Step | Hyp | Ref
| Expression |
1 | | fveq2 6774 |
. . . . . . . 8
⊢ (𝑐 = ∅ → (𝐺‘𝑐) = (𝐺‘∅)) |
2 | 1 | neeq1d 3003 |
. . . . . . 7
⊢ (𝑐 = ∅ → ((𝐺‘𝑐) ≠ (𝐺‘𝑏) ↔ (𝐺‘∅) ≠ (𝐺‘𝑏))) |
3 | 2 | raleqbi1dv 3340 |
. . . . . 6
⊢ (𝑐 = ∅ → (∀𝑏 ∈ 𝑐 (𝐺‘𝑐) ≠ (𝐺‘𝑏) ↔ ∀𝑏 ∈ ∅ (𝐺‘∅) ≠ (𝐺‘𝑏))) |
4 | 3 | imbi2d 341 |
. . . . 5
⊢ (𝑐 = ∅ → ((𝜑 → ∀𝑏 ∈ 𝑐 (𝐺‘𝑐) ≠ (𝐺‘𝑏)) ↔ (𝜑 → ∀𝑏 ∈ ∅ (𝐺‘∅) ≠ (𝐺‘𝑏)))) |
5 | | fveq2 6774 |
. . . . . . . 8
⊢ (𝑐 = 𝑑 → (𝐺‘𝑐) = (𝐺‘𝑑)) |
6 | 5 | neeq1d 3003 |
. . . . . . 7
⊢ (𝑐 = 𝑑 → ((𝐺‘𝑐) ≠ (𝐺‘𝑏) ↔ (𝐺‘𝑑) ≠ (𝐺‘𝑏))) |
7 | 6 | raleqbi1dv 3340 |
. . . . . 6
⊢ (𝑐 = 𝑑 → (∀𝑏 ∈ 𝑐 (𝐺‘𝑐) ≠ (𝐺‘𝑏) ↔ ∀𝑏 ∈ 𝑑 (𝐺‘𝑑) ≠ (𝐺‘𝑏))) |
8 | 7 | imbi2d 341 |
. . . . 5
⊢ (𝑐 = 𝑑 → ((𝜑 → ∀𝑏 ∈ 𝑐 (𝐺‘𝑐) ≠ (𝐺‘𝑏)) ↔ (𝜑 → ∀𝑏 ∈ 𝑑 (𝐺‘𝑑) ≠ (𝐺‘𝑏)))) |
9 | | fveq2 6774 |
. . . . . . . 8
⊢ (𝑐 = suc 𝑑 → (𝐺‘𝑐) = (𝐺‘suc 𝑑)) |
10 | 9 | neeq1d 3003 |
. . . . . . 7
⊢ (𝑐 = suc 𝑑 → ((𝐺‘𝑐) ≠ (𝐺‘𝑏) ↔ (𝐺‘suc 𝑑) ≠ (𝐺‘𝑏))) |
11 | 10 | raleqbi1dv 3340 |
. . . . . 6
⊢ (𝑐 = suc 𝑑 → (∀𝑏 ∈ 𝑐 (𝐺‘𝑐) ≠ (𝐺‘𝑏) ↔ ∀𝑏 ∈ suc 𝑑(𝐺‘suc 𝑑) ≠ (𝐺‘𝑏))) |
12 | 11 | imbi2d 341 |
. . . . 5
⊢ (𝑐 = suc 𝑑 → ((𝜑 → ∀𝑏 ∈ 𝑐 (𝐺‘𝑐) ≠ (𝐺‘𝑏)) ↔ (𝜑 → ∀𝑏 ∈ suc 𝑑(𝐺‘suc 𝑑) ≠ (𝐺‘𝑏)))) |
13 | | fveq2 6774 |
. . . . . . . 8
⊢ (𝑐 = 𝑀 → (𝐺‘𝑐) = (𝐺‘𝑀)) |
14 | 13 | neeq1d 3003 |
. . . . . . 7
⊢ (𝑐 = 𝑀 → ((𝐺‘𝑐) ≠ (𝐺‘𝑏) ↔ (𝐺‘𝑀) ≠ (𝐺‘𝑏))) |
15 | 14 | raleqbi1dv 3340 |
. . . . . 6
⊢ (𝑐 = 𝑀 → (∀𝑏 ∈ 𝑐 (𝐺‘𝑐) ≠ (𝐺‘𝑏) ↔ ∀𝑏 ∈ 𝑀 (𝐺‘𝑀) ≠ (𝐺‘𝑏))) |
16 | 15 | imbi2d 341 |
. . . . 5
⊢ (𝑐 = 𝑀 → ((𝜑 → ∀𝑏 ∈ 𝑐 (𝐺‘𝑐) ≠ (𝐺‘𝑏)) ↔ (𝜑 → ∀𝑏 ∈ 𝑀 (𝐺‘𝑀) ≠ (𝐺‘𝑏)))) |
17 | | ral0 4443 |
. . . . . 6
⊢
∀𝑏 ∈
∅ (𝐺‘∅)
≠ (𝐺‘𝑏) |
18 | 17 | a1i 11 |
. . . . 5
⊢ (𝜑 → ∀𝑏 ∈ ∅ (𝐺‘∅) ≠ (𝐺‘𝑏)) |
19 | | infpssrlem.c |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝐹:𝐵–1-1-onto→𝐴) |
