MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fta1blem Structured version   Visualization version   GIF version

Theorem fta1blem 26198
Description: Lemma for fta1b 26199. (Contributed by Mario Carneiro, 14-Jun-2015.)
Hypotheses
Ref Expression
fta1b.p 𝑃 = (Poly1𝑅)
fta1b.b 𝐵 = (Base‘𝑃)
fta1b.d 𝐷 = (deg1𝑅)
fta1b.o 𝑂 = (eval1𝑅)
fta1b.w 𝑊 = (0g𝑅)
fta1b.z 0 = (0g𝑃)
fta1blem.k 𝐾 = (Base‘𝑅)
fta1blem.t × = (.r𝑅)
fta1blem.x 𝑋 = (var1𝑅)
fta1blem.s · = ( ·𝑠𝑃)
fta1blem.1 (𝜑𝑅 ∈ CRing)
fta1blem.2 (𝜑𝑀𝐾)
fta1blem.3 (𝜑𝑁𝐾)
fta1blem.4 (𝜑 → (𝑀 × 𝑁) = 𝑊)
fta1blem.5 (𝜑𝑀𝑊)
fta1blem.6 (𝜑 → ((𝑀 · 𝑋) ∈ (𝐵 ∖ { 0 }) → (♯‘((𝑂‘(𝑀 · 𝑋)) “ {𝑊})) ≤ (𝐷‘(𝑀 · 𝑋))))
Assertion
Ref Expression
fta1blem (𝜑𝑁 = 𝑊)

Proof of Theorem fta1blem
StepHypRef Expression
1 fta1blem.3 . . . 4 (𝜑𝑁𝐾)
2 fta1b.o . . . . . . 7 𝑂 = (eval1𝑅)
3 fta1b.p . . . . . . 7 𝑃 = (Poly1𝑅)
4 fta1blem.k . . . . . . 7 𝐾 = (Base‘𝑅)
5 fta1b.b . . . . . . 7 𝐵 = (Base‘𝑃)
6 fta1blem.1 . . . . . . 7 (𝜑𝑅 ∈ CRing)
7 fta1blem.x . . . . . . . 8 𝑋 = (var1𝑅)
82, 7, 4, 3, 5, 6, 1evl1vard 22328 . . . . . . 7 (𝜑 → (𝑋𝐵 ∧ ((𝑂𝑋)‘𝑁) = 𝑁))
9 fta1blem.2 . . . . . . 7 (𝜑𝑀𝐾)
10 fta1blem.s . . . . . . 7 · = ( ·𝑠𝑃)
11 fta1blem.t . . . . . . 7 × = (.r𝑅)
122, 3, 4, 5, 6, 1, 8, 9, 10, 11evl1vsd 22335 . . . . . 6 (𝜑 → ((𝑀 · 𝑋) ∈ 𝐵 ∧ ((𝑂‘(𝑀 · 𝑋))‘𝑁) = (𝑀 × 𝑁)))
1312simprd 494 . . . . 5 (𝜑 → ((𝑂‘(𝑀 · 𝑋))‘𝑁) = (𝑀 × 𝑁))
14 fta1blem.4 . . . . 5 (𝜑 → (𝑀 × 𝑁) = 𝑊)
1513, 14eqtrd 2766 . . . 4 (𝜑 → ((𝑂‘(𝑀 · 𝑋))‘𝑁) = 𝑊)
16 eqid 2726 . . . . . . 7 (𝑅s 𝐾) = (𝑅s 𝐾)
17 eqid 2726 . . . . . . 7 (Base‘(𝑅s 𝐾)) = (Base‘(𝑅s 𝐾))
184fvexi 6915 . . . . . . . 8 𝐾 ∈ V
1918a1i 11 . . . . . . 7 (𝜑𝐾 ∈ V)
202, 3, 16, 4evl1rhm 22323 . . . . . . . . . 10 (𝑅 ∈ CRing → 𝑂 ∈ (𝑃 RingHom (𝑅s 𝐾)))
216, 20syl 17 . . . . . . . . 9 (𝜑𝑂 ∈ (𝑃 RingHom (𝑅s 𝐾)))
225, 17rhmf 20467 . . . . . . . . 9 (𝑂 ∈ (𝑃 RingHom (𝑅s 𝐾)) → 𝑂:𝐵⟶(Base‘(𝑅s 𝐾)))
2321, 22syl 17 . . . . . . . 8 (𝜑𝑂:𝐵⟶(Base‘(𝑅s 𝐾)))
2412simpld 493 . . . . . . . 8 (𝜑 → (𝑀 · 𝑋) ∈ 𝐵)
