MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fta1blem Structured version   Visualization version   GIF version

Theorem fta1blem 26210
Description: Lemma for fta1b 26211. (Contributed by Mario Carneiro, 14-Jun-2015.)
Hypotheses
Ref Expression
fta1b.p 𝑃 = (Poly1𝑅)
fta1b.b 𝐵 = (Base‘𝑃)
fta1b.d 𝐷 = (deg1𝑅)
fta1b.o 𝑂 = (eval1𝑅)
fta1b.w 𝑊 = (0g𝑅)
fta1b.z 0 = (0g𝑃)
fta1blem.k 𝐾 = (Base‘𝑅)
fta1blem.t × = (.r𝑅)
fta1blem.x 𝑋 = (var1𝑅)
fta1blem.s · = ( ·𝑠𝑃)
fta1blem.1 (𝜑𝑅 ∈ CRing)
fta1blem.2 (𝜑𝑀𝐾)
fta1blem.3 (𝜑𝑁𝐾)
fta1blem.4 (𝜑 → (𝑀 × 𝑁) = 𝑊)
fta1blem.5 (𝜑𝑀𝑊)
fta1blem.6 (𝜑 → ((𝑀 · 𝑋) ∈ (𝐵 ∖ { 0 }) → (♯‘((𝑂‘(𝑀 · 𝑋)) “ {𝑊})) ≤ (𝐷‘(𝑀 · 𝑋))))
Assertion
Ref Expression
fta1blem (𝜑𝑁 = 𝑊)

Proof of Theorem fta1blem
StepHypRef Expression
1 fta1blem.3 . . . 4 (𝜑𝑁𝐾)
2 fta1b.o . . . . . . 7 𝑂 = (eval1𝑅)
3 fta1b.p . . . . . . 7 𝑃 = (Poly1𝑅)
4 fta1blem.k . . . . . . 7 𝐾 = (Base‘𝑅)
5 fta1b.b . . . . . . 7 𝐵 = (Base‘𝑃)
6 fta1blem.1 . . . . . . 7 (𝜑𝑅 ∈ CRing)
7 fta1blem.x . . . . . . . 8 𝑋 = (var1𝑅)
82, 7, 4, 3, 5, 6, 1evl1vard 22341 . . . . . . 7 (𝜑 → (𝑋𝐵 ∧ ((𝑂𝑋)‘𝑁) = 𝑁))
9 fta1blem.2 . . . . . . 7 (𝜑𝑀𝐾)
10 fta1blem.s . . . . . . 7 · = ( ·𝑠𝑃)
11 fta1blem.t . . . . . . 7 × = (.r𝑅)
122, 3, 4, 5, 6, 1, 8, 9, 10, 11evl1vsd 22348 . . . . . 6 (𝜑 → ((𝑀 · 𝑋) ∈ 𝐵 ∧ ((𝑂‘(𝑀 · 𝑋))‘𝑁) = (𝑀 × 𝑁)))
1312simprd 495 . . . . 5 (𝜑 → ((𝑂‘(𝑀 · 𝑋))‘𝑁) = (𝑀 × 𝑁))
14 fta1blem.4 . . . . 5 (𝜑 → (𝑀 × 𝑁) = 𝑊)
1513, 14eqtrd 2777 . . . 4 (𝜑 → ((𝑂‘(𝑀 · 𝑋))‘𝑁) = 𝑊)
16 eqid 2737 . . . . . . 7 (𝑅s 𝐾) = (𝑅s 𝐾)
17 eqid 2737 . . . . . . 7 (Base‘(𝑅s 𝐾)) = (Base‘(𝑅s 𝐾))
184fvexi 6920 . . . . . . . 8 𝐾 ∈ V
1918a1i 11 . . . . . . 7 (𝜑𝐾 ∈ V)
202, 3, 16, 4evl1rhm 22336 . . . . . . . . . 10 (𝑅 ∈ CRing → 𝑂 ∈ (𝑃 RingHom (𝑅s 𝐾)))
216, 20syl 17 . . . . . . . . 9 (𝜑𝑂 ∈ (𝑃 RingHom (𝑅s 𝐾)))
