𝑀𝐾) → (𝑂‘((algSc‘𝑃)‘𝑀)) = (𝐾 × {𝑀}))
1036, 9, 102syl2anc 586 . . . . . . . . . . 11 (𝜑 → (𝑂‘((algSc‘𝑃)‘𝑀)) = (𝐾 × {𝑀}))
1042, 7, 4evl1var 20501 . . . . . . . . . . . 12 (𝑅 ∈ CRing → (𝑂𝑋) = ( I ↾ 𝐾))
1056, 104syl 17 . . . . . . . . . . 11 (𝜑 → (𝑂𝑋) = ( I ↾ 𝐾))
106103, 105oveq12d 7176 . . . . . . . . . 10 (𝜑 → ((𝑂‘((algSc‘𝑃)‘𝑀)) ∘f × (𝑂𝑋)) = ((𝐾 × {𝑀}) ∘f × ( I ↾ 𝐾)))
107101, 106eqtrd 2858 . . . . . . . . 9 (𝜑 → ((𝑂‘((algSc‘𝑃)‘𝑀))(.r‘(𝑅s 𝐾))(𝑂𝑋)) = ((𝐾 × {𝑀}) ∘f × ( I ↾ 𝐾)))
10886, 98, 1073eqtr3d 2866 . . . . . . . 8 (𝜑 → (𝑂‘(𝑀 · 𝑋)) = ((𝐾 × {𝑀}) ∘f × ( I ↾ 𝐾)))
109108fveq1d 6674 . . . . . . 7 (𝜑 → ((𝑂‘(𝑀 · 𝑋))‘𝑊) = (((𝐾 × {𝑀}) ∘f × ( I ↾ 𝐾))‘𝑊))
110 fnconstg 6569 . . . . . . . . . 10 (𝑀𝐾 → (𝐾 × {𝑀}) Fn 𝐾)
1119, 110syl 17 . . . . . . . . 9 (𝜑 → (𝐾 × {𝑀}) Fn 𝐾)
112 fnresi 6478 . . . . . . . . . 10 ( I ↾ 𝐾) Fn 𝐾
113112a1i 11 . . . . . . . . 9 (𝜑 → ( I ↾ 𝐾) Fn 𝐾)
114 fnfvof 7425 . . . . . . . . 9 ((((𝐾 × {𝑀}) Fn 𝐾 ∧ ( I ↾ 𝐾) Fn 𝐾) ∧ (𝐾 ∈ V ∧ 𝑊𝐾)) → (((𝐾 × {𝑀}) ∘f × ( I ↾ 𝐾))‘𝑊) = (((𝐾 × {𝑀})‘𝑊) × (( I ↾ 𝐾)‘𝑊)))
115111, 113, 19, 78, 114syl22anc 836 . . . . . . . 8 (𝜑 → (((𝐾 × {𝑀}) ∘f × ( I ↾ 𝐾))‘𝑊) = (((𝐾 × {𝑀})‘𝑊) × (( I ↾ 𝐾)‘𝑊)))
116 fvconst2g 6966 . . . . . . . . . . 11 ((𝑀𝐾𝑊𝐾) → ((𝐾 × {𝑀})‘𝑊) = 𝑀)
1179, 78, 116syl2anc 586 . . . . . . . . . 10 (𝜑 → ((𝐾 × {𝑀})‘𝑊) = 𝑀)
118 fvresi 6937 . . . . . . . . . . 11 (𝑊𝐾 → (( I ↾ 𝐾)‘𝑊) = 𝑊)
11978, 118syl 17 . . . . . . . . . 10 (𝜑 → (( I ↾ 𝐾)‘𝑊) = 𝑊)
120117, 119oveq12d 7176 . . . . . . . . 9 (𝜑 → (((𝐾 × {𝑀})‘𝑊) × (( I ↾ 𝐾)‘𝑊)) = (𝑀 × 𝑊))
1214, 11, 48ringrz 19340 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝑀𝐾) → (𝑀 × 𝑊) = 𝑊)
12238, 9, 121syl2anc 586 . . . . . . . . 9 (𝜑 → (𝑀 × 𝑊) = 𝑊)
123120, 122eqtrd 2858 . . . . . . . 8 (𝜑 → (((𝐾 × {𝑀})‘𝑊) × (( I ↾ 𝐾)‘𝑊)) = 𝑊)
124115, 123eqtrd 2858 . . . . . . 7 (𝜑 → (((𝐾 × {𝑀}) ∘f × ( I ↾ 𝐾))‘𝑊) = 𝑊)
125109, 124eqtrd 2858 . . . . . 6 (𝜑 → ((𝑂‘(𝑀 · 𝑋))‘𝑊) = 𝑊)
126 fniniseg 6832 . . . . . . 7 ((𝑂‘(𝑀 · 𝑋)) Fn 𝐾 → (𝑊 ∈ ((𝑂‘(𝑀 · 𝑋)) “ {𝑊}) ↔ (𝑊𝐾 ∧ ((𝑂‘(𝑀 · 𝑋))‘𝑊) = 𝑊)))
12727, 126syl 17 . . . . . 6 (𝜑 → (𝑊 ∈ ((𝑂‘(𝑀 · 𝑋)) “ {𝑊}) ↔ (𝑊𝐾 ∧ ((𝑂‘(𝑀 · 𝑋))‘𝑊) = 𝑊)))
12878, 125, 127mpbir2and 711 . . . . 5 (𝜑𝑊 ∈ ((𝑂‘(𝑀 · 𝑋)) “ {𝑊}))
129128snssd 4744 . . . 4 (𝜑 → {𝑊} ⊆ ((𝑂‘(𝑀 · 𝑋)) “ {𝑊}))
130 hashsng 13733 . . . . . . 7 (𝑊𝐾 → (♯‘{𝑊}) = 1)
