Proof of Theorem fta1blem
Step | Hyp | Ref
| Expression |
1 | | fta1blem.3 |
. . . 4
⊢ (𝜑 → 𝑁 ∈ 𝐾) |
2 | | fta1b.o |
. . . . . . 7
⊢ 𝑂 = (eval1‘𝑅) |
3 | | fta1b.p |
. . . . . . 7
⊢ 𝑃 = (Poly1‘𝑅) |
4 | | fta1blem.k |
. . . . . . 7
⊢ 𝐾 = (Base‘𝑅) |
5 | | fta1b.b |
. . . . . . 7
⊢ 𝐵 = (Base‘𝑃) |
6 | | fta1blem.1 |
. . . . . . 7
⊢ (𝜑 → 𝑅 ∈ CRing) |
7 | | fta1blem.x |
. . . . . . . 8
⊢ 𝑋 = (var1‘𝑅) |
8 | 2, 7, 4, 3, 5, 6, 1 | evl1vard 21503 |
. . . . . . 7
⊢ (𝜑 → (𝑋 ∈ 𝐵 ∧ ((𝑂‘𝑋)‘𝑁) = 𝑁)) |
9 | | fta1blem.2 |
. . . . . . 7
⊢ (𝜑 → 𝑀 ∈ 𝐾) |
10 | | fta1blem.s |
. . . . . . 7
⊢ · = (
·𝑠 ‘𝑃) |
11 | | fta1blem.t |
. . . . . . 7
⊢ × =
(.r‘𝑅) |
12 | 2, 3, 4, 5, 6, 1, 8, 9, 10, 11 | evl1vsd 21510 |
. . . . . 6
⊢ (𝜑 → ((𝑀 · 𝑋) ∈ 𝐵 ∧ ((𝑂‘(𝑀 · 𝑋))‘𝑁) = (𝑀 × 𝑁))) |
13 | 12 | simprd 496 |
. . . . 5
⊢ (𝜑 → ((𝑂‘(𝑀 · 𝑋))‘𝑁) = (𝑀 × 𝑁)) |
14 | | fta1blem.4 |
. . . . 5
⊢ (𝜑 → (𝑀 × 𝑁) = 𝑊) |
15 | 13, 14 | eqtrd 2778 |
. . . 4
⊢ (𝜑 → ((𝑂‘(𝑀 · 𝑋))‘𝑁) = 𝑊) |
16 | | eqid 2738 |
. . . . . . 7
⊢ (𝑅 ↑s 𝐾) = (𝑅 ↑s 𝐾) |
17 | | eqid 2738 |
. . . . . . 7
⊢
(Base‘(𝑅
↑s 𝐾)) = (Base‘(𝑅 ↑s 𝐾)) |
18 | 4 | fvexi 6788 |
. . . . . . . 8
⊢ 𝐾 ∈ V |
19 | 18 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → 𝐾 ∈ V) |
20 | 2, 3, 16, 4 | evl1rhm 21498 |
. . . . . . . . . 10
⊢ (𝑅 ∈ CRing → 𝑂 ∈ (𝑃 RingHom (𝑅 ↑s 𝐾))) |
21 | 6, 20 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝑂 ∈ (𝑃 RingHom (𝑅 ↑s 𝐾))) |
22 | 5, 17 | rhmf 19970 |
. . . . . . . . 9
⊢ (𝑂 ∈ (𝑃 RingHom (𝑅 ↑s 𝐾)) → 𝑂:𝐵⟶(Base‘(𝑅 ↑s 𝐾))) |
23 | 21, 22 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝑂:𝐵⟶(Base‘(𝑅 ↑s 𝐾))) |
24 | 12 | simpld 495 |
. . . . . . . 8
⊢ (𝜑 → (𝑀 · 𝑋) ∈ 𝐵) |
25 | 23, 24 | ffvelrnd 6962 |
. . . . . . 7
⊢ (𝜑 → (𝑂‘(𝑀 · 𝑋)) ∈ (Base‘(𝑅 ↑s 𝐾))) |
26 | 16, 4, 17, 6, 19, 25 | pwselbas 17200 |
