MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infpssrlem4 Structured version   Visualization version   GIF version

Theorem infpssrlem4 9380
Description: Lemma for infpssr 9382. (Contributed by Stefan O'Rear, 30-Oct-2014.)
Hypotheses
Ref Expression
infpssrlem.a (𝜑𝐵𝐴)
infpssrlem.c (𝜑𝐹:𝐵1-1-onto𝐴)
infpssrlem.d (𝜑𝐶 ∈ (𝐴𝐵))
infpssrlem.e 𝐺 = (rec(𝐹, 𝐶) ↾ ω)
Assertion
Ref Expression
infpssrlem4 ((𝜑𝑀 ∈ ω ∧ 𝑁𝑀) → (𝐺𝑀) ≠ (𝐺𝑁))

Proof of Theorem infpssrlem4
Dummy variables 𝑏 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6374 . . . . . . . 8 (𝑐 = ∅ → (𝐺𝑐) = (𝐺‘∅))
21neeq1d 2995 . . . . . . 7 (𝑐 = ∅ → ((𝐺𝑐) ≠ (𝐺𝑏) ↔ (𝐺‘∅) ≠ (𝐺𝑏)))
32raleqbi1dv 3293 . . . . . 6 (𝑐 = ∅ → (∀𝑏𝑐 (𝐺𝑐) ≠ (𝐺𝑏) ↔ ∀𝑏 ∈ ∅ (𝐺‘∅) ≠ (𝐺𝑏)))
43imbi2d 331 . . . . 5 (𝑐 = ∅ → ((𝜑 → ∀𝑏𝑐 (𝐺𝑐) ≠ (𝐺𝑏)) ↔ (𝜑 → ∀𝑏 ∈ ∅ (𝐺‘∅) ≠ (𝐺𝑏))))
5 fveq2 6374 . . . . . . . 8 (𝑐 = 𝑑 → (𝐺𝑐) = (𝐺𝑑))
65neeq1d 2995 . . . . . . 7 (𝑐 = 𝑑 → ((𝐺𝑐) ≠ (𝐺𝑏) ↔ (𝐺𝑑) ≠ (𝐺𝑏)))
76raleqbi1dv 3293 . . . . . 6 (𝑐 = 𝑑 → (∀𝑏𝑐 (𝐺𝑐) ≠ (𝐺𝑏) ↔ ∀𝑏𝑑 (𝐺𝑑) ≠ (𝐺𝑏)))
87imbi2d 331 . . . . 5 (𝑐 = 𝑑 → ((𝜑 → ∀𝑏𝑐 (𝐺𝑐) ≠ (𝐺𝑏)) ↔ (𝜑 → ∀𝑏𝑑 (𝐺𝑑) ≠ (𝐺𝑏))))
9 fveq2 6374 . . . . . . . 8 (𝑐 = suc 𝑑 → (𝐺𝑐) = (𝐺‘suc 𝑑))
109neeq1d 2995 . . . . . . 7 (𝑐 = suc 𝑑 → ((𝐺𝑐) ≠ (𝐺𝑏) ↔ (𝐺‘suc 𝑑) ≠ (𝐺𝑏)))
1110raleqbi1dv 3293 . . . . . 6 (𝑐 = suc 𝑑 → (∀𝑏𝑐 (𝐺𝑐) ≠ (𝐺𝑏) ↔ ∀𝑏 ∈ suc 𝑑(𝐺‘suc 𝑑) ≠ (𝐺𝑏)))
1211imbi2d 331 . . . . 5 (𝑐 = suc 𝑑 → ((𝜑 → ∀𝑏𝑐 (𝐺𝑐) ≠ (𝐺𝑏)) ↔ (𝜑 → ∀𝑏 ∈ suc 𝑑(𝐺‘suc 𝑑) ≠ (𝐺𝑏))))
13 fveq2 6374 . . . . . . . 8 (𝑐 = 𝑀 → (𝐺𝑐) = (𝐺𝑀))
1413neeq1d 2995 . . . . . . 7 (𝑐 = 𝑀 → ((𝐺𝑐) ≠ (𝐺𝑏) ↔ (𝐺𝑀) ≠ (𝐺𝑏)))
1514raleqbi1dv 3293 . . . . . 6 (𝑐 = 𝑀 → (∀𝑏𝑐 (𝐺𝑐) ≠ (𝐺𝑏) ↔ ∀𝑏𝑀 (𝐺𝑀) ≠ (𝐺𝑏)))
1615imbi2d 331 . . . . 5 (𝑐 = 𝑀 → ((𝜑 → ∀𝑏𝑐 (𝐺𝑐) ≠ (𝐺𝑏)) ↔ (𝜑 → ∀𝑏𝑀 (𝐺𝑀) ≠ (𝐺𝑏))))
17 ral0 4234 . . . . . 6 𝑏 ∈ ∅ (𝐺‘∅) ≠ (𝐺𝑏)