20 | | f1ocnv 6728 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐹:𝐵–1-1-onto→𝐴 → ◡𝐹:𝐴–1-1-onto→𝐵) |
21 | | f1of 6716 |
. . . . . . . . . . . . . . . . . 18
⊢ (◡𝐹:𝐴–1-1-onto→𝐵 → ◡𝐹:𝐴⟶𝐵) |
22 | 19, 20, 21 | 3syl 18 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ◡𝐹:𝐴⟶𝐵) |
23 | 22 | adantl 482 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑑 ∈ ω ∧ 𝜑) → ◡𝐹:𝐴⟶𝐵) |
24 | | infpssrlem.a |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝐵 ⊆ 𝐴) |
25 | | infpssrlem.d |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝐶 ∈ (𝐴 ∖ 𝐵)) |
26 | | infpssrlem.e |
. . . . . . . . . . . . . . . . . . 19
⊢ 𝐺 = (rec(◡𝐹, 𝐶) ↾ ω) |
27 | 24, 19, 25, 26 | infpssrlem3 10061 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝐺:ω⟶𝐴) |
28 | 27 | ffvelrnda 6961 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑑 ∈ ω) → (𝐺‘𝑑) ∈ 𝐴) |
29 | 28 | ancoms 459 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑑 ∈ ω ∧ 𝜑) → (𝐺‘𝑑) ∈ 𝐴) |
30 | 23, 29 | ffvelrnd 6962 |
. . . . . . . . . . . . . . 15
⊢ ((𝑑 ∈ ω ∧ 𝜑) → (◡𝐹‘(𝐺‘𝑑)) ∈ 𝐵) |
31 | 25 | eldifbd 3900 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ¬ 𝐶 ∈ 𝐵) |
32 | 31 | adantl 482 |
. . . . . . . . . . . . . . 15
⊢ ((𝑑 ∈ ω ∧ 𝜑) → ¬ 𝐶 ∈ 𝐵) |
33 | | nelne2 3042 |
. . . . . . . . . . . . . . 15
⊢ (((◡𝐹‘(𝐺‘𝑑)) ∈ 𝐵 ∧ ¬ 𝐶 ∈ 𝐵) → (◡𝐹‘(𝐺‘𝑑)) ≠ 𝐶) |
34 | 30, 32, 33 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢ ((𝑑 ∈ ω ∧ 𝜑) → (◡𝐹‘(𝐺‘𝑑)) ≠ 𝐶) |
35 | 24, 19, 25, 26 | infpssrlem2 10060 |
. . . . . . . . . . . . . . 15
⊢ (𝑑 ∈ ω → (𝐺‘suc 𝑑) = (◡𝐹‘(𝐺‘𝑑))) |
36 | 35 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((𝑑 ∈ ω ∧ 𝜑) → (𝐺‘suc 𝑑) = (◡𝐹‘(𝐺‘𝑑))) |