225, 17rhmf 20485 . . . . . . . . 9 (𝑂 ∈ (𝑃 RingHom (𝑅s 𝐾)) → 𝑂:𝐵⟶(Base‘(𝑅s 𝐾)))
2321, 22syl 17 . . . . . . . 8 (𝜑𝑂:𝐵⟶(Base‘(𝑅s 𝐾)))
2412simpld 494 . . . . . . . 8 (𝜑 → (𝑀 · 𝑋) ∈ 𝐵)
2523, 24ffvelcdmd 7105 . . . . . . 7 (𝜑 → (𝑂‘(𝑀 · 𝑋)) ∈ (Base‘(𝑅s 𝐾)))
2616, 4, 17, 6, 19, 25pwselbas 17534 . . . . . 6 (𝜑 → (𝑂‘(𝑀 · 𝑋)):𝐾𝐾)
2726ffnd 6737 . . . . 5 (𝜑 → (𝑂‘(𝑀 · 𝑋)) Fn 𝐾)
28 fniniseg 7080 . . . . 5 ((𝑂‘(𝑀 · 𝑋)) Fn 𝐾 → (𝑁 ∈ ((𝑂‘(𝑀 · 𝑋)) “ {𝑊}) ↔ (𝑁𝐾 ∧ ((𝑂‘(𝑀 · 𝑋))‘𝑁) = 𝑊)))
2927, 28syl 17 . . . 4 (𝜑 → (𝑁 ∈ ((𝑂‘(𝑀 · 𝑋)) “ {𝑊}) ↔ (𝑁𝐾 ∧ ((𝑂‘(𝑀 · 𝑋))‘𝑁) = 𝑊)))
301, 15, 29mpbir2and 713 . . 3 (𝜑𝑁 ∈ ((𝑂‘(𝑀 · 𝑋)) “ {𝑊}))
31 fvex 6919 . . . . . . . 8 (𝑂‘(𝑀 · 𝑋)) ∈ V
3231cnvex 7947 . . . . . . 7 (𝑂‘(𝑀 · 𝑋)) ∈ V
3332imaex 7936 . . . . . 6 ((𝑂‘(𝑀 · 𝑋)) “ {𝑊}) ∈ V
3433a1i 11 . . . . 5 (𝜑 → ((𝑂‘(𝑀 · 𝑋)) “ {𝑊}) ∈ V)
35 1nn0 12542 . . . . . 6 1 ∈ ℕ0
3635a1i 11 . . . . 5 (𝜑 → 1 ∈ ℕ0)
37 crngring 20242 . . . . . . . . . . . . 13 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
386, 37syl 17 . . . . . . . . . . . 12 (𝜑𝑅 ∈ Ring)
397, 3, 5vr1cl 22219 . . . . . . . . . . . 12 (𝑅 ∈ Ring → 𝑋𝐵)
4038, 39syl 17 . . . . . . . . . . 11 (𝜑𝑋𝐵)
41 eqid 2737 . . . . . . . . . . . . 13 (mulGrp‘𝑃) = (mulGrp‘𝑃)
4241, 5mgpbas 20142 . . . . . . . . . . . 12 𝐵 = (Base‘(mulGrp‘𝑃))
43 eqid 2737 . . . . . . . . . . . 12 (.g‘(mulGrp‘𝑃)) = (.g‘(mulGrp‘𝑃))
4442, 43mulg1 19099 . . . . . . . . . . 11 (𝑋𝐵 → (1(.g‘(mulGrp‘𝑃))𝑋) = 𝑋)
4540, 44syl 17 . . . . . . . . . 10 (𝜑 → (1(.g‘(mulGrp‘𝑃))𝑋) = 𝑋)
4645oveq2d 7447 . . . . . . . . 9 (𝜑 → (𝑀 · (1(.g‘(mulGrp‘𝑃))𝑋)) = (𝑀 · 𝑋))
47 fta1blem.5 . . . . . . . . . . 11 (𝜑𝑀𝑊)
48 fta1b.w . . . . . . . . . . . . 13 𝑊 = (0g𝑅)
4948, 4, 3, 7, 10, 41, 43coe1tmfv1 22277 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ 𝑀𝐾 ∧ 1 ∈ ℕ0) → ((coe1‘(𝑀 · (1(.g‘(mulGrp‘𝑃))𝑋)))‘1) = 𝑀)