1817a1i 11 . . . . 5 (𝜑 → ∀𝑏 ∈ ∅ (𝐺‘∅) ≠ (𝐺𝑏))
19 infpssrlem.c . . . . . . . . . . . . . . . . . 18 (𝜑𝐹:𝐵1-1-onto𝐴)
20 f1ocnv 6331 . . . . . . . . . . . . . . . . . 18 (𝐹:𝐵1-1-onto𝐴𝐹:𝐴1-1-onto𝐵)
21 f1of 6319 . . . . . . . . . . . . . . . . . 18 (𝐹:𝐴1-1-onto𝐵𝐹:𝐴𝐵)
2219, 20, 213syl 18 . . . . . . . . . . . . . . . . 17 (𝜑𝐹:𝐴𝐵)
2322adantl 473 . . . . . . . . . . . . . . . 16 ((𝑑 ∈ ω ∧ 𝜑) → 𝐹:𝐴𝐵)
24 infpssrlem.a . . . . . . . . . . . . . . . . . . 19 (𝜑𝐵𝐴)
25 infpssrlem.d . . . . . . . . . . . . . . . . . . 19 (𝜑𝐶 ∈ (𝐴𝐵))
26 infpssrlem.e . . . . . . . . . . . . . . . . . . 19 𝐺 = (rec(𝐹, 𝐶) ↾ ω)
2724, 19, 25, 26infpssrlem3 9379 . . . . . . . . . . . . . . . . . 18 (𝜑𝐺:ω⟶𝐴)
2827ffvelrnda 6548 . . . . . . . . . . . . . . . . 17 ((𝜑𝑑 ∈ ω) → (𝐺𝑑) ∈ 𝐴)
2928ancoms 450 . . . . . . . . . . . . . . . 16 ((𝑑 ∈ ω ∧ 𝜑) → (𝐺𝑑) ∈ 𝐴)
3023, 29ffvelrnd 6549 . . . . . . . . . . . . . . 15 ((𝑑 ∈ ω ∧ 𝜑) → (𝐹‘(𝐺𝑑)) ∈ 𝐵)
3125eldifbd 3744 . . . . . . . . . . . . . . . 16 (𝜑 → ¬ 𝐶𝐵)
3231adantl 473 . . . . . . . . . . . . . . 15 ((𝑑 ∈ ω ∧ 𝜑) → ¬ 𝐶𝐵)
33 nelne2 3033 . . . . . . . . . . . . . . 15 (((𝐹‘(𝐺𝑑)) ∈ 𝐵 ∧ ¬ 𝐶𝐵) → (𝐹‘(𝐺𝑑)) ≠ 𝐶)
3430, 32, 33syl2anc 579 . . . . . . . . . . . . . 14 ((𝑑 ∈ ω ∧ 𝜑) → (𝐹‘(𝐺𝑑)) ≠ 𝐶)
3524, 19, 25, 26infpssrlem2 9378 . . . . . . . . . . . . . . 15 (𝑑 ∈ ω → (𝐺‘suc 𝑑) = (𝐹‘(𝐺𝑑)))
3635adantr 472 . . . . . . . . . . . . . 14 ((𝑑 ∈ ω ∧ 𝜑) → (𝐺‘suc 𝑑) = (𝐹‘(𝐺𝑑)))
3724, 19, 25, 26infpssrlem1 9377 . . . . . . . . . . . . . . 15 (𝜑 → (𝐺‘∅) = 𝐶)
3837adantl 473 . . . . . . . . . . . . . 14 ((𝑑 ∈ ω ∧ 𝜑) → (𝐺‘∅) = 𝐶)
3934, 36, 383netr4d 3013 . . . . . . . . . . . . 13 ((𝑑 ∈ ω ∧ 𝜑) → (𝐺‘suc 𝑑) ≠ (𝐺‘∅))
40393adant3 1162 . . . . . . . . . . . 12 ((𝑑 ∈ ω ∧ 𝜑 ∧ ∀𝑏𝑑 (𝐺𝑑) ≠ (𝐺𝑏)) → (𝐺‘suc 𝑑) ≠ (𝐺‘∅))