37 | 24, 19, 25, 26 | infpssrlem1 10059 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝐺‘∅) = 𝐶) |
38 | 37 | adantl 482 |
. . . . . . . . . . . . . 14
⊢ ((𝑑 ∈ ω ∧ 𝜑) → (𝐺‘∅) = 𝐶) |
39 | 34, 36, 38 | 3netr4d 3021 |
. . . . . . . . . . . . 13
⊢ ((𝑑 ∈ ω ∧ 𝜑) → (𝐺‘suc 𝑑) ≠ (𝐺‘∅)) |
40 | 39 | 3adant3 1131 |
. . . . . . . . . . . 12
⊢ ((𝑑 ∈ ω ∧ 𝜑 ∧ ∀𝑏 ∈ 𝑑 (𝐺‘𝑑) ≠ (𝐺‘𝑏)) → (𝐺‘suc 𝑑) ≠ (𝐺‘∅)) |
41 | 1 | neeq2d 3004 |
. . . . . . . . . . . 12
⊢ (𝑐 = ∅ → ((𝐺‘suc 𝑑) ≠ (𝐺‘𝑐) ↔ (𝐺‘suc 𝑑) ≠ (𝐺‘∅))) |
42 | 40, 41 | syl5ibr 245 |
. . . . . . . . . . 11
⊢ (𝑐 = ∅ → ((𝑑 ∈ ω ∧ 𝜑 ∧ ∀𝑏 ∈ 𝑑 (𝐺‘𝑑) ≠ (𝐺‘𝑏)) → (𝐺‘suc 𝑑) ≠ (𝐺‘𝑐))) |
43 | 42 | adantrd 492 |
. . . . . . . . . 10
⊢ (𝑐 = ∅ → (((𝑑 ∈ ω ∧ 𝜑 ∧ ∀𝑏 ∈ 𝑑 (𝐺‘𝑑) ≠ (𝐺‘𝑏)) ∧ 𝑐 ∈ suc 𝑑) → (𝐺‘suc 𝑑) ≠ (𝐺‘𝑐))) |
44 | | simpr 485 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑑 ∈ ω ∧ 𝑐 ∈ suc 𝑑) → 𝑐 ∈ suc 𝑑) |
45 | | peano2 7737 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑑 ∈ ω → suc 𝑑 ∈
ω) |
46 | 45 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑑 ∈ ω ∧ 𝑐 ∈ suc 𝑑) → suc 𝑑 ∈ ω) |
47 | | elnn 7723 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑐 ∈ suc 𝑑 ∧ suc 𝑑 ∈ ω) → 𝑐 ∈ ω) |
48 | 44, 46, 47 | syl2anc 584 |
. . . . . . . . . . . . . . 15
⊢ ((𝑑 ∈ ω ∧ 𝑐 ∈ suc 𝑑) → 𝑐 ∈ ω) |
49 | 48 | 3ad2antl1 1184 |
. . . . . . . . . . . . . 14
⊢ (((𝑑 ∈ ω ∧ 𝜑 ∧ ∀𝑏 ∈ 𝑑 (𝐺‘𝑑) ≠ (𝐺‘𝑏)) ∧ 𝑐 ∈ suc 𝑑) → 𝑐 ∈ ω) |
50 | 49 | adantl 482 |
. . . . . . . . . . . . 13
⊢ ((𝑐 ≠ ∅ ∧ ((𝑑 ∈ ω ∧ 𝜑 ∧ ∀𝑏 ∈ 𝑑 (𝐺‘𝑑) ≠ (𝐺‘𝑏)) ∧ 𝑐 ∈ suc 𝑑)) → 𝑐 ∈ ω) |
51 | | simpl 483 |
. . . . . . . . . . . . 13
⊢ ((𝑐 ≠ ∅ ∧ ((𝑑 ∈ ω ∧ 𝜑 ∧ ∀𝑏 ∈ 𝑑 (𝐺‘𝑑) ≠ (𝐺‘𝑏)) ∧ 𝑐 ∈ suc 𝑑)) → 𝑐 ≠ ∅) |