2523, 24ffvelcdmd 7099 . . . . . . 7 (𝜑 → (𝑂‘(𝑀 · 𝑋)) ∈ (Base‘(𝑅s 𝐾)))
2616, 4, 17, 6, 19, 25pwselbas 17504 . . . . . 6 (𝜑 → (𝑂‘(𝑀 · 𝑋)):𝐾𝐾)
2726ffnd 6729 . . . . 5 (𝜑 → (𝑂‘(𝑀 · 𝑋)) Fn 𝐾)
28 fniniseg 7073 . . . . 5 ((𝑂‘(𝑀 · 𝑋)) Fn 𝐾 → (𝑁 ∈ ((𝑂‘(𝑀 · 𝑋)) “ {𝑊}) ↔ (𝑁𝐾 ∧ ((𝑂‘(𝑀 · 𝑋))‘𝑁) = 𝑊)))
2927, 28syl 17 . . . 4 (𝜑 → (𝑁 ∈ ((𝑂‘(𝑀 · 𝑋)) “ {𝑊}) ↔ (𝑁𝐾 ∧ ((𝑂‘(𝑀 · 𝑋))‘𝑁) = 𝑊)))
301, 15, 29mpbir2and 711 . . 3 (𝜑𝑁 ∈ ((𝑂‘(𝑀 · 𝑋)) “ {𝑊}))
31 fvex 6914 . . . . . . . 8 (𝑂‘(𝑀 · 𝑋)) ∈ V
3231cnvex 7938 . . . . . . 7 (𝑂‘(𝑀 · 𝑋)) ∈ V
3332imaex 7927 . . . . . 6 ((𝑂‘(𝑀 · 𝑋)) “ {𝑊}) ∈ V
3433a1i 11 . . . . 5 (𝜑 → ((𝑂‘(𝑀 · 𝑋)) “ {𝑊}) ∈ V)
35 1nn0 12540 . . . . . 6 1 ∈ ℕ0
3635a1i 11 . . . . 5 (𝜑 → 1 ∈ ℕ0)
37 crngring 20228 . . . . . . . . . . . . 13 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
386, 37syl 17 . . . . . . . . . . . 12 (𝜑𝑅 ∈ Ring)
397, 3, 5vr1cl 22207 . . . . . . . . . . . 12 (𝑅 ∈ Ring → 𝑋𝐵)
4038, 39syl 17 . . . . . . . . . . 11 (𝜑𝑋𝐵)
41 eqid 2726 . . . . . . . . . . . . 13 (mulGrp‘𝑃) = (mulGrp‘𝑃)
4241, 5mgpbas 20123 . . . . . . . . . . . 12 𝐵 = (Base‘(mulGrp‘𝑃))
43 eqid 2726 . . . . . . . . . . . 12 (.g‘(mulGrp‘𝑃)) = (.g‘(mulGrp‘𝑃))
4442, 43mulg1 19075 . . . . . . . . . . 11 (𝑋𝐵 → (1(.g‘(mulGrp‘𝑃))𝑋) = 𝑋)
4540, 44syl 17 . . . . . . . . . 10 (𝜑 → (1(.g‘(mulGrp‘𝑃))𝑋) = 𝑋)
4645oveq2d 7440 . . . . . . . . 9 (𝜑 → (𝑀 · (1(.g‘(mulGrp‘𝑃))𝑋)) = (𝑀 · 𝑋))
47 fta1blem.5 . . . . . . . . . . 11 (𝜑𝑀𝑊)
48 fta1b.w . . . . . . . . . . . . 13 𝑊 = (0g𝑅)
4948, 4, 3, 7, 10, 41, 43coe1tmfv1 22265 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ 𝑀𝐾 ∧ 1 ∈ ℕ0) → ((coe1‘(𝑀 · (1(.g‘(mulGrp‘𝑃))𝑋)))‘1) = 𝑀)
5038, 9, 36, 49syl3anc 1368 . . . . . . . . . . 11 (𝜑 → ((coe1‘(𝑀 · (1(.g‘(mulGrp‘𝑃))𝑋)))‘1) = 𝑀)
51 fta1b.z . . . . . . . . . . . . . . 15 0 = (0g𝑃)
523, 51, 48coe1z 22254 . . . . . . . . . . . . . 14 (𝑅 ∈ Ring → (coe10 ) = (ℕ0 × {𝑊}))
5338, 52syl 17 . . . . . . . . . . . . 13 (𝜑 → (coe10 ) = (ℕ0 × {𝑊}))