. . . . . 6
⊢ (𝜑 → (𝑂‘(𝑀 · 𝑋)):𝐾⟶𝐾) |
27 | 26 | ffnd 6601 |
. . . . 5
⊢ (𝜑 → (𝑂‘(𝑀 · 𝑋)) Fn 𝐾) |
28 | | fniniseg 6937 |
. . . . 5
⊢ ((𝑂‘(𝑀 · 𝑋)) Fn 𝐾 → (𝑁 ∈ (◡(𝑂‘(𝑀 · 𝑋)) “ {𝑊}) ↔ (𝑁 ∈ 𝐾 ∧ ((𝑂‘(𝑀 · 𝑋))‘𝑁) = 𝑊))) |
29 | 27, 28 | syl 17 |
. . . 4
⊢ (𝜑 → (𝑁 ∈ (◡(𝑂‘(𝑀 · 𝑋)) “ {𝑊}) ↔ (𝑁 ∈ 𝐾 ∧ ((𝑂‘(𝑀 · 𝑋))‘𝑁) = 𝑊))) |
30 | 1, 15, 29 | mpbir2and 710 |
. . 3
⊢ (𝜑 → 𝑁 ∈ (◡(𝑂‘(𝑀 · 𝑋)) “ {𝑊})) |
31 | | fvex 6787 |
. . . . . . . 8
⊢ (𝑂‘(𝑀 · 𝑋)) ∈ V |
32 | 31 | cnvex 7772 |
. . . . . . 7
⊢ ◡(𝑂‘(𝑀 · 𝑋)) ∈ V |
33 | 32 | imaex 7763 |
. . . . . 6
⊢ (◡(𝑂‘(𝑀 · 𝑋)) “ {𝑊}) ∈ V |
34 | 33 | a1i 11 |
. . . . 5
⊢ (𝜑 → (◡(𝑂‘(𝑀 · 𝑋)) “ {𝑊}) ∈ V) |
35 | | 1nn0 12249 |
. . . . . 6
⊢ 1 ∈
ℕ0 |
36 | 35 | a1i 11 |
. . . . 5
⊢ (𝜑 → 1 ∈
ℕ0) |
37 | | crngring 19795 |
. . . . . . . . . . . . 13
⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) |
38 | 6, 37 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑅 ∈ Ring) |
39 | 7, 3, 5 | vr1cl 21388 |
. . . . . . . . . . . 12
⊢ (𝑅 ∈ Ring → 𝑋 ∈ 𝐵) |
40 | 38, 39 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑋 ∈ 𝐵) |
41 | | eqid 2738 |
. . . . . . . . . . . . 13
⊢
(mulGrp‘𝑃) =
(mulGrp‘𝑃) |
42 | 41, 5 | mgpbas 19726 |
. . . . . . . . . . . 12
⊢ 𝐵 =
(Base‘(mulGrp‘𝑃)) |
43 | | eqid 2738 |
. . . . . . . . . . . 12
⊢
(.g‘(mulGrp‘𝑃)) =
(.g‘(mulGrp‘𝑃)) |
44 | 42, 43 | mulg1 18711 |
. . . . . . . . . . 11
⊢ (𝑋 ∈ 𝐵 →
(1(.g‘(mulGrp‘𝑃))𝑋) = 𝑋) |
45 | 40, 44 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 →
(1(.g‘(mulGrp‘𝑃))𝑋) = 𝑋) |
46 | 45 | oveq2d 7291 |
. . . . . . . . 9
⊢ (𝜑 → (𝑀 ·
(1(.g‘(mulGrp‘𝑃))𝑋)) = (𝑀 · 𝑋)) |
47 | | fta1blem.5 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑀 ≠ 𝑊) |
48 | | fta1b.w |
. . . . . . . . . . . . 13
⊢ 𝑊 = (0g‘𝑅) |
49 | 48, 4, 3, 7, 10, 41, 43 | coe1tmfv1 21445 |