52 | | nnsuc 7730 |
. . . . . . . . . . . . 13
⊢ ((𝑐 ∈ ω ∧ 𝑐 ≠ ∅) →
∃𝑏 ∈ ω
𝑐 = suc 𝑏) |
53 | 50, 51, 52 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ ((𝑐 ≠ ∅ ∧ ((𝑑 ∈ ω ∧ 𝜑 ∧ ∀𝑏 ∈ 𝑑 (𝐺‘𝑑) ≠ (𝐺‘𝑏)) ∧ 𝑐 ∈ suc 𝑑)) → ∃𝑏 ∈ ω 𝑐 = suc 𝑏) |
54 | | nfv 1917 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑏 𝑑 ∈ ω |
55 | | nfv 1917 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑏𝜑 |
56 | | nfra1 3144 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑏∀𝑏 ∈ 𝑑 (𝐺‘𝑑) ≠ (𝐺‘𝑏) |
57 | 54, 55, 56 | nf3an 1904 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑏(𝑑 ∈ ω ∧ 𝜑 ∧ ∀𝑏 ∈ 𝑑 (𝐺‘𝑑) ≠ (𝐺‘𝑏)) |
58 | | nfv 1917 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑏 𝑐 ∈ suc 𝑑 |
59 | 57, 58 | nfan 1902 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑏((𝑑 ∈ ω ∧ 𝜑 ∧ ∀𝑏 ∈ 𝑑 (𝐺‘𝑑) ≠ (𝐺‘𝑏)) ∧ 𝑐 ∈ suc 𝑑) |
60 | | nfv 1917 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑏(𝐺‘suc 𝑑) ≠ (𝐺‘𝑐) |
61 | | simpl3 1192 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑑 ∈ ω ∧ 𝜑 ∧ ∀𝑏 ∈ 𝑑 (𝐺‘𝑑) ≠ (𝐺‘𝑏)) ∧ (suc 𝑏 ∈ suc 𝑑 ∧ 𝑏 ∈ ω)) → ∀𝑏 ∈ 𝑑 (𝐺‘𝑑) ≠ (𝐺‘𝑏)) |
62 | | simpr 485 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑑 ∈ ω ∧ suc 𝑏 ∈ suc 𝑑) → suc 𝑏 ∈ suc 𝑑) |
63 | | nnord 7720 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑑 ∈ ω → Ord 𝑑) |
64 | 63 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑑 ∈ ω ∧ suc 𝑏 ∈ suc 𝑑) → Ord 𝑑) |
65 | | ordsucelsuc 7669 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (Ord
𝑑 → (𝑏 ∈ 𝑑 ↔ suc 𝑏 ∈ suc 𝑑)) |
66 | 64, 65 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑑 ∈ ω ∧ suc 𝑏 ∈ suc 𝑑) → (𝑏 ∈ 𝑑 ↔ suc 𝑏 ∈ suc 𝑑)) |