411neeq2d 2996 . . . . . . . . . . . 12 (𝑐 = ∅ → ((𝐺‘suc 𝑑) ≠ (𝐺𝑐) ↔ (𝐺‘suc 𝑑) ≠ (𝐺‘∅)))
4240, 41syl5ibr 237 . . . . . . . . . . 11 (𝑐 = ∅ → ((𝑑 ∈ ω ∧ 𝜑 ∧ ∀𝑏𝑑 (𝐺𝑑) ≠ (𝐺𝑏)) → (𝐺‘suc 𝑑) ≠ (𝐺𝑐)))
4342adantrd 485 . . . . . . . . . 10 (𝑐 = ∅ → (((𝑑 ∈ ω ∧ 𝜑 ∧ ∀𝑏𝑑 (𝐺𝑑) ≠ (𝐺𝑏)) ∧ 𝑐 ∈ suc 𝑑) → (𝐺‘suc 𝑑) ≠ (𝐺𝑐)))
44 simpr 477 . . . . . . . . . . . . . . . 16 ((𝑑 ∈ ω ∧ 𝑐 ∈ suc 𝑑) → 𝑐 ∈ suc 𝑑)
45 peano2 7283 . . . . . . . . . . . . . . . . 17 (𝑑 ∈ ω → suc 𝑑 ∈ ω)
4645adantr 472 . . . . . . . . . . . . . . . 16 ((𝑑 ∈ ω ∧ 𝑐 ∈ suc 𝑑) → suc 𝑑 ∈ ω)
47 elnn 7272 . . . . . . . . . . . . . . . 16 ((𝑐 ∈ suc 𝑑 ∧ suc 𝑑 ∈ ω) → 𝑐 ∈ ω)
4844, 46, 47syl2anc 579 . . . . . . . . . . . . . . 15 ((𝑑 ∈ ω ∧ 𝑐 ∈ suc 𝑑) → 𝑐 ∈ ω)
49483ad2antl1 1236 . . . . . . . . . . . . . 14 (((𝑑 ∈ ω ∧ 𝜑 ∧ ∀𝑏𝑑 (𝐺𝑑) ≠ (𝐺𝑏)) ∧ 𝑐 ∈ suc 𝑑) → 𝑐 ∈ ω)
5049adantl 473 . . . . . . . . . . . . 13 ((𝑐 ≠ ∅ ∧ ((𝑑 ∈ ω ∧ 𝜑 ∧ ∀𝑏𝑑 (𝐺𝑑) ≠ (𝐺𝑏)) ∧ 𝑐 ∈ suc 𝑑)) → 𝑐 ∈ ω)
51 simpl 474 . . . . . . . . . . . . 13 ((𝑐 ≠ ∅ ∧ ((𝑑 ∈ ω ∧ 𝜑 ∧ ∀𝑏𝑑 (𝐺𝑑) ≠ (𝐺𝑏)) ∧ 𝑐 ∈ suc 𝑑)) → 𝑐 ≠ ∅)
52 nnsuc 7279 . . . . . . . . . . . . 13 ((𝑐 ∈ ω ∧ 𝑐 ≠ ∅) → ∃𝑏 ∈ ω 𝑐 = suc 𝑏)
5350, 51, 52syl2anc 579 . . . . . . . . . . . 12 ((𝑐 ≠ ∅ ∧ ((𝑑 ∈ ω ∧ 𝜑 ∧ ∀𝑏𝑑 (𝐺𝑑) ≠ (𝐺𝑏)) ∧ 𝑐 ∈ suc 𝑑)) → ∃𝑏 ∈ ω 𝑐 = suc 𝑏)
54 nfv 2009 . . . . . . . . . . . . . . . 16 𝑏 𝑑 ∈ ω
55 nfv 2009 . . . . . . . . . . . . . . . 16 𝑏𝜑
56 nfra1 3087 . . . . . . . . . . . . . . . 16 𝑏𝑏𝑑 (𝐺𝑑) ≠ (𝐺𝑏)
5754, 55, 56nf3an 2000 . . . . . . . . . . . . . . 15 𝑏(𝑑 ∈ ω ∧ 𝜑 ∧ ∀𝑏𝑑 (𝐺𝑑) ≠ (𝐺𝑏))
58 nfv 2009 . . . . . . . . . . . . . . 15 𝑏 𝑐 ∈ suc 𝑑
5957, 58nfan 1998 . . . . . . . . . . . . . 14 𝑏((𝑑 ∈ ω ∧ 𝜑 ∧ ∀𝑏𝑑 (𝐺𝑑) ≠ (𝐺𝑏)) ∧ 𝑐 ∈ suc 𝑑)
60 nfv 2009 . . . . . . . . . . . . . 14 𝑏(𝐺‘suc 𝑑) ≠ (𝐺𝑐)
61 simpl3 1246 . . . . . . . . . . . . . . . . . . 19 (((𝑑 ∈ ω ∧ 𝜑 ∧ ∀𝑏𝑑 (𝐺𝑑) ≠ (𝐺𝑏)) ∧ (suc 𝑏 ∈ suc 𝑑𝑏 ∈ ω)) → ∀𝑏𝑑 (𝐺𝑑) ≠ (𝐺𝑏))