. . . . . . . . . . . 12
⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐾 ∧ 1 ∈ ℕ0) →
((coe1‘(𝑀
·
(1(.g‘(mulGrp‘𝑃))𝑋)))‘1) = 𝑀) |
50 | 38, 9, 36, 49 | syl3anc 1370 |
. . . . . . . . . . 11
⊢ (𝜑 →
((coe1‘(𝑀
·
(1(.g‘(mulGrp‘𝑃))𝑋)))‘1) = 𝑀) |
51 | | fta1b.z |
. . . . . . . . . . . . . . 15
⊢ 0 =
(0g‘𝑃) |
52 | 3, 51, 48 | coe1z 21434 |
. . . . . . . . . . . . . 14
⊢ (𝑅 ∈ Ring →
(coe1‘ 0 ) = (ℕ0
× {𝑊})) |
53 | 38, 52 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (coe1‘
0 ) =
(ℕ0 × {𝑊})) |
54 | 53 | fveq1d 6776 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((coe1‘
0
)‘1) = ((ℕ0 × {𝑊})‘1)) |
55 | 48 | fvexi 6788 |
. . . . . . . . . . . . . 14
⊢ 𝑊 ∈ V |
56 | 55 | fvconst2 7079 |
. . . . . . . . . . . . 13
⊢ (1 ∈
ℕ0 → ((ℕ0 × {𝑊})‘1) = 𝑊) |
57 | 35, 56 | ax-mp 5 |
. . . . . . . . . . . 12
⊢
((ℕ0 × {𝑊})‘1) = 𝑊 |
58 | 54, 57 | eqtrdi 2794 |
. . . . . . . . . . 11
⊢ (𝜑 → ((coe1‘
0
)‘1) = 𝑊) |
59 | 47, 50, 58 | 3netr4d 3021 |
. . . . . . . . . 10
⊢ (𝜑 →
((coe1‘(𝑀
·
(1(.g‘(mulGrp‘𝑃))𝑋)))‘1) ≠ ((coe1‘
0
)‘1)) |
60 | | fveq2 6774 |
. . . . . . . . . . . 12
⊢ ((𝑀 ·
(1(.g‘(mulGrp‘𝑃))𝑋)) = 0 →
(coe1‘(𝑀
·
(1(.g‘(mulGrp‘𝑃))𝑋))) = (coe1‘ 0
)) |
61 | 60 | fveq1d 6776 |
. . . . . . . . . . 11
⊢ ((𝑀 ·
(1(.g‘(mulGrp‘𝑃))𝑋)) = 0 →
((coe1‘(𝑀
·
(1(.g‘(mulGrp‘𝑃))𝑋)))‘1) = ((coe1‘
0
)‘1)) |
62 | 61 | necon3i 2976 |
. . . . . . . . . 10
⊢
(((coe1‘(𝑀 ·
(1(.g‘(mulGrp‘𝑃))𝑋)))‘1) ≠ ((coe1‘
0
)‘1) → (𝑀 ·
(1(.g‘(mulGrp‘𝑃))𝑋)) ≠ 0 ) |
63 | 59, 62 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (𝑀 ·
(1(.g‘(mulGrp‘𝑃))𝑋)) ≠ 0 ) |
64 | 46, 63 | eqnetrrd 3012 |
. . . . . . . 8
⊢ (𝜑 → (𝑀 · 𝑋) ≠ 0 ) |
65 | | eldifsn 4720 |
. . . . . . . 8
⊢ ((𝑀 · 𝑋) ∈ (𝐵 ∖ { 0 }) ↔ ((𝑀 · 𝑋) ∈ 𝐵 ∧ (𝑀 · 𝑋) ≠ 0 )) |
66 | 24, 64, 65 | sylanbrc 583 |