67 | 62, 66 | mpbird 256 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑑 ∈ ω ∧ suc 𝑏 ∈ suc 𝑑) → 𝑏 ∈ 𝑑) |
68 | 67 | 3ad2antl1 1184 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑑 ∈ ω ∧ 𝜑 ∧ ∀𝑏 ∈ 𝑑 (𝐺‘𝑑) ≠ (𝐺‘𝑏)) ∧ suc 𝑏 ∈ suc 𝑑) → 𝑏 ∈ 𝑑) |
69 | 68 | adantrr 714 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑑 ∈ ω ∧ 𝜑 ∧ ∀𝑏 ∈ 𝑑 (𝐺‘𝑑) ≠ (𝐺‘𝑏)) ∧ (suc 𝑏 ∈ suc 𝑑 ∧ 𝑏 ∈ ω)) → 𝑏 ∈ 𝑑) |
70 | | rsp 3131 |
. . . . . . . . . . . . . . . . . . 19
⊢
(∀𝑏 ∈
𝑑 (𝐺‘𝑑) ≠ (𝐺‘𝑏) → (𝑏 ∈ 𝑑 → (𝐺‘𝑑) ≠ (𝐺‘𝑏))) |
71 | 61, 69, 70 | sylc 65 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑑 ∈ ω ∧ 𝜑 ∧ ∀𝑏 ∈ 𝑑 (𝐺‘𝑑) ≠ (𝐺‘𝑏)) ∧ (suc 𝑏 ∈ suc 𝑑 ∧ 𝑏 ∈ ω)) → (𝐺‘𝑑) ≠ (𝐺‘𝑏)) |
72 | | f1of1 6715 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (◡𝐹:𝐴–1-1-onto→𝐵 → ◡𝐹:𝐴–1-1→𝐵) |
73 | 19, 20, 72 | 3syl 18 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝜑 → ◡𝐹:𝐴–1-1→𝐵) |
74 | 73 | ad2antlr 724 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝑑 ∈ ω ∧ 𝜑) ∧ 𝑏 ∈ ω) → ◡𝐹:𝐴–1-1→𝐵) |
75 | 29 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝑑 ∈ ω ∧ 𝜑) ∧ 𝑏 ∈ ω) → (𝐺‘𝑑) ∈ 𝐴) |
76 | 27 | ffvelrnda 6961 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ 𝑏 ∈ ω) → (𝐺‘𝑏) ∈ 𝐴) |
77 | 76 | adantll 711 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝑑 ∈ ω ∧ 𝜑) ∧ 𝑏 ∈ ω) → (𝐺‘𝑏) ∈ 𝐴) |
78 | | f1fveq 7135 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((◡𝐹:𝐴–1-1→𝐵 ∧ ((𝐺‘𝑑) ∈ 𝐴 ∧ (𝐺‘𝑏) ∈ 𝐴)) → ((◡𝐹‘(𝐺‘𝑑)) = (◡𝐹‘(𝐺‘𝑏)) ↔ (𝐺‘𝑑) = (𝐺‘𝑏))) |
79 | 74, 75, 77, 78 | syl12anc 834 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑑 ∈ ω ∧ 𝜑) ∧ 𝑏 ∈ ω) → ((◡𝐹‘(𝐺‘𝑑)) = (◡𝐹‘(𝐺‘𝑏)) ↔ (𝐺‘𝑑) = (𝐺‘𝑏))) |