5453fveq1d 6903 . . . . . . . . . . . 12 (𝜑 → ((coe10 )‘1) = ((ℕ0 × {𝑊})‘1))
5548fvexi 6915 . . . . . . . . . . . . . 14 𝑊 ∈ V
5655fvconst2 7221 . . . . . . . . . . . . 13 (1 ∈ ℕ0 → ((ℕ0 × {𝑊})‘1) = 𝑊)
5735, 56ax-mp 5 . . . . . . . . . . . 12 ((ℕ0 × {𝑊})‘1) = 𝑊
5854, 57eqtrdi 2782 . . . . . . . . . . 11 (𝜑 → ((coe10 )‘1) = 𝑊)
5947, 50, 583netr4d 3008 . . . . . . . . . 10 (𝜑 → ((coe1‘(𝑀 · (1(.g‘(mulGrp‘𝑃))𝑋)))‘1) ≠ ((coe10 )‘1))
60 fveq2 6901 . . . . . . . . . . . 12 ((𝑀 · (1(.g‘(mulGrp‘𝑃))𝑋)) = 0 → (coe1‘(𝑀 · (1(.g‘(mulGrp‘𝑃))𝑋))) = (coe10 ))
6160fveq1d 6903 . . . . . . . . . . 11 ((𝑀 · (1(.g‘(mulGrp‘𝑃))𝑋)) = 0 → ((coe1‘(𝑀 · (1(.g‘(mulGrp‘𝑃))𝑋)))‘1) = ((coe10 )‘1))
6261necon3i 2963 . . . . . . . . . 10 (((coe1‘(𝑀 · (1(.g‘(mulGrp‘𝑃))𝑋)))‘1) ≠ ((coe10 )‘1) → (𝑀 · (1(.g‘(mulGrp‘𝑃))𝑋)) ≠ 0 )
6359, 62syl 17 . . . . . . . . 9 (𝜑 → (𝑀 · (1(.g‘(mulGrp‘𝑃))𝑋)) ≠ 0 )
6446, 63eqnetrrd 2999 . . . . . . . 8 (𝜑 → (𝑀 · 𝑋) ≠ 0 )
65 eldifsn 4795 . . . . . . . 8 ((𝑀 · 𝑋) ∈ (𝐵 ∖ { 0 }) ↔ ((𝑀 · 𝑋) ∈ 𝐵 ∧ (𝑀 · 𝑋) ≠ 0 ))
6624, 64, 65sylanbrc 581 . . . . . . 7 (𝜑 → (𝑀 · 𝑋) ∈ (𝐵 ∖ { 0 }))
67 fta1blem.6 . . . . . . 7 (𝜑 → ((𝑀 · 𝑋) ∈ (𝐵 ∖ { 0 }) → (♯‘((𝑂‘(𝑀 · 𝑋)) “ {𝑊})) ≤ (𝐷‘(𝑀 · 𝑋))))
6866, 67mpd 15 . . . . . 6 (𝜑 → (♯‘((𝑂‘(𝑀 · 𝑋)) “ {𝑊})) ≤ (𝐷‘(𝑀 · 𝑋)))
6946fveq2d 6905 . . . . . . 7 (𝜑 → (𝐷‘(𝑀 · (1(.g‘(mulGrp‘𝑃))𝑋))) = (𝐷‘(𝑀 · 𝑋)))
70 fta1b.d . . . . . . . . 9 𝐷 = (deg1𝑅)
7170, 4, 3, 7, 10, 41, 43, 48deg1tm 26146 . . . . . . . 8 ((𝑅 ∈ Ring ∧ (𝑀𝐾𝑀𝑊) ∧ 1 ∈ ℕ0) → (𝐷‘(𝑀 · (1(.g‘(mulGrp‘𝑃))𝑋))) = 1)
7238, 9, 47, 36, 71syl121anc 1372 . . . . . . 7 (𝜑 → (𝐷‘(𝑀 · (1(.g‘(mulGrp‘𝑃))𝑋))) = 1)
7369, 72eqtr3d 2768 . . . . . 6 (𝜑 → (𝐷‘(𝑀 · 𝑋)) = 1)
7468, 73breqtrd 5179 . . . . 5 (𝜑 → (♯‘((𝑂‘(𝑀 · 𝑋)) “ {𝑊})) ≤ 1)
75 hashbnd 14353 . . . . 5 ((((𝑂‘(𝑀 · 𝑋)) “ {𝑊}) ∈ V ∧ 1 ∈ ℕ0 ∧ (♯‘((𝑂‘(𝑀 · 𝑋)) “ {𝑊})) ≤ 1) → ((𝑂‘(𝑀 · 𝑋)) “ {𝑊}) ∈ Fin)
7634, 36, 74, 75syl3anc 1368 . . . 4 (𝜑 → ((𝑂‘(𝑀 · 𝑋)) “ {𝑊}) ∈ Fin)
774, 48ring0cl 20246 . . . . . . 7 (𝑅 ∈ Ring → 𝑊𝐾)