13178, 130syl 17 . . . . . 6 (𝜑 → (♯‘{𝑊}) = 1)
132 ssdomg 8557 . . . . . . . . . 10 (((𝑂‘(𝑀 · 𝑋)) “ {𝑊}) ∈ V → ({𝑊} ⊆ ((𝑂‘(𝑀 · 𝑋)) “ {𝑊}) → {𝑊} ≼ ((𝑂‘(𝑀 · 𝑋)) “ {𝑊})))
13333, 129, 132mpsyl 68 . . . . . . . . 9 (𝜑 → {𝑊} ≼ ((𝑂‘(𝑀 · 𝑋)) “ {𝑊}))
134 snfi 8596 . . . . . . . . . 10 {𝑊} ∈ Fin
135 hashdom 13743 . . . . . . . . . 10 (({𝑊} ∈ Fin ∧ ((𝑂‘(𝑀 · 𝑋)) “ {𝑊}) ∈ V) → ((♯‘{𝑊}) ≤ (♯‘((𝑂‘(𝑀 · 𝑋)) “ {𝑊})) ↔ {𝑊} ≼ ((𝑂‘(𝑀 · 𝑋)) “ {𝑊})))
136134, 33, 135mp2an 690 . . . . . . . . 9 ((♯‘{𝑊}) ≤ (♯‘((𝑂‘(𝑀 · 𝑋)) “ {𝑊})) ↔ {𝑊} ≼ ((𝑂‘(𝑀 · 𝑋)) “ {𝑊}))
137133, 136sylibr 236 . . . . . . . 8 (𝜑 → (♯‘{𝑊}) ≤ (♯‘((𝑂‘(𝑀 · 𝑋)) “ {𝑊})))
138131, 137eqbrtrrd 5092 . . . . . . 7 (𝜑 → 1 ≤ (♯‘((𝑂‘(𝑀 · 𝑋)) “ {𝑊})))
139 hashcl 13720 . . . . . . . . . 10 (((𝑂‘(𝑀 · 𝑋)) “ {𝑊}) ∈ Fin → (♯‘((𝑂‘(𝑀 · 𝑋)) “ {𝑊})) ∈ ℕ0)
14076, 139syl 17 . . . . . . . . 9 (𝜑 → (♯‘((𝑂‘(𝑀 · 𝑋)) “ {𝑊})) ∈ ℕ0)
141140nn0red 11959 . . . . . . . 8 (𝜑 → (♯‘((𝑂‘(𝑀 · 𝑋)) “ {𝑊})) ∈ ℝ)
142 1re 10643 . . . . . . . 8 1 ∈ ℝ
143 letri3 10728 . . . . . . . 8 (((♯‘((𝑂‘(𝑀 · 𝑋)) “ {𝑊})) ∈ ℝ ∧ 1 ∈ ℝ) → ((♯‘((𝑂‘(𝑀 · 𝑋)) “ {𝑊})) = 1 ↔ ((♯‘((𝑂‘(𝑀 · 𝑋)) “ {𝑊})) ≤ 1 ∧ 1 ≤ (♯‘((𝑂‘(𝑀 · 𝑋)) “ {𝑊})))))
144141, 142, 143sylancl 588 . . . . . . 7 (𝜑 → ((♯‘((𝑂‘(𝑀 · 𝑋)) “ {𝑊})) = 1 ↔ ((♯‘((𝑂‘(𝑀 · 𝑋)) “ {𝑊})) ≤ 1 ∧ 1 ≤ (♯‘((𝑂‘(𝑀 · 𝑋)) “ {𝑊})))))
14574, 138, 144mpbir2and 711 . . . . . 6 (𝜑 → (♯‘((𝑂‘(𝑀 · 𝑋)) “ {𝑊})) = 1)
146131, 145eqtr4d 2861 . . . . 5 (𝜑 → (♯‘{𝑊}) = (♯‘((𝑂‘(𝑀 · 𝑋)) “ {𝑊})))
147 hashen 13710 . . . . . 6 (({𝑊} ∈ Fin ∧ ((𝑂‘(𝑀 · 𝑋)) “ {𝑊}) ∈ Fin) → ((♯‘{𝑊}) = (♯‘((𝑂‘(𝑀 · 𝑋)) “ {𝑊})) ↔ {𝑊} ≈ ((𝑂‘(𝑀 · 𝑋)) “ {𝑊})))
148134, 76, 147sylancr 589 . . . . 5 (𝜑 → ((♯‘{𝑊}) = (♯‘((𝑂‘(𝑀 · 𝑋)) “ {𝑊})) ↔ {𝑊} ≈ ((𝑂‘(𝑀 · 𝑋)) “ {𝑊})))
149146, 148mpbid 234 . . . 4 (𝜑 → {𝑊} ≈ ((𝑂‘(𝑀 · 𝑋)) “ {𝑊}))
150 fisseneq 8731 . . . 4 ((((𝑂‘(𝑀 · 𝑋)) “ {𝑊}) ∈ Fin ∧ {𝑊} ⊆ ((𝑂‘(𝑀 · 𝑋)) “ {𝑊}) ∧ {𝑊} ≈ ((𝑂‘(𝑀 · 𝑋)) “ {𝑊})) → {𝑊} = ((𝑂‘(𝑀 · 𝑋)) “ {𝑊}))
15176, 129, 149, 150syl3anc 1367 . . 3 (𝜑 → {𝑊} = ((𝑂‘(𝑀 · 𝑋)) “ {𝑊}))
15230, 151eleqtrrd 2918 . 2 (𝜑𝑁 ∈ {𝑊})
153 elsni 4586 . 2 (𝑁 ∈ {𝑊} → 𝑁 = 𝑊)