80 | 79 | necon3bid 2988 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑑 ∈ ω ∧ 𝜑) ∧ 𝑏 ∈ ω) → ((◡𝐹‘(𝐺‘𝑑)) ≠ (◡𝐹‘(𝐺‘𝑏)) ↔ (𝐺‘𝑑) ≠ (𝐺‘𝑏))) |
81 | 80 | biimprd 247 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑑 ∈ ω ∧ 𝜑) ∧ 𝑏 ∈ ω) → ((𝐺‘𝑑) ≠ (𝐺‘𝑏) → (◡𝐹‘(𝐺‘𝑑)) ≠ (◡𝐹‘(𝐺‘𝑏)))) |
82 | 35 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑑 ∈ ω ∧ 𝑏 ∈ ω) → (𝐺‘suc 𝑑) = (◡𝐹‘(𝐺‘𝑑))) |
83 | 24, 19, 25, 26 | infpssrlem2 10060 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑏 ∈ ω → (𝐺‘suc 𝑏) = (◡𝐹‘(𝐺‘𝑏))) |
84 | 83 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑑 ∈ ω ∧ 𝑏 ∈ ω) → (𝐺‘suc 𝑏) = (◡𝐹‘(𝐺‘𝑏))) |
85 | 82, 84 | neeq12d 3005 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑑 ∈ ω ∧ 𝑏 ∈ ω) → ((𝐺‘suc 𝑑) ≠ (𝐺‘suc 𝑏) ↔ (◡𝐹‘(𝐺‘𝑑)) ≠ (◡𝐹‘(𝐺‘𝑏)))) |
86 | 85 | adantlr 712 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑑 ∈ ω ∧ 𝜑) ∧ 𝑏 ∈ ω) → ((𝐺‘suc 𝑑) ≠ (𝐺‘suc 𝑏) ↔ (◡𝐹‘(𝐺‘𝑑)) ≠ (◡𝐹‘(𝐺‘𝑏)))) |
87 | 81, 86 | sylibrd 258 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑑 ∈ ω ∧ 𝜑) ∧ 𝑏 ∈ ω) → ((𝐺‘𝑑) ≠ (𝐺‘𝑏) → (𝐺‘suc 𝑑) ≠ (𝐺‘suc 𝑏))) |
88 | 87 | adantrl 713 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑑 ∈ ω ∧ 𝜑) ∧ (suc 𝑏 ∈ suc 𝑑 ∧ 𝑏 ∈ ω)) → ((𝐺‘𝑑) ≠ (𝐺‘𝑏) → (𝐺‘suc 𝑑) ≠ (𝐺‘suc 𝑏))) |
89 | 88 | 3adantl3 1167 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑑 ∈ ω ∧ 𝜑 ∧ ∀𝑏 ∈ 𝑑 (𝐺‘𝑑) ≠ (𝐺‘𝑏)) ∧ (suc 𝑏 ∈ suc 𝑑 ∧ 𝑏 ∈ ω)) → ((𝐺‘𝑑) ≠ (𝐺‘𝑏) → (𝐺‘suc 𝑑) ≠ (𝐺‘suc 𝑏))) |
90 | 71, 89 | mpd 15 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑑 ∈ ω ∧ 𝜑 ∧ ∀𝑏 ∈ 𝑑 (𝐺‘𝑑) ≠ (𝐺‘𝑏)) ∧ (suc 𝑏 ∈ suc 𝑑 ∧ 𝑏 ∈ ω)) → (𝐺‘suc 𝑑) ≠ (𝐺‘suc 𝑏)) |
91 | 90 | expr 457 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑑 ∈ ω ∧ 𝜑 ∧ ∀𝑏 ∈ 𝑑 (𝐺‘𝑑) ≠ (𝐺‘𝑏)) ∧ suc 𝑏 ∈ suc 𝑑) → (𝑏 ∈ ω → (𝐺‘suc 𝑑) ≠ (𝐺‘suc 𝑏))) |