5038, 9, 36, 49syl3anc 1373 . . . . . . . . . . 11 (𝜑 → ((coe1‘(𝑀 · (1(.g‘(mulGrp‘𝑃))𝑋)))‘1) = 𝑀)
51 fta1b.z . . . . . . . . . . . . . . 15 0 = (0g𝑃)
523, 51, 48coe1z 22266 . . . . . . . . . . . . . 14 (𝑅 ∈ Ring → (coe10 ) = (ℕ0 × {𝑊}))
5338, 52syl 17 . . . . . . . . . . . . 13 (𝜑 → (coe10 ) = (ℕ0 × {𝑊}))
5453fveq1d 6908 . . . . . . . . . . . 12 (𝜑 → ((coe10 )‘1) = ((ℕ0 × {𝑊})‘1))
5548fvexi 6920 . . . . . . . . . . . . . 14 𝑊 ∈ V
5655fvconst2 7224 . . . . . . . . . . . . 13 (1 ∈ ℕ0 → ((ℕ0 × {𝑊})‘1) = 𝑊)
5735, 56ax-mp 5 . . . . . . . . . . . 12 ((ℕ0 × {𝑊})‘1) = 𝑊
5854, 57eqtrdi 2793 . . . . . . . . . . 11 (𝜑 → ((coe10 )‘1) = 𝑊)
5947, 50, 583netr4d 3018 . . . . . . . . . 10 (𝜑 → ((coe1‘(𝑀 · (1(.g‘(mulGrp‘𝑃))𝑋)))‘1) ≠ ((coe10 )‘1))
60 fveq2 6906 . . . . . . . . . . . 12 ((𝑀 · (1(.g‘(mulGrp‘𝑃))𝑋)) = 0 → (coe1‘(𝑀 · (1(.g‘(mulGrp‘𝑃))𝑋))) = (coe10 ))
6160fveq1d 6908 . . . . . . . . . . 11 ((𝑀 · (1(.g‘(mulGrp‘𝑃))𝑋)) = 0 → ((coe1‘(𝑀 · (1(.g‘(mulGrp‘𝑃))𝑋)))‘1) = ((coe10 )‘1))
6261necon3i 2973 . . . . . . . . . 10 (((coe1‘(𝑀 · (1(.g‘(mulGrp‘𝑃))𝑋)))‘1) ≠ ((coe10 )‘1) → (𝑀 · (1(.g‘(mulGrp‘𝑃))𝑋)) ≠ 0 )
6359, 62syl 17 . . . . . . . . 9 (𝜑 → (𝑀 · (1(.g‘(mulGrp‘𝑃))𝑋)) ≠ 0 )
6446, 63eqnetrrd 3009 . . . . . . . 8 (𝜑 → (𝑀 · 𝑋) ≠ 0 )
65 eldifsn 4786 . . . . . . . 8 ((𝑀 · 𝑋) ∈ (𝐵 ∖ { 0 }) ↔ ((𝑀 · 𝑋) ∈ 𝐵 ∧ (𝑀 · 𝑋) ≠ 0 ))
6624, 64, 65sylanbrc 583 . . . . . . 7 (𝜑 → (𝑀 · 𝑋) ∈ (𝐵 ∖ { 0 }))
67 fta1blem.6 . . . . . . 7 (𝜑 → ((𝑀 · 𝑋) ∈ (𝐵 ∖ { 0 }) → (♯‘((𝑂‘(𝑀 · 𝑋)) “ {𝑊})) ≤ (𝐷‘(𝑀 · 𝑋))))
6866, 67mpd 15 . . . . . 6 (𝜑 → (♯‘((𝑂‘(𝑀 · 𝑋)) “ {𝑊})) ≤ (𝐷‘(𝑀 · 𝑋)))
6946fveq2d 6910 . . . . . . 7 (𝜑 → (𝐷‘(𝑀 · (1(.g‘(mulGrp‘𝑃))𝑋))) = (𝐷‘(𝑀 · 𝑋)))
70 fta1b.d . . . . . . . . 9 𝐷 = (deg1𝑅)