7838, 77syl 17 . . . . . 6 (𝜑𝑊𝐾)
79 eqid 2726 . . . . . . . . . . . . 13 (algSc‘𝑃) = (algSc‘𝑃)
803, 79, 4, 5ply1sclf 22276 . . . . . . . . . . . 12 (𝑅 ∈ Ring → (algSc‘𝑃):𝐾𝐵)
8138, 80syl 17 . . . . . . . . . . 11 (𝜑 → (algSc‘𝑃):𝐾𝐵)
8281, 9ffvelcdmd 7099 . . . . . . . . . 10 (𝜑 → ((algSc‘𝑃)‘𝑀) ∈ 𝐵)
83 eqid 2726 . . . . . . . . . . 11 (.r𝑃) = (.r𝑃)
84 eqid 2726 . . . . . . . . . . 11 (.r‘(𝑅s 𝐾)) = (.r‘(𝑅s 𝐾))
855, 83, 84rhmmul 20468 . . . . . . . . . 10 ((𝑂 ∈ (𝑃 RingHom (𝑅s 𝐾)) ∧ ((algSc‘𝑃)‘𝑀) ∈ 𝐵𝑋𝐵) → (𝑂‘(((algSc‘𝑃)‘𝑀)(.r𝑃)𝑋)) = ((𝑂‘((algSc‘𝑃)‘𝑀))(.r‘(𝑅s 𝐾))(𝑂𝑋)))
8621, 82, 40, 85syl3anc 1368 . . . . . . . . 9 (𝜑 → (𝑂‘(((algSc‘𝑃)‘𝑀)(.r𝑃)𝑋)) = ((𝑂‘((algSc‘𝑃)‘𝑀))(.r‘(𝑅s 𝐾))(𝑂𝑋)))
873ply1assa 22189 . . . . . . . . . . . 12 (𝑅 ∈ CRing → 𝑃 ∈ AssAlg)
886, 87syl 17 . . . . . . . . . . 11 (𝜑𝑃 ∈ AssAlg)
893ply1sca 22242 . . . . . . . . . . . . . . 15 (𝑅 ∈ CRing → 𝑅 = (Scalar‘𝑃))
906, 89syl 17 . . . . . . . . . . . . . 14 (𝜑𝑅 = (Scalar‘𝑃))
9190fveq2d 6905 . . . . . . . . . . . . 13 (𝜑 → (Base‘𝑅) = (Base‘(Scalar‘𝑃)))
924, 91eqtrid 2778 . . . . . . . . . . . 12 (𝜑𝐾 = (Base‘(Scalar‘𝑃)))
939, 92eleqtrd 2828 . . . . . . . . . . 11 (𝜑𝑀 ∈ (Base‘(Scalar‘𝑃)))
94 eqid 2726 . . . . . . . . . . . 12 (Scalar‘𝑃) = (Scalar‘𝑃)
95 eqid 2726 . . . . . . . . . . . 12 (Base‘(Scalar‘𝑃)) = (Base‘(Scalar‘𝑃))
9679, 94, 95, 5, 83, 10asclmul1 21883 . . . . . . . . . . 11 ((𝑃 ∈ AssAlg ∧ 𝑀 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑋𝐵) → (((algSc‘𝑃)‘𝑀)(.r𝑃)𝑋) = (𝑀 · 𝑋))
9788, 93, 40, 96syl3anc 1368 . . . . . . . . . 10 (𝜑 → (((algSc‘𝑃)‘𝑀)(.r𝑃)𝑋) = (𝑀 · 𝑋))
9897fveq2d 6905 . . . . . . . . 9 (𝜑 → (𝑂‘(((algSc‘𝑃)‘𝑀)(.r𝑃)𝑋)) = (𝑂‘(𝑀 · 𝑋)))
9923, 82ffvelcdmd 7099 . . . . . . . . . . 11 (𝜑 → (𝑂‘((algSc‘𝑃)‘𝑀)) ∈ (Base‘(𝑅s 𝐾)))
10023, 40ffvelcdmd 7099 . . . . . . . . . . 11 (𝜑 → (𝑂𝑋) ∈ (Base‘(𝑅s 𝐾)))
10116, 17, 6, 19, 99, 100, 11, 84pwsmulrval 17506 . . . . . . . . . 10 (𝜑 → ((𝑂‘((algSc‘𝑃)‘𝑀))(.r‘(𝑅s 𝐾))(𝑂𝑋)) = ((𝑂‘((algSc‘𝑃)‘𝑀)) ∘f × (𝑂𝑋)))