62 simpr 477 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑑 ∈ ω ∧ suc 𝑏 ∈ suc 𝑑) → suc 𝑏 ∈ suc 𝑑)
63 nnord 7270 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑑 ∈ ω → Ord 𝑑)
6463adantr 472 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑑 ∈ ω ∧ suc 𝑏 ∈ suc 𝑑) → Ord 𝑑)
65 ordsucelsuc 7219 . . . . . . . . . . . . . . . . . . . . . . 23 (Ord 𝑑 → (𝑏𝑑 ↔ suc 𝑏 ∈ suc 𝑑))
6664, 65syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑑 ∈ ω ∧ suc 𝑏 ∈ suc 𝑑) → (𝑏𝑑 ↔ suc 𝑏 ∈ suc 𝑑))
6762, 66mpbird 248 . . . . . . . . . . . . . . . . . . . . 21 ((𝑑 ∈ ω ∧ suc 𝑏 ∈ suc 𝑑) → 𝑏𝑑)
68673ad2antl1 1236 . . . . . . . . . . . . . . . . . . . 20 (((𝑑 ∈ ω ∧ 𝜑 ∧ ∀𝑏𝑑 (𝐺𝑑) ≠ (𝐺𝑏)) ∧ suc 𝑏 ∈ suc 𝑑) → 𝑏𝑑)
6968adantrr 708 . . . . . . . . . . . . . . . . . . 19 (((𝑑 ∈ ω ∧ 𝜑 ∧ ∀𝑏𝑑 (𝐺𝑑) ≠ (𝐺𝑏)) ∧ (suc 𝑏 ∈ suc 𝑑𝑏 ∈ ω)) → 𝑏𝑑)
70 rsp 3075 . . . . . . . . . . . . . . . . . . 19 (∀𝑏𝑑 (𝐺𝑑) ≠ (𝐺𝑏) → (𝑏𝑑 → (𝐺𝑑) ≠ (𝐺𝑏)))
7161, 69, 70sylc 65 . . . . . . . . . . . . . . . . . 18 (((𝑑 ∈ ω ∧ 𝜑 ∧ ∀𝑏𝑑 (𝐺𝑑) ≠ (𝐺𝑏)) ∧ (suc 𝑏 ∈ suc 𝑑𝑏 ∈ ω)) → (𝐺𝑑) ≠ (𝐺𝑏))
72 f1of1 6318 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝐹:𝐴1-1-onto𝐵𝐹:𝐴1-1𝐵)
7319, 20, 723syl 18 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝐹:𝐴1-1𝐵)
7473ad2antlr 718 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑑 ∈ ω ∧ 𝜑) ∧ 𝑏 ∈ ω) → 𝐹:𝐴1-1𝐵)
7529adantr 472 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑑 ∈ ω ∧ 𝜑) ∧ 𝑏 ∈ ω) → (𝐺𝑑) ∈ 𝐴)
7627ffvelrnda 6548 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑏 ∈ ω) → (𝐺𝑏) ∈ 𝐴)
7776adantll 705 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑑 ∈ ω ∧ 𝜑) ∧ 𝑏 ∈ ω) → (𝐺𝑏) ∈ 𝐴)
78 f1fveq 6710 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐹:𝐴1-1𝐵 ∧ ((𝐺𝑑) ∈ 𝐴 ∧ (𝐺𝑏) ∈ 𝐴)) → ((𝐹‘(𝐺𝑑)