. . . . . . 7
⊢ (𝜑 → (𝑀 · 𝑋) ∈ (𝐵 ∖ { 0 })) |
67 | | fta1blem.6 |
. . . . . . 7
⊢ (𝜑 → ((𝑀 · 𝑋) ∈ (𝐵 ∖ { 0 }) →
(♯‘(◡(𝑂‘(𝑀 · 𝑋)) “ {𝑊})) ≤ (𝐷‘(𝑀 · 𝑋)))) |
68 | 66, 67 | mpd 15 |
. . . . . 6
⊢ (𝜑 → (♯‘(◡(𝑂‘(𝑀 · 𝑋)) “ {𝑊})) ≤ (𝐷‘(𝑀 · 𝑋))) |
69 | 46 | fveq2d 6778 |
. . . . . . 7
⊢ (𝜑 → (𝐷‘(𝑀 ·
(1(.g‘(mulGrp‘𝑃))𝑋))) = (𝐷‘(𝑀 · 𝑋))) |
70 | | fta1b.d |
. . . . . . . . 9
⊢ 𝐷 = ( deg1
‘𝑅) |
71 | 70, 4, 3, 7, 10, 41, 43, 48 | deg1tm 25283 |
. . . . . . . 8
⊢ ((𝑅 ∈ Ring ∧ (𝑀 ∈ 𝐾 ∧ 𝑀 ≠ 𝑊) ∧ 1 ∈ ℕ0) →
(𝐷‘(𝑀 ·
(1(.g‘(mulGrp‘𝑃))𝑋))) = 1) |
72 | 38, 9, 47, 36, 71 | syl121anc 1374 |
. . . . . . 7
⊢ (𝜑 → (𝐷‘(𝑀 ·
(1(.g‘(mulGrp‘𝑃))𝑋))) = 1) |
73 | 69, 72 | eqtr3d 2780 |
. . . . . 6
⊢ (𝜑 → (𝐷‘(𝑀 · 𝑋)) = 1) |
74 | 68, 73 | breqtrd 5100 |
. . . . 5
⊢ (𝜑 → (♯‘(◡(𝑂‘(𝑀 · 𝑋)) “ {𝑊})) ≤ 1) |
75 | | hashbnd 14050 |
. . . . 5
⊢ (((◡(𝑂‘(𝑀 · 𝑋)) “ {𝑊}) ∈ V ∧ 1 ∈
ℕ0 ∧ (♯‘(◡(𝑂‘(𝑀 · 𝑋)) “ {𝑊})) ≤ 1) → (◡(𝑂‘(𝑀 · 𝑋)) “ {𝑊}) ∈ Fin) |
76 | 34, 36, 74, 75 | syl3anc 1370 |
. . . 4
⊢ (𝜑 → (◡(𝑂‘(𝑀 · 𝑋)) “ {𝑊}) ∈ Fin) |
77 | 4, 48 | ring0cl 19808 |
. . . . . . 7
⊢ (𝑅 ∈ Ring → 𝑊 ∈ 𝐾) |
78 | 38, 77 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝑊 ∈ 𝐾) |
79 | | eqid 2738 |
. . . . . . . . . . . . 13
⊢
(algSc‘𝑃) =
(algSc‘𝑃) |
80 | 3, 79, 4, 5 | ply1sclf 21456 |
. . . . . . . . . . . 12
⊢ (𝑅 ∈ Ring →
(algSc‘𝑃):𝐾⟶𝐵) |
81 | 38, 80 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → (algSc‘𝑃):𝐾⟶𝐵) |
82 | 81, 9 | ffvelrnd 6962 |
. . . . . . . . . 10
⊢ (𝜑 → ((algSc‘𝑃)‘𝑀) ∈ 𝐵) |
83 | | eqid 2738 |
. . . . . . . . . . 11
⊢
(.r‘𝑃) = (.r‘𝑃) |
84 | | eqid 2738 |
. . . . . . . . . . 11
⊢
(.r‘(𝑅 ↑s 𝐾)) = (.r‘(𝑅 ↑s 𝐾)) |
85 | 5, 83, 84 | rhmmul 19971 |
. . . . . . . . . 10
⊢ ((𝑂 ∈ (𝑃 RingHom (𝑅 ↑s 𝐾)) ∧ ((algSc‘𝑃)‘𝑀) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → (𝑂‘(((algSc‘𝑃)‘𝑀)(.r‘𝑃)𝑋)) = ((𝑂‘((algSc‘𝑃)‘𝑀))(.r‘(𝑅 ↑s 𝐾))(𝑂‘𝑋))) |