1022, 3, 4, 79evl1sca 22325 . . . . . . . . . . . 12 ((𝑅 ∈ CRing ∧ 𝑀𝐾) → (𝑂‘((algSc‘𝑃)‘𝑀)) = (𝐾 × {𝑀}))
1036, 9, 102syl2anc 582 . . . . . . . . . . 11 (𝜑 → (𝑂‘((algSc‘𝑃)‘𝑀)) = (𝐾 × {𝑀}))
1042, 7, 4evl1var 22327 . . . . . . . . . . . 12 (𝑅 ∈ CRing → (𝑂𝑋) = ( I ↾ 𝐾))
1056, 104syl 17 . . . . . . . . . . 11 (𝜑 → (𝑂𝑋) = ( I ↾ 𝐾))
106103, 105oveq12d 7442 . . . . . . . . . 10 (𝜑 → ((𝑂‘((algSc‘𝑃)‘𝑀)) ∘f × (𝑂𝑋)) = ((𝐾 × {𝑀}) ∘f × ( I ↾ 𝐾)))
107101, 106eqtrd 2766 . . . . . . . . 9 (𝜑 → ((𝑂‘((algSc‘𝑃)‘𝑀))(.r‘(𝑅s 𝐾))(𝑂𝑋)) = ((𝐾 × {𝑀}) ∘f × ( I ↾ 𝐾)))
10886, 98, 1073eqtr3d 2774 . . . . . . . 8 (𝜑 → (𝑂‘(𝑀 · 𝑋)) = ((𝐾 × {𝑀}) ∘f × ( I ↾ 𝐾)))
109108fveq1d 6903 . . . . . . 7 (𝜑 → ((𝑂‘(𝑀 · 𝑋))‘𝑊) = (((𝐾 × {𝑀}) ∘f × ( I ↾ 𝐾))‘𝑊))
110 fnconstg 6790 . . . . . . . . . 10 (𝑀𝐾 → (𝐾 × {𝑀}) Fn 𝐾)
1119, 110syl 17 . . . . . . . . 9 (𝜑 → (𝐾 × {𝑀}) Fn 𝐾)
112 fnresi 6690 . . . . . . . . . 10 ( I ↾ 𝐾) Fn 𝐾
113112a1i 11 . . . . . . . . 9 (𝜑 → ( I ↾ 𝐾) Fn 𝐾)
114 fnfvof 7707 . . . . . . . . 9 ((((𝐾 × {𝑀}) Fn 𝐾 ∧ ( I ↾ 𝐾) Fn 𝐾) ∧ (𝐾 ∈ V ∧ 𝑊𝐾)) → (((𝐾 × {𝑀}) ∘f × ( I ↾ 𝐾))‘𝑊) = (((𝐾 × {𝑀})‘𝑊) × (( I ↾ 𝐾)‘𝑊)))
115111, 113, 19, 78, 114syl22anc 837 . . . . . . . 8 (𝜑 → (((𝐾 × {𝑀}) ∘f × ( I ↾ 𝐾))‘𝑊) = (((𝐾 × {𝑀})‘𝑊) × (( I ↾ 𝐾)‘𝑊)))
116 fvconst2g 7219 . . . . . . . . . . 11 ((𝑀𝐾𝑊𝐾) → ((𝐾 × {𝑀})‘𝑊) = 𝑀)
1179, 78, 116syl2anc 582 . . . . . . . . . 10 (𝜑 → ((𝐾 × {𝑀})‘𝑊) = 𝑀)
118 fvresi 7187 . . . . . . . . . . 11 (𝑊𝐾 → (( I ↾ 𝐾)‘𝑊) = 𝑊)
11978, 118syl 17 . . . . . . . . . 10 (𝜑 → (( I ↾ 𝐾)‘𝑊) = 𝑊)
120117, 119oveq12d 7442 . . . . . . . . 9 (𝜑 → (((𝐾 × {𝑀})‘𝑊) × (( I ↾ 𝐾)‘𝑊)) = (𝑀 × 𝑊))
1214, 11, 48ringrz 20273 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝑀𝐾) → (𝑀 × 𝑊) = 𝑊)
12238, 9, 121syl2anc 582 . . . . . . . . 9 (𝜑 → (𝑀 × 𝑊) = 𝑊)
123120, 122eqtrd 2766 . . . . . . . 8 (𝜑 → (((𝐾 × {𝑀})‘𝑊) × (( I ↾ 𝐾)‘𝑊)) = 𝑊)
124115, 123eqtrd 2766 . . . . . . 7 (𝜑 → (((𝐾 × {𝑀}) ∘f × ( I ↾ 𝐾))‘𝑊) = 𝑊)