92 | | eleq1 2826 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑐 = suc 𝑏 → (𝑐 ∈ suc 𝑑 ↔ suc 𝑏 ∈ suc 𝑑)) |
93 | 92 | anbi2d 629 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑐 = suc 𝑏 → (((𝑑 ∈ ω ∧ 𝜑 ∧ ∀𝑏 ∈ 𝑑 (𝐺‘𝑑) ≠ (𝐺‘𝑏)) ∧ 𝑐 ∈ suc 𝑑) ↔ ((𝑑 ∈ ω ∧ 𝜑 ∧ ∀𝑏 ∈ 𝑑 (𝐺‘𝑑) ≠ (𝐺‘𝑏)) ∧ suc 𝑏 ∈ suc 𝑑))) |
94 | | fveq2 6774 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑐 = suc 𝑏 → (𝐺‘𝑐) = (𝐺‘suc 𝑏)) |
95 | 94 | neeq2d 3004 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑐 = suc 𝑏 → ((𝐺‘suc 𝑑) ≠ (𝐺‘𝑐) ↔ (𝐺‘suc 𝑑) ≠ (𝐺‘suc 𝑏))) |
96 | 95 | imbi2d 341 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑐 = suc 𝑏 → ((𝑏 ∈ ω → (𝐺‘suc 𝑑) ≠ (𝐺‘𝑐)) ↔ (𝑏 ∈ ω → (𝐺‘suc 𝑑) ≠ (𝐺‘suc 𝑏)))) |
97 | 93, 96 | imbi12d 345 |
. . . . . . . . . . . . . . . 16
⊢ (𝑐 = suc 𝑏 → ((((𝑑 ∈ ω ∧ 𝜑 ∧ ∀𝑏 ∈ 𝑑 (𝐺‘𝑑) ≠ (𝐺‘𝑏)) ∧ 𝑐 ∈ suc 𝑑) → (𝑏 ∈ ω → (𝐺‘suc 𝑑) ≠ (𝐺‘𝑐))) ↔ (((𝑑 ∈ ω ∧ 𝜑 ∧ ∀𝑏 ∈ 𝑑 (𝐺‘𝑑) ≠ (𝐺‘𝑏)) ∧ suc 𝑏 ∈ suc 𝑑) → (𝑏 ∈ ω → (𝐺‘suc 𝑑) ≠ (𝐺‘suc 𝑏))))) |
98 | 91, 97 | mpbiri 257 |
. . . . . . . . . . . . . . 15
⊢ (𝑐 = suc 𝑏 → (((𝑑 ∈ ω ∧ 𝜑 ∧ ∀𝑏 ∈ 𝑑 (𝐺‘𝑑) ≠ (𝐺‘𝑏)) ∧ 𝑐 ∈ suc 𝑑) → (𝑏 ∈ ω → (𝐺‘suc 𝑑) ≠ (𝐺‘𝑐)))) |
99 | 98 | com3l 89 |
. . . . . . . . . . . . . 14
⊢ (((𝑑 ∈ ω ∧ 𝜑 ∧ ∀𝑏 ∈ 𝑑 (𝐺‘𝑑) ≠ (𝐺‘𝑏)) ∧ 𝑐 ∈ suc 𝑑) → (𝑏 ∈ ω → (𝑐 = suc 𝑏 → (𝐺‘suc 𝑑) ≠ (𝐺‘𝑐)))) |
100 | 59, 60, 99 | rexlimd 3250 |
. . . . . . . . . . . . 13
⊢ (((𝑑 ∈ ω ∧ 𝜑 ∧ ∀𝑏 ∈ 𝑑 (𝐺‘𝑑) ≠ (𝐺‘𝑏)) ∧ 𝑐 ∈ suc 𝑑) → (∃𝑏 ∈ ω 𝑐 = suc 𝑏 → (𝐺‘suc 𝑑) ≠ (𝐺‘𝑐))) |
101 | 100 | adantl 482 |
. . . . . . . . . . . 12
⊢ ((𝑐 ≠ ∅ ∧ ((𝑑 ∈ ω ∧ 𝜑 ∧ ∀𝑏 ∈ 𝑑 (𝐺‘𝑑) ≠ (𝐺‘𝑏)) ∧ 𝑐 ∈ suc 𝑑)) → (∃𝑏 ∈ ω 𝑐 = suc 𝑏 → (𝐺‘suc 𝑑) ≠ (𝐺‘𝑐))) |