154152, 153syl 17 1 (𝜑𝑁 = 𝑊)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wne 3018  Vcvv 3496  cdif 3935  wss 3938  {csn 4569   class class class wbr 5068   I cid 5461   × cxp 5555  ccnv 5556  cres 5559  cima 5560   Fn wfn 6352  wf 6353  cfv 6357  (class class class)co 7158  f cof 7409  cen 8508  cdom 8509  Fincfn 8511  cr 10538  1c1 10540  cle 10678  0cn0 11900  chash 13693  Basecbs 16485  .rcmulr 16568  Scalarcsca 16570   ·𝑠 cvsca 16571  0gc0g 16715  s cpws 16722  .gcmg 18226  mulGrpcmgp 19241  Ringcrg 19299  CRingccrg 19300   RingHom crh 19466  AssAlgcasa 20084  algSccascl 20086  var1cv1 20346  Poly1cpl1 20347  coe1cco1 20348  eval1ce1 20479   deg1 cdg1 24650
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617  ax-addf 10618  ax-mulf 10619
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-iin 4924  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-se 5517  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-of 7411  df-ofr 7412  df-om 7583  df-1st 7691  df-2nd 7692  df-supp 7833  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-2o 8105  df-oadd 8108  df-er 8291  df-map 8410  df-pm 8411  df-ixp 8464  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-fsupp 8836  df-sup 8908  df-oi 8976  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-xnn0 11971  df-z 11985  df-dec 12102  df-uz 12247  df-fz 12896  df-fzo 13037  df-seq 13373  df-hash 13694  df-struct 16487  df-ndx 16488  df-slot 16489  df-base 16491  df-sets 16492  df-ress 16493  df-plusg 16580  df-mulr 16581  df-starv 16582  df-sca 16583  df-vsca 16584  df-ip 16585  df-tset 16586  df-ple 16587  df-ds 16589  df-unif 16590  df-hom 16591  df-cco 16592  df-0g 16717  df-gsum 16718  df-prds 16723  df-pws 16725  df-mre 16859  df-mrc 16860  df-acs 16862  df-mgm 17854  df-sgrp 17903  df-mnd 17914  df-mhm 17958  df-submnd 17959  df-grp 18108  df-minusg 18109  df-sbg 18110  df-mulg 18227  df-subg 18278  df-ghm 18358  df-cntz 18449  df-cmn 18910  df-abl 18911  df-mgp 19242  df-ur 19254  df-srg 19258  df-ring 19301  df-cring 19302  df-rnghom 19469  df-subrg 19535  df-lmod 19638  df-lss 19706  df-lsp 19746  df-assa 20087  df-asp 20088  df-ascl 20089  df-psr 20138  df-mvr 20139  df-mpl 20140  df-opsr 20142  df-evls 20288  df-evl 20289  df-psr1 20350  df-vr1 20351  df-ply1 20352  df-coe1 20353  df-evl1 20481  df-cnfld 20548  df-mdeg 24651  df-deg1 24652
This theorem is referenced by:  fta1b  24765
  Copyright terms: Public domain W3C validator