7170, 4, 3, 7, 10, 41, 43, 48deg1tm 26158 . . . . . . . 8 ((𝑅 ∈ Ring ∧ (𝑀𝐾𝑀𝑊) ∧ 1 ∈ ℕ0) → (𝐷‘(𝑀 · (1(.g‘(mulGrp‘𝑃))𝑋))) = 1)
7238, 9, 47, 36, 71syl121anc 1377 . . . . . . 7 (𝜑 → (𝐷‘(𝑀 · (1(.g‘(mulGrp‘𝑃))𝑋))) = 1)
7369, 72eqtr3d 2779 . . . . . 6 (𝜑 → (𝐷‘(𝑀 · 𝑋)) = 1)
7468, 73breqtrd 5169 . . . . 5 (𝜑 → (♯‘((𝑂‘(𝑀 · 𝑋)) “ {𝑊})) ≤ 1)
75 hashbnd 14375 . . . . 5 ((((𝑂‘(𝑀 · 𝑋)) “ {𝑊}) ∈ V ∧ 1 ∈ ℕ0 ∧ (♯‘((𝑂‘(𝑀 · 𝑋)) “ {𝑊})) ≤ 1) → ((𝑂‘(𝑀 · 𝑋)) “ {𝑊}) ∈ Fin)
7634, 36, 74, 75syl3anc 1373 . . . 4 (𝜑 → ((𝑂‘(𝑀 · 𝑋)) “ {𝑊}) ∈ Fin)
774, 48ring0cl 20264 . . . . . . 7 (𝑅 ∈ Ring → 𝑊𝐾)
7838, 77syl 17 . . . . . 6 (𝜑𝑊𝐾)
79 eqid 2737 . . . . . . . . . . . . 13 (algSc‘𝑃) = (algSc‘𝑃)
803, 79, 4, 5ply1sclf 22288 . . . . . . . . . . . 12 (𝑅 ∈ Ring → (algSc‘𝑃):𝐾𝐵)
8138, 80syl 17 . . . . . . . . . . 11 (𝜑 → (algSc‘𝑃):𝐾𝐵)
8281, 9ffvelcdmd 7105 . . . . . . . . . 10 (𝜑 → ((algSc‘𝑃)‘𝑀) ∈ 𝐵)
83 eqid 2737 . . . . . . . . . . 11 (.r𝑃) = (.r𝑃)
84 eqid 2737 . . . . . . . . . . 11 (.r‘(𝑅s 𝐾)) = (.r‘(𝑅s 𝐾))
855, 83, 84rhmmul 20486 . . . . . . . . . 10 ((𝑂 ∈ (𝑃 RingHom (𝑅s 𝐾)) ∧ ((algSc‘𝑃)‘𝑀) ∈ 𝐵𝑋𝐵) → (𝑂‘(((algSc‘𝑃)‘𝑀)(.r𝑃)𝑋)) = ((𝑂‘((algSc‘𝑃)‘𝑀))(.r‘(𝑅s 𝐾))(𝑂𝑋)))
8621, 82, 40, 85syl3anc 1373 . . . . . . . . 9 (𝜑 → (𝑂‘(((algSc‘𝑃)‘𝑀)(.r𝑃)𝑋)) = ((𝑂‘((algSc‘𝑃)‘𝑀))(.r‘(𝑅s 𝐾))(𝑂𝑋)))
873ply1assa 22201 . . . . . . . . . . . 12 (𝑅 ∈ CRing → 𝑃 ∈ AssAlg)
886, 87syl 17 . . . . . . . . . . 11 (𝜑𝑃 ∈ AssAlg)
893ply1sca 22254 . . . . . . . . . . . . . . 15 (𝑅 ∈ CRing → 𝑅 = (Scalar‘𝑃))
906, 89syl 17 . . . . . . . . . . . . . 14 (𝜑𝑅 = (Scalar‘𝑃))
9190fveq2d 6910 . . . . . . . . . . . . 13 (𝜑 → (Base‘𝑅) = (Base‘(Scalar‘𝑃)))
924, 91eqtrid 2789 . . . . . . . . . . . 12 (𝜑𝐾 = (Base‘(Scalar‘𝑃)))
939, 92eleqtrd 2843 . . . . . . . . . . 11 (𝜑𝑀 ∈ (Base‘(Scalar‘𝑃)))
94 eqid 2737 . . . . . . . . . . . 12 (Scalar‘𝑃) = (Scalar‘𝑃)