86 | 21, 82, 40, 85 | syl3anc 1370 |
. . . . . . . . 9
⊢ (𝜑 → (𝑂‘(((algSc‘𝑃)‘𝑀)(.r‘𝑃)𝑋)) = ((𝑂‘((algSc‘𝑃)‘𝑀))(.r‘(𝑅 ↑s 𝐾))(𝑂‘𝑋))) |
87 | 3 | ply1assa 21370 |
. . . . . . . . . . . 12
⊢ (𝑅 ∈ CRing → 𝑃 ∈ AssAlg) |
88 | 6, 87 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑃 ∈ AssAlg) |
89 | 3 | ply1sca 21424 |
. . . . . . . . . . . . . . 15
⊢ (𝑅 ∈ CRing → 𝑅 = (Scalar‘𝑃)) |
90 | 6, 89 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑅 = (Scalar‘𝑃)) |
91 | 90 | fveq2d 6778 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (Base‘𝑅) =
(Base‘(Scalar‘𝑃))) |
92 | 4, 91 | eqtrid 2790 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐾 = (Base‘(Scalar‘𝑃))) |
93 | 9, 92 | eleqtrd 2841 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑀 ∈ (Base‘(Scalar‘𝑃))) |
94 | | eqid 2738 |
. . . . . . . . . . . 12
⊢
(Scalar‘𝑃) =
(Scalar‘𝑃) |
95 | | eqid 2738 |
. . . . . . . . . . . 12
⊢
(Base‘(Scalar‘𝑃)) = (Base‘(Scalar‘𝑃)) |
96 | 79, 94, 95, 5, 83, 10 | asclmul1 21090 |
. . . . . . . . . . 11
⊢ ((𝑃 ∈ AssAlg ∧ 𝑀 ∈
(Base‘(Scalar‘𝑃)) ∧ 𝑋 ∈ 𝐵) → (((algSc‘𝑃)‘𝑀)(.r‘𝑃)𝑋) = (𝑀 · 𝑋)) |
97 | 88, 93, 40, 96 | syl3anc 1370 |
. . . . . . . . . 10
⊢ (𝜑 → (((algSc‘𝑃)‘𝑀)(.r‘𝑃)𝑋) = (𝑀 · 𝑋)) |
98 | 97 | fveq2d 6778 |
. . . . . . . . 9
⊢ (𝜑 → (𝑂‘(((algSc‘𝑃)‘𝑀)(.r‘𝑃)𝑋)) = (𝑂‘(𝑀 · 𝑋))) |
99 | 23, 82 | ffvelrnd 6962 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑂‘((algSc‘𝑃)‘𝑀)) ∈ (Base‘(𝑅 ↑s 𝐾))) |
100 | 23, 40 | ffvelrnd 6962 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑂‘𝑋) ∈ (Base‘(𝑅 ↑s 𝐾))) |
101 | 16, 17, 6, 19, 99, 100, 11, 84 | pwsmulrval 17202 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝑂‘((algSc‘𝑃)‘𝑀))(.r‘(𝑅 ↑s 𝐾))(𝑂‘𝑋)) = ((𝑂‘((algSc‘𝑃)‘𝑀)) ∘f × (𝑂‘𝑋))) |