102 | 53, 101 | mpd 15 |
. . . . . . . . . . 11
⊢ ((𝑐 ≠ ∅ ∧ ((𝑑 ∈ ω ∧ 𝜑 ∧ ∀𝑏 ∈ 𝑑 (𝐺‘𝑑) ≠ (𝐺‘𝑏)) ∧ 𝑐 ∈ suc 𝑑)) → (𝐺‘suc 𝑑) ≠ (𝐺‘𝑐)) |
103 | 102 | ex 413 |
. . . . . . . . . 10
⊢ (𝑐 ≠ ∅ → (((𝑑 ∈ ω ∧ 𝜑 ∧ ∀𝑏 ∈ 𝑑 (𝐺‘𝑑) ≠ (𝐺‘𝑏)) ∧ 𝑐 ∈ suc 𝑑) → (𝐺‘suc 𝑑) ≠ (𝐺‘𝑐))) |
104 | 43, 103 | pm2.61ine 3028 |
. . . . . . . . 9
⊢ (((𝑑 ∈ ω ∧ 𝜑 ∧ ∀𝑏 ∈ 𝑑 (𝐺‘𝑑) ≠ (𝐺‘𝑏)) ∧ 𝑐 ∈ suc 𝑑) → (𝐺‘suc 𝑑) ≠ (𝐺‘𝑐)) |
105 | 104 | ralrimiva 3103 |
. . . . . . . 8
⊢ ((𝑑 ∈ ω ∧ 𝜑 ∧ ∀𝑏 ∈ 𝑑 (𝐺‘𝑑) ≠ (𝐺‘𝑏)) → ∀𝑐 ∈ suc 𝑑(𝐺‘suc 𝑑) ≠ (𝐺‘𝑐)) |
106 | | fveq2 6774 |
. . . . . . . . . 10
⊢ (𝑐 = 𝑏 → (𝐺‘𝑐) = (𝐺‘𝑏)) |
107 | 106 | neeq2d 3004 |
. . . . . . . . 9
⊢ (𝑐 = 𝑏 → ((𝐺‘suc 𝑑) ≠ (𝐺‘𝑐) ↔ (𝐺‘suc 𝑑) ≠ (𝐺‘𝑏))) |
108 | 107 | cbvralvw 3383 |
. . . . . . . 8
⊢
(∀𝑐 ∈
suc 𝑑(𝐺‘suc 𝑑) ≠ (𝐺‘𝑐) ↔ ∀𝑏 ∈ suc 𝑑(𝐺‘suc 𝑑) ≠ (𝐺‘𝑏)) |
109 | 105, 108 | sylib 217 |
. . . . . . 7
⊢ ((𝑑 ∈ ω ∧ 𝜑 ∧ ∀𝑏 ∈ 𝑑 (𝐺‘𝑑) ≠ (𝐺‘𝑏)) → ∀𝑏 ∈ suc 𝑑(𝐺‘suc 𝑑) ≠ (𝐺‘𝑏)) |
110 | 109 | 3exp 1118 |
. . . . . 6
⊢ (𝑑 ∈ ω → (𝜑 → (∀𝑏 ∈ 𝑑 (𝐺‘𝑑) ≠ (𝐺‘𝑏) → ∀𝑏 ∈ suc 𝑑(𝐺‘suc 𝑑) ≠ (𝐺‘𝑏)))) |
111 | 110 | a2d 29 |
. . . . 5
⊢ (𝑑 ∈ ω → ((𝜑 → ∀𝑏 ∈ 𝑑 (𝐺‘𝑑) ≠ (𝐺‘𝑏)) → (𝜑 → ∀𝑏 ∈ suc 𝑑(𝐺‘suc 𝑑) ≠ (𝐺‘𝑏)))) |
112 | 4, 8, 12, 16, 18, 111 | finds 7745 |
. . . 4
⊢ (𝑀 ∈ ω → (𝜑 → ∀𝑏 ∈ 𝑀 (𝐺‘𝑀) ≠ (𝐺‘𝑏))) |
113 | 112 | impcom 408 |
. . 3
⊢ ((𝜑 ∧ 𝑀 ∈ ω) → ∀𝑏 ∈ 𝑀 (𝐺‘𝑀) ≠ (𝐺‘𝑏)) |
114 | | fveq2 6774 |
. . . . 5
⊢ (𝑏 = 𝑁 → (𝐺‘𝑏) = (𝐺‘𝑁)) |
115 | 114 | neeq2d 3004 |
. . . 4
⊢ (𝑏 = 𝑁 → ((𝐺‘𝑀) ≠ (𝐺‘𝑏) ↔ (𝐺‘𝑀) ≠ (𝐺‘𝑁))) |
116 | 115 | rspccv 3558 |
. . 3
⊢
(∀𝑏 ∈
𝑀 (𝐺‘𝑀) ≠ (𝐺‘𝑏) → (𝑁 ∈ 𝑀 → (𝐺‘𝑀) ≠ (𝐺‘𝑁))) |
117 | 113, 116 | syl 17 |
. 2
⊢ ((𝜑 ∧ 𝑀 ∈ ω) → (𝑁 ∈ 𝑀 → (𝐺‘𝑀) ≠ (𝐺‘𝑁))) |
118 | 117 | 3impia 1116 |
1
⊢ ((𝜑 ∧ 𝑀 ∈ ω ∧ 𝑁 ∈ 𝑀) → (𝐺‘𝑀) ≠ (𝐺‘𝑁)) |