95 eqid 2737 . . . . . . . . . . . 12 (Base‘(Scalar‘𝑃)) = (Base‘(Scalar‘𝑃))
9679, 94, 95, 5, 83, 10asclmul1 21906 . . . . . . . . . . 11 ((𝑃 ∈ AssAlg ∧ 𝑀 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑋𝐵) → (((algSc‘𝑃)‘𝑀)(.r𝑃)𝑋) = (𝑀 · 𝑋))
9788, 93, 40, 96syl3anc 1373 . . . . . . . . . 10 (𝜑 → (((algSc‘𝑃)‘𝑀)(.r𝑃)𝑋) = (𝑀 · 𝑋))
9897fveq2d 6910 . . . . . . . . 9 (𝜑 → (𝑂‘(((algSc‘𝑃)‘𝑀)(.r𝑃)𝑋)) = (𝑂‘(𝑀 · 𝑋)))
9923, 82ffvelcdmd 7105 . . . . . . . . . . 11 (𝜑 → (𝑂‘((algSc‘𝑃)‘𝑀)) ∈ (Base‘(𝑅s 𝐾)))
10023, 40ffvelcdmd 7105 . . . . . . . . . . 11 (𝜑 → (𝑂𝑋) ∈ (Base‘(𝑅s 𝐾)))
10116, 17, 6, 19, 99, 100, 11, 84pwsmulrval 17536 . . . . . . . . . 10 (𝜑 → ((𝑂‘((algSc‘𝑃)‘𝑀))(.r‘(𝑅s 𝐾))(𝑂𝑋)) = ((𝑂‘((algSc‘𝑃)‘𝑀)) ∘f × (𝑂𝑋)))
1022, 3, 4, 79evl1sca 22338 . . . . . . . . . . . 12 ((𝑅 ∈ CRing ∧ 𝑀𝐾) → (𝑂‘((algSc‘𝑃)‘𝑀)) = (𝐾 × {𝑀}))
1036, 9, 102syl2anc 584 . . . . . . . . . . 11 (𝜑 → (𝑂‘((algSc‘𝑃)‘𝑀)) = (𝐾 × {𝑀}))
1042, 7, 4evl1var 22340 . . . . . . . . . . . 12 (𝑅 ∈ CRing → (𝑂𝑋) = ( I ↾ 𝐾))
1056, 104syl 17 . . . . . . . . . . 11 (𝜑 → (𝑂𝑋) = ( I ↾ 𝐾))
106103, 105oveq12d 7449 . . . . . . . . . 10 (𝜑 → ((𝑂‘((algSc‘𝑃)‘𝑀)) ∘f × (𝑂𝑋)) = ((𝐾 × {𝑀}) ∘f × ( I ↾ 𝐾)))
107101, 106eqtrd 2777 . . . . . . . . 9 (𝜑 → ((𝑂‘((algSc‘𝑃)‘𝑀))(.r‘(𝑅s 𝐾))(𝑂𝑋)) = ((𝐾 × {𝑀}) ∘f × ( I ↾ 𝐾)))
10886, 98, 1073eqtr3d 2785 . . . . . . . 8 (𝜑 → (𝑂‘(𝑀 · 𝑋)) = ((𝐾 × {𝑀}) ∘f × ( I ↾ 𝐾)))
109108fveq1d 6908 . . . . . . 7 (𝜑 → ((𝑂‘(𝑀 · 𝑋))‘𝑊) = (((𝐾 × {𝑀}) ∘f × ( I ↾ 𝐾))‘𝑊))
110 fnconstg 6796 . . . . . . . . . 10 (𝑀𝐾 → (𝐾 × {𝑀}) Fn 𝐾)
1119, 110syl 17 . . . . . . . . 9 (𝜑 → (𝐾 × {𝑀}) Fn 𝐾)
112 fnresi 6697 . . . . . . . . . 10 ( I ↾ 𝐾) Fn 𝐾
113112a1i 11 . . . . . . . . 9 (𝜑 → ( I ↾ 𝐾) Fn 𝐾)
114 fnfvof 7714 . . . . . . . . 9 ((((𝐾 × {𝑀}) Fn 𝐾 ∧ ( I ↾ 𝐾) Fn 𝐾) ∧ (𝐾 ∈ V ∧ 𝑊𝐾)) → (((𝐾 × {𝑀}) ∘f × ( I ↾ 𝐾))‘𝑊) = (((𝐾 × {𝑀})‘𝑊) × (( I ↾ 𝐾)‘𝑊)))