102 | 2, 3, 4, 79 | evl1sca 21500 |
. . . . . . . . . . . 12
⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐾) → (𝑂‘((algSc‘𝑃)‘𝑀)) = (𝐾 × {𝑀})) |
103 | 6, 9, 102 | syl2anc 584 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑂‘((algSc‘𝑃)‘𝑀)) = (𝐾 × {𝑀})) |
104 | 2, 7, 4 | evl1var 21502 |
. . . . . . . . . . . 12
⊢ (𝑅 ∈ CRing → (𝑂‘𝑋) = ( I ↾ 𝐾)) |
105 | 6, 104 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑂‘𝑋) = ( I ↾ 𝐾)) |
106 | 103, 105 | oveq12d 7293 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝑂‘((algSc‘𝑃)‘𝑀)) ∘f × (𝑂‘𝑋)) = ((𝐾 × {𝑀}) ∘f × ( I ↾ 𝐾))) |
107 | 101, 106 | eqtrd 2778 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑂‘((algSc‘𝑃)‘𝑀))(.r‘(𝑅 ↑s 𝐾))(𝑂‘𝑋)) = ((𝐾 × {𝑀}) ∘f × ( I ↾ 𝐾))) |
108 | 86, 98, 107 | 3eqtr3d 2786 |
. . . . . . . 8
⊢ (𝜑 → (𝑂‘(𝑀 · 𝑋)) = ((𝐾 × {𝑀}) ∘f × ( I ↾ 𝐾))) |
109 | 108 | fveq1d 6776 |
. . . . . . 7
⊢ (𝜑 → ((𝑂‘(𝑀 · 𝑋))‘𝑊) = (((𝐾 × {𝑀}) ∘f × ( I ↾ 𝐾))‘𝑊)) |
110 | | fnconstg 6662 |
. . . . . . . . . 10
⊢ (𝑀 ∈ 𝐾 → (𝐾 × {𝑀}) Fn 𝐾) |
111 | 9, 110 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (𝐾 × {𝑀}) Fn 𝐾) |
112 | | fnresi 6561 |
. . . . . . . . . 10
⊢ ( I
↾ 𝐾) Fn 𝐾 |
113 | 112 | a1i 11 |
. . . . . . . . 9
⊢ (𝜑 → ( I ↾ 𝐾) Fn 𝐾) |
114 | | fnfvof 7550 |
. . . . . . . . 9
⊢ ((((𝐾 × {𝑀}) Fn 𝐾 ∧ ( I ↾ 𝐾) Fn 𝐾) ∧ (𝐾 ∈ V ∧ 𝑊 ∈ 𝐾)) → (((𝐾 × {𝑀}) ∘f × ( I ↾ 𝐾))‘𝑊) = (((𝐾 × {𝑀})‘𝑊) × (( I ↾ 𝐾)‘𝑊))) |
115 | 111, 113,
19, 78, 114 | syl22anc 836 |
. . . . . . . 8
⊢ (𝜑 → (((𝐾 × {𝑀}) ∘f × ( I ↾ 𝐾))‘𝑊) = (((𝐾 × {𝑀})‘𝑊) × (( I ↾ 𝐾)‘𝑊))) |
116 | | fvconst2g 7077 |
. . . . . . . . . . 11
⊢ ((𝑀 ∈ 𝐾 ∧ 𝑊 ∈ 𝐾) → ((𝐾 × {𝑀})‘𝑊) = 𝑀) |
117 | 9, 78, 116 | syl2anc 584 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝐾 × {𝑀})‘𝑊) = 𝑀) |