125109, 124eqtrd 2766 . . . . . 6 (𝜑 → ((𝑂‘(𝑀 · 𝑋))‘𝑊) = 𝑊)
126 fniniseg 7073 . . . . . . 7 ((𝑂‘(𝑀 · 𝑋)) Fn 𝐾 → (𝑊 ∈ ((𝑂‘(𝑀 · 𝑋)) “ {𝑊}) ↔ (𝑊𝐾 ∧ ((𝑂‘(𝑀 · 𝑋))‘𝑊) = 𝑊)))
12727, 126syl 17 . . . . . 6 (𝜑 → (𝑊 ∈ ((𝑂‘(𝑀 · 𝑋)) “ {𝑊}) ↔ (𝑊𝐾 ∧ ((𝑂‘(𝑀 · 𝑋))‘𝑊) = 𝑊)))
12878, 125, 127mpbir2and 711 . . . . 5 (𝜑𝑊 ∈ ((𝑂‘(𝑀 · 𝑋)) “ {𝑊}))
129128snssd 4818 . . . 4 (𝜑 → {𝑊} ⊆ ((𝑂‘(𝑀 · 𝑋)) “ {𝑊}))
130 hashsng 14386 . . . . . . 7 (𝑊𝐾 → (♯‘{𝑊}) = 1)
13178, 130syl 17 . . . . . 6 (𝜑 → (♯‘{𝑊}) = 1)
132 ssdomg 9031 . . . . . . . . . 10 (((𝑂‘(𝑀 · 𝑋)) “ {𝑊}) ∈ V → ({𝑊} ⊆ ((𝑂‘(𝑀 · 𝑋)) “ {𝑊}) → {𝑊} ≼ ((𝑂‘(𝑀 · 𝑋)) “ {𝑊})))
13333, 129, 132mpsyl 68 . . . . . . . . 9 (𝜑 → {𝑊} ≼ ((𝑂‘(𝑀 · 𝑋)) “ {𝑊}))
134 snfi 9081 . . . . . . . . . 10 {𝑊} ∈ Fin
135 hashdom 14396 . . . . . . . . . 10 (({𝑊} ∈ Fin ∧ ((𝑂‘(𝑀 · 𝑋)) “ {𝑊}) ∈ V) → ((♯‘{𝑊}) ≤ (♯‘((𝑂‘(𝑀 · 𝑋)) “ {𝑊})) ↔ {𝑊} ≼ ((𝑂‘(𝑀 · 𝑋)) “ {𝑊})))
136134, 33, 135mp2an 690 . . . . . . . . 9 ((♯‘{𝑊}) ≤ (♯‘((𝑂‘(𝑀 · 𝑋)) “ {𝑊})) ↔ {𝑊} ≼ ((𝑂‘(𝑀 · 𝑋)) “ {𝑊}))
137133, 136sylibr 233 . . . . . . . 8 (𝜑 → (♯‘{𝑊}) ≤ (♯‘((𝑂‘(𝑀 · 𝑋)) “ {𝑊})))
138131, 137eqbrtrrd 5177 . . . . . . 7 (𝜑 → 1 ≤ (♯‘((𝑂‘(𝑀 · 𝑋)) “ {𝑊})))
139 hashcl 14373 . . . . . . . . . 10 (((𝑂‘(𝑀 · 𝑋)) “ {𝑊}) ∈ Fin → (♯‘((𝑂‘(𝑀 · 𝑋)) “ {𝑊})) ∈ ℕ0)
14076, 139syl 17 . . . . . . . . 9 (𝜑 → (♯‘((𝑂‘(𝑀 · 𝑋)) “ {𝑊})) ∈ ℕ0)
141140nn0red 12585 . . . . . . . 8 (𝜑 → (♯‘((𝑂‘(𝑀 · 𝑋)) “ {𝑊})) ∈ ℝ)
142 1re 11264 . . . . . . . 8 1 ∈ ℝ
143 letri3 11349 . . . . . . . 8 (((♯‘((𝑂‘(𝑀 · 𝑋)) “ {𝑊})) ∈ ℝ ∧ 1 ∈ ℝ) → ((♯‘((𝑂‘(𝑀 · 𝑋)) “ {𝑊})) = 1 ↔ ((♯‘((𝑂‘(𝑀 · 𝑋)) “ {𝑊})) ≤ 1 ∧ 1 ≤ (♯‘((𝑂‘(𝑀 · 𝑋)) “ {𝑊})))))
144141, 142, 143sylancl 584 . . . . . . 7 (𝜑 → ((♯‘((𝑂‘(𝑀 · 𝑋)) “ {𝑊})) = 1 ↔ ((♯‘((𝑂‘(𝑀 · 𝑋)) “ {𝑊})) ≤ 1 ∧ 1 ≤ (♯‘((𝑂‘(𝑀 · 𝑋)) “ {𝑊})))))
14574, 138, 144mpbir2and 711 . . . . . 6 (𝜑 → (♯‘((𝑂‘(𝑀 · 𝑋)) “ {𝑊})) = 1)
146131, 145eqtr4d 2769 . . . . 5 (𝜑 → (♯‘{𝑊}) = (♯‘((𝑂‘(𝑀 · 𝑋)) “ {𝑊})))
147 hashen 14364 . . . . . 6 (({𝑊} ∈ Fin ∧ ((𝑂‘(𝑀 · 𝑋)) “ {𝑊}) ∈ Fin) → ((♯‘{𝑊}) = (♯‘((𝑂‘(𝑀 · 𝑋)) “ {𝑊})) ↔ {𝑊} ≈ ((𝑂‘(𝑀 · 𝑋)) “ {𝑊})))