115111, 113, 19, 78, 114syl22anc 839 . . . . . . . 8 (𝜑 → (((𝐾 × {𝑀}) ∘f × ( I ↾ 𝐾))‘𝑊) = (((𝐾 × {𝑀})‘𝑊) × (( I ↾ 𝐾)‘𝑊)))
116 fvconst2g 7222 . . . . . . . . . . 11 ((𝑀𝐾𝑊𝐾) → ((𝐾 × {𝑀})‘𝑊) = 𝑀)
1179, 78, 116syl2anc 584 . . . . . . . . . 10 (𝜑 → ((𝐾 × {𝑀})‘𝑊) = 𝑀)
118 fvresi 7193 . . . . . . . . . . 11 (𝑊𝐾 → (( I ↾ 𝐾)‘𝑊) = 𝑊)
11978, 118syl 17 . . . . . . . . . 10 (𝜑 → (( I ↾ 𝐾)‘𝑊) = 𝑊)
120117, 119oveq12d 7449 . . . . . . . . 9 (𝜑 → (((𝐾 × {𝑀})‘𝑊) × (( I ↾ 𝐾)‘𝑊)) = (𝑀 × 𝑊))
1214, 11, 48ringrz 20291 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝑀𝐾) → (𝑀 × 𝑊) = 𝑊)
12238, 9, 121syl2anc 584 . . . . . . . . 9 (𝜑 → (𝑀 × 𝑊) = 𝑊)
123120, 122eqtrd 2777 . . . . . . . 8 (𝜑 → (((𝐾 × {𝑀})‘𝑊) × (( I ↾ 𝐾)‘𝑊)) = 𝑊)
124115, 123eqtrd 2777 . . . . . . 7 (𝜑 → (((𝐾 × {𝑀}) ∘f × ( I ↾ 𝐾))‘𝑊) = 𝑊)
125109, 124eqtrd 2777 . . . . . 6 (𝜑 → ((𝑂‘(𝑀 · 𝑋))‘𝑊) = 𝑊)
126 fniniseg 7080 . . . . . . 7 ((𝑂‘(𝑀 · 𝑋)) Fn 𝐾 → (𝑊 ∈ ((𝑂‘(𝑀 · 𝑋)) “ {𝑊}) ↔ (𝑊𝐾 ∧ ((𝑂‘(𝑀 · 𝑋))‘𝑊) = 𝑊)))
12727, 126syl 17 . . . . . 6 (𝜑 → (𝑊 ∈ ((𝑂‘(𝑀 · 𝑋)) “ {𝑊}) ↔ (𝑊𝐾 ∧ ((𝑂‘(𝑀 · 𝑋))‘𝑊) = 𝑊)))
12878, 125, 127mpbir2and 713 . . . . 5 (𝜑𝑊 ∈ ((𝑂‘(𝑀 · 𝑋)) “ {𝑊}))
129128snssd 4809 . . . 4 (𝜑 → {𝑊} ⊆ ((𝑂‘(𝑀 · 𝑋)) “ {𝑊}))
130 hashsng 14408 . . . . . . 7 (𝑊𝐾 → (♯‘{𝑊}) = 1)
13178, 130syl 17 . . . . . 6 (𝜑 → (♯‘{𝑊}) = 1)
132 ssdomg 9040 . . . . . . . . . 10 (((𝑂‘(𝑀 · 𝑋)) “ {𝑊}) ∈ V → ({𝑊} ⊆ ((𝑂‘(𝑀 · 𝑋)) “ {𝑊}) → {𝑊} ≼ ((𝑂‘(𝑀 · 𝑋)) “ {𝑊})))
13333, 129, 132mpsyl 68 . . . . . . . . 9 (𝜑 → {𝑊} ≼ ((𝑂‘(𝑀 · 𝑋)) “ {𝑊}))
134 snfi 9083 . . . . . . . . . 10 {𝑊} ∈ Fin
135 hashdom 14418 . . . . . . . . . 10 (({𝑊} ∈ Fin ∧ ((𝑂‘(𝑀 · 𝑋)) “ {𝑊}) ∈ V) → ((♯‘{𝑊}) ≤ (♯‘((𝑂‘(𝑀 · 𝑋)) “ {𝑊})) ↔ {𝑊} ≼ ((𝑂‘(𝑀 · 𝑋)) “ {𝑊})))
136134, 33, 135mp2an 692 . . . . . . . . 9 ((♯‘{𝑊}) ≤ (♯‘((𝑂‘(𝑀 · 𝑋)) “ {𝑊})) ↔ {𝑊} ≼ ((𝑂‘(𝑀 · 𝑋)) “ {𝑊}))