118 | | fvresi 7045 |
. . . . . . . . . . 11
⊢ (𝑊 ∈ 𝐾 → (( I ↾ 𝐾)‘𝑊) = 𝑊) |
119 | 78, 118 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (( I ↾ 𝐾)‘𝑊) = 𝑊) |
120 | 117, 119 | oveq12d 7293 |
. . . . . . . . 9
⊢ (𝜑 → (((𝐾 × {𝑀})‘𝑊) × (( I ↾ 𝐾)‘𝑊)) = (𝑀 × 𝑊)) |
121 | 4, 11, 48 | ringrz 19827 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐾) → (𝑀 × 𝑊) = 𝑊) |
122 | 38, 9, 121 | syl2anc 584 |
. . . . . . . . 9
⊢ (𝜑 → (𝑀 × 𝑊) = 𝑊) |
123 | 120, 122 | eqtrd 2778 |
. . . . . . . 8
⊢ (𝜑 → (((𝐾 × {𝑀})‘𝑊) × (( I ↾ 𝐾)‘𝑊)) = 𝑊) |
124 | 115, 123 | eqtrd 2778 |
. . . . . . 7
⊢ (𝜑 → (((𝐾 × {𝑀}) ∘f × ( I ↾ 𝐾))‘𝑊) = 𝑊) |
125 | 109, 124 | eqtrd 2778 |
. . . . . 6
⊢ (𝜑 → ((𝑂‘(𝑀 · 𝑋))‘𝑊) = 𝑊) |
126 | | fniniseg 6937 |
. . . . . . 7
⊢ ((𝑂‘(𝑀 · 𝑋)) Fn 𝐾 → (𝑊 ∈ (◡(𝑂‘(𝑀 · 𝑋)) “ {𝑊}) ↔ (𝑊 ∈ 𝐾 ∧ ((𝑂‘(𝑀 · 𝑋))‘𝑊) = 𝑊))) |
127 | 27, 126 | syl 17 |
. . . . . 6
⊢ (𝜑 → (𝑊 ∈ (◡(𝑂‘(𝑀 · 𝑋)) “ {𝑊}) ↔ (𝑊 ∈ 𝐾 ∧ ((𝑂‘(𝑀 · 𝑋))‘𝑊) = 𝑊))) |
128 | 78, 125, 127 | mpbir2and 710 |
. . . . 5
⊢ (𝜑 → 𝑊 ∈ (◡(𝑂‘(𝑀 · 𝑋)) “ {𝑊})) |
129 | 128 | snssd 4742 |
. . . 4
⊢ (𝜑 → {𝑊} ⊆ (◡(𝑂‘(𝑀 · 𝑋)) “ {𝑊})) |
130 | | hashsng 14084 |
. . . . . . 7
⊢ (𝑊 ∈ 𝐾 → (♯‘{𝑊}) = 1) |
131 | 78, 130 | syl 17 |
. . . . . 6
⊢ (𝜑 → (♯‘{𝑊}) = 1) |
132 | | ssdomg 8786 |
. . . . . . . . . 10
⊢ ((◡(𝑂‘(𝑀 · 𝑋)) “ {𝑊}) ∈ V → ({𝑊} ⊆ (◡(𝑂‘(𝑀 · 𝑋)) “ {𝑊}) → {𝑊} ≼ (◡(𝑂‘(𝑀 · 𝑋)) “ {𝑊}))) |
133 | 33, 129, 132 | mpsyl 68 |
. . . . . . . . 9
⊢ (𝜑 → {𝑊} ≼ (◡(𝑂‘(𝑀 · 𝑋)) “ {𝑊})) |
134 | | snfi 8834 |
. . . . . . . . . 10
⊢ {𝑊} ∈ Fin |
135 | | hashdom 14094 |
. . . . . . . . . 10
⊢ (({𝑊} ∈ Fin ∧ (◡(𝑂‘(𝑀 · 𝑋)) “ {𝑊}) ∈ V) → ((♯‘{𝑊}) ≤ (♯‘(◡(𝑂‘(𝑀 · 𝑋)) “ {𝑊})) ↔ {𝑊} ≼ (◡(𝑂‘(𝑀 · 𝑋)) “ {𝑊}))) |
136 | 134, 33, 135 | mp2an 689 |
. . . . . . . . 9
⊢
((♯‘{𝑊})
≤ (♯‘(◡(𝑂‘(𝑀 · 𝑋)) “ {𝑊})) ↔ {𝑊} ≼ (◡(𝑂‘(𝑀 · 𝑋)) “ {𝑊})) |
137 | 133, 136 | sylibr 233 |
. . . . . . . 8
⊢ (𝜑 → (♯‘{𝑊}) ≤ (♯‘(◡(𝑂‘(𝑀 · 𝑋)) “ {𝑊}))) |
138 | 131, 137 | eqbrtrrd 5098 |
. . . . . . 7
⊢ (𝜑 → 1 ≤
(♯‘(◡(𝑂‘(𝑀 · 𝑋)) “ {𝑊}))) |
139 | | hashcl 14071 |
. . . . . . . . . 10
⊢ ((◡(𝑂‘(𝑀 · 𝑋)) “ {𝑊}) ∈ Fin → (♯‘(◡(𝑂‘(𝑀 · 𝑋)) “ {𝑊})) ∈
ℕ0) |
140 | 76, 139 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (♯‘(◡(𝑂‘(𝑀 · 𝑋)) “ {𝑊})) ∈
ℕ0) |
141 | 140 | nn0red 12294 |
. . . . . . . 8
⊢ (𝜑 → (♯‘(◡(𝑂‘(𝑀 · 𝑋)) “ {𝑊})) ∈ ℝ) |
142 | | 1re 10975 |
. . . . . . . 8
⊢ 1 ∈
ℝ |
143 | | letri3 11060 |
. . . . . . . 8
⊢
(((♯‘(◡(𝑂‘(𝑀 · 𝑋)) “ {𝑊})) ∈ ℝ ∧ 1 ∈ ℝ)
→ ((♯‘(◡(𝑂‘(𝑀 · 𝑋)) “ {𝑊})) = 1 ↔ ((♯‘(◡(𝑂‘(𝑀 · 𝑋)) “ {𝑊})) ≤ 1 ∧ 1 ≤
(♯‘(◡(𝑂‘(𝑀 · 𝑋)) “ {𝑊}))))) |
144 | 141, 142,
143 | sylancl 586 |
. . . . . . 7
⊢ (𝜑 → ((♯‘(◡(𝑂‘(𝑀 · 𝑋)) “ {𝑊})) = 1 ↔ ((♯‘(◡(𝑂‘(𝑀 · 𝑋)) “ {𝑊})) ≤ 1 ∧ 1 ≤
(♯‘(◡(𝑂‘(𝑀 · 𝑋)) “ {𝑊}))))) |
145 | 74, 138, 144 | mpbir2and 710 |
. . . . . 6
⊢ (𝜑 → (♯‘(◡(𝑂‘(𝑀 · 𝑋)) “ {𝑊})) = 1) |
146 | 131, 145 | eqtr4d 2781 |
. . . . 5
⊢ (𝜑 → (♯‘{𝑊}) = (♯‘(◡(𝑂‘(𝑀 · 𝑋)) “ {𝑊}))) |
147 | | hashen 14061 |
. . . . . 6
⊢ (({𝑊} ∈ Fin ∧ (◡(𝑂‘(𝑀 · 𝑋)) “ {𝑊}) ∈ Fin) → ((♯‘{𝑊}) = (♯‘(◡(𝑂‘(𝑀 · 𝑋)) “ {𝑊})) ↔ {𝑊} ≈ (◡(𝑂‘(𝑀 · 𝑋)) “ {𝑊}))) |
148 | 134, 76, 147 | sylancr 587 |
. . . . 5
⊢ (𝜑 → ((♯‘{𝑊}) = (♯‘(◡(𝑂‘(𝑀 · 𝑋)) “ {𝑊})) ↔ {𝑊} ≈ (◡(𝑂‘(𝑀 · 𝑋)) “ {𝑊}))) |
149 | 146, 148 | mpbid 231 |
. . . 4
⊢ (𝜑 → {𝑊} ≈ (◡(𝑂‘(𝑀 · 𝑋)) “ {𝑊})) |
150 | | fisseneq 9034 |
. . . 4
⊢ (((◡(𝑂‘(𝑀 · 𝑋)) “ {𝑊}) ∈ Fin ∧ {𝑊} ⊆ (◡(𝑂‘(𝑀 · 𝑋)) “ {𝑊}) ∧ {𝑊} ≈ (◡(𝑂‘(𝑀 · 𝑋)) “ {𝑊})) → {𝑊} = (◡(𝑂‘(𝑀 · 𝑋)) “ {𝑊})) |
151 | 76, 129, 149, 150 | syl3anc 1370 |
. . 3
⊢ (𝜑 → {𝑊} = (◡(𝑂‘(𝑀 · 𝑋)) “ {𝑊})) |
152 | 30, 151 | eleqtrrd 2842 |
. 2
⊢ (𝜑 → 𝑁 ∈ {𝑊}) |
153 | | elsni 4578 |
. 2
⊢ (𝑁 ∈ {𝑊} → 𝑁 = 𝑊) |
154 | 152, 153 | syl 17 |
1
⊢ (𝜑 → 𝑁 = 𝑊) |