148134, 76, 147sylancr 585 . . . . 5 (𝜑 → ((♯‘{𝑊}) = (♯‘((𝑂‘(𝑀 · 𝑋)) “ {𝑊})) ↔ {𝑊} ≈ ((𝑂‘(𝑀 · 𝑋)) “ {𝑊})))
149146, 148mpbid 231 . . . 4 (𝜑 → {𝑊} ≈ ((𝑂‘(𝑀 · 𝑋)) “ {𝑊}))
150 fisseneq 9291 . . . 4 ((((𝑂‘(𝑀 · 𝑋)) “ {𝑊}) ∈ Fin ∧ {𝑊} ⊆ ((𝑂‘(𝑀 · 𝑋)) “ {𝑊}) ∧ {𝑊} ≈ ((𝑂‘(𝑀 · 𝑋)) “ {𝑊})) → {𝑊} = ((𝑂‘(𝑀 · 𝑋)) “ {𝑊}))
15176, 129, 149, 150syl3anc 1368 . . 3 (𝜑 → {𝑊} = ((𝑂‘(𝑀 · 𝑋)) “ {𝑊}))
15230, 151eleqtrrd 2829 . 2 (𝜑𝑁 ∈ {𝑊})
153 elsni 4650 . 2 (𝑁 ∈ {𝑊} → 𝑁 = 𝑊)
154152, 153syl 17 1 (𝜑𝑁 = 𝑊)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1534  wcel 2099  wne 2930  Vcvv 3462  cdif 3944  wss 3947  {csn 4633   class class class wbr 5153   I cid 5579   × cxp 5680  ccnv 5681  cres 5684  cima 5685   Fn wfn 6549  wf 6550  cfv 6554  (class class class)co 7424  f cof 7688  cen 8971  cdom 8972  Fincfn 8974  cr 11157  1c1 11159  cle 11299  0cn0 12524  chash 14347  Basecbs 17213  .rcmulr 17267  Scalarcsca 17269   ·𝑠 cvsca 17270  0gc0g 17454  s cpws 17461  .gcmg 19061  mulGrpcmgp 20117  Ringcrg 20216  CRingccrg 20217   RingHom crh 20451  AssAlgcasa 21848  algSccascl 21850  var1cv1 22165  Poly1cpl1 22166  coe1cco1 22167  eval1ce1 22305  deg1cdg1 26078
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5290  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11214  ax-resscn 11215  ax-1cn 11216  ax-icn 11217  ax-addcl 11218  ax-addrcl 11219  ax-mulcl 11220  ax-mulrcl 11221  ax-mulcom 11222  ax-addass 11223  ax-mulass 11224  ax-distr 11225  ax-i2m1 11226  ax-1ne0 11227  ax-1rid 11228  ax-rnegex 11229  ax-rrecex 11230  ax-cnre 11231  ax-pre-lttri 11232  ax-pre-lttrn 11233  ax-pre-ltadd 11234  ax-pre-mulgt0 11235  ax-pre-sup 11236  ax-addf 11237