137133, 136sylibr 234 . . . . . . . 8 (𝜑 → (♯‘{𝑊}) ≤ (♯‘((𝑂‘(𝑀 · 𝑋)) “ {𝑊})))
138131, 137eqbrtrrd 5167 . . . . . . 7 (𝜑 → 1 ≤ (♯‘((𝑂‘(𝑀 · 𝑋)) “ {𝑊})))
139 hashcl 14395 . . . . . . . . . 10 (((𝑂‘(𝑀 · 𝑋)) “ {𝑊}) ∈ Fin → (♯‘((𝑂‘(𝑀 · 𝑋)) “ {𝑊})) ∈ ℕ0)
14076, 139syl 17 . . . . . . . . 9 (𝜑 → (♯‘((𝑂‘(𝑀 · 𝑋)) “ {𝑊})) ∈ ℕ0)
141140nn0red 12588 . . . . . . . 8 (𝜑 → (♯‘((𝑂‘(𝑀 · 𝑋)) “ {𝑊})) ∈ ℝ)
142 1re 11261 . . . . . . . 8 1 ∈ ℝ
143 letri3 11346 . . . . . . . 8 (((♯‘((𝑂‘(𝑀 · 𝑋)) “ {𝑊})) ∈ ℝ ∧ 1 ∈ ℝ) → ((♯‘((𝑂‘(𝑀 · 𝑋)) “ {𝑊})) = 1 ↔ ((♯‘((𝑂‘(𝑀 · 𝑋)) “ {𝑊})) ≤ 1 ∧ 1 ≤ (♯‘((𝑂‘(𝑀 · 𝑋)) “ {𝑊})))))
144141, 142, 143sylancl 586 . . . . . . 7 (𝜑 → ((♯‘((𝑂‘(𝑀 · 𝑋)) “ {𝑊})) = 1 ↔ ((♯‘((𝑂‘(𝑀 · 𝑋)) “ {𝑊})) ≤ 1 ∧ 1 ≤ (♯‘((𝑂‘(𝑀 · 𝑋)) “ {𝑊})))))
14574, 138, 144mpbir2and 713 . . . . . 6 (𝜑 → (♯‘((𝑂‘(𝑀 · 𝑋)) “ {𝑊})) = 1)
146131, 145eqtr4d 2780 . . . . 5 (𝜑 → (♯‘{𝑊}) = (♯‘((𝑂‘(𝑀 · 𝑋)) “ {𝑊})))
147 hashen 14386 . . . . . 6 (({𝑊} ∈ Fin ∧ ((𝑂‘(𝑀 · 𝑋)) “ {𝑊}) ∈ Fin) → ((♯‘{𝑊}) = (♯‘((𝑂‘(𝑀 · 𝑋)) “ {𝑊})) ↔ {𝑊} ≈ ((𝑂‘(𝑀 · 𝑋)) “ {𝑊})))
148134, 76, 147sylancr 587 . . . . 5 (𝜑 → ((♯‘{𝑊}) = (♯‘((𝑂‘(𝑀 · 𝑋)) “ {𝑊})) ↔ {𝑊} ≈ ((𝑂‘(𝑀 · 𝑋)) “ {𝑊})))
149146, 148mpbid 232 . . . 4 (𝜑 → {𝑊} ≈ ((𝑂‘(𝑀 · 𝑋)) “ {𝑊}))
150 fisseneq 9293 . . . 4 ((((𝑂‘(𝑀 · 𝑋)) “ {𝑊}) ∈ Fin ∧ {𝑊} ⊆ ((𝑂‘(𝑀 · 𝑋)) “ {𝑊}) ∧ {𝑊} ≈ ((𝑂‘(𝑀 · 𝑋)) “ {𝑊})) → {𝑊} = ((𝑂‘(𝑀 · 𝑋)) “ {𝑊}))
15176, 129, 149, 150syl3anc 1373 . . 3 (𝜑 → {𝑊} = ((𝑂‘(𝑀 · 𝑋)) “ {𝑊}))
15230, 151eleqtrrd 2844 . 2 (𝜑𝑁 ∈ {𝑊})
153 elsni 4643 . 2 (𝑁 ∈ {𝑊} → 𝑁 = 𝑊)
154152, 153syl 17 1 (𝜑𝑁 = 𝑊)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wne 2940  Vcvv 3480  cdif 3948  wss 3951  {csn 4626   class class class wbr 5143   I cid 5577   × cxp 5683  ccnv 5684  cres 5687  cima 5688   Fn wfn 6556  wf 6557  cfv 6561  (class class class)co 7431  f cof 7695  cen 8982  cdom 8983  Fincfn 8985  cr 11154  1c1 11156  cle 11296  0cn0 12526  chash 14369  Basecbs 17247  .rcmulr 17298  Scalarcsca 17300   ·𝑠 cvsca 17301  0gc0g 17484  s cpws 17491  .gcmg 19085  mulGrpcmgp 20137  Ringcrg 20230  CRingccrg 20231   RingHom crh 20469  AssAlgcasa 21870  algSccascl 21872  var1cv1 22177  Poly1cpl1 22178  coe1cco1 22179  eval1ce1 22318  deg1cdg1 26093
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233  ax-addf 11234
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-ofr 7698  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-oadd 8510  df-er 8745  df-map 8868  df-pm 8869  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-sup 9482  df-oi 9550  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-xnn0 12600  df-z 12614  df-dec 12734  df-uz 12879  df-fz 13548  df-fzo 13695  df-seq 14043  df-hash 14370  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-0g 17486  df-gsum 17487  df-prds 17492  df-pws 17494  df-mre 17629  df-mrc 17630  df-acs 17632  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-mhm 18796  df-submnd 18797  df-grp 18954  df-minusg 18955  df-sbg 18956  df-mulg 19086  df-subg 19141  df-ghm 19231  df-cntz 19335  df-cmn 19800  df-abl 19801  df-mgp 20138  df-rng 20150  df-ur 20179  df-srg 20184  df-ring 20232  df-cring 20233  df-rhm 20472  df-subrng 20546  df-subrg 20570  df-lmod 20860  df-lss 20930  df-lsp 20970  df-cnfld 21365  df-assa 21873  df-asp 21874  df-ascl 21875  df-psr 21929  df-mvr 21930  df-mpl 21931  df-opsr 21933  df-evls 22098  df-evl 22099  df-psr1 22181  df-vr1 22182  df-ply1 22183  df-coe1 22184  df-evl1 22320  df-mdeg 26094  df-deg1 26095
This theorem is referenced by:  fta1b  26211
  Copyright terms: Public domain W3C validator