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-tp 4638  df-op 4640  df-uni 4914  df-int 4955  df-iun 5003  df-iin 5004  df-br 5154  df-opab 5216  df-mpt 5237  df-tr 5271  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-se 5638  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6312  df-ord 6379  df-on 6380  df-lim 6381  df-suc 6382  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-isom 6563  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-of 7690  df-ofr 7691  df-om 7877  df-1st 8003  df-2nd 8004  df-supp 8175  df-frecs 8296  df-wrecs 8327  df-recs 8401  df-rdg 8440  df-1o 8496  df-2o 8497  df-oadd 8500  df-er 8734  df-map 8857  df-pm 8858  df-ixp 8927  df-en 8975  df-dom 8976  df-sdom 8977  df-fin 8978  df-fsupp 9406  df-sup 9485  df-oi 9553  df-card 9982  df-pnf 11300  df-mnf 11301  df-xr 11302  df-ltxr 11303  df-le 11304  df-sub 11496  df-neg 11497  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-xnn0 12597  df-z 12611  df-dec 12730  df-uz 12875  df-fz 13539  df-fzo 13682  df-seq 14022  df-hash 14348  df-struct 17149  df-sets 17166  df-slot 17184  df-ndx 17196  df-base 17214  df-ress 17243  df-plusg 17279  df-mulr 17280  df-starv 17281  df-sca 17282  df-vsca 17283  df-ip 17284  df-tset 17285  df-ple 17286  df-ds 17288  df-unif 17289  df-hom 17290  df-cco 17291  df-0g 17456  df-gsum 17457  df-prds 17462  df-pws 17464  df-mre 17599  df-mrc 17600  df-acs 17602  df-mgm 18633  df-sgrp 18712  df-mnd 18728  df-mhm 18773  df-submnd 18774  df-grp 18931  df-minusg 18932  df-sbg 18933  df-mulg 19062  df-subg 19117  df-ghm 19207  df-cntz 19311  df-cmn 19780  df-abl 19781  df-mgp 20118  df-rng 20136  df-ur 20165  df-srg 20170  df-ring 20218  df-cring 20219  df-rhm 20454  df-subrng 20528  df-subrg 20553  df-lmod 20838  df-lss 20909  df-lsp 20949  df-cnfld 21344  df-assa 21851  df-asp 21852  df-ascl 21853  df-psr 21906  df-mvr 21907  df-mpl 21908  df-opsr 21910  df-evls 22087  df-evl 22088  df-psr1 22169  df-vr1 22170  df-ply1 22171  df-coe1 22172  df-evl1 22307  df-mdeg 26079  df-deg1 26080
This theorem is referenced by:  fta1b  26199
  Copyright terms: Public domain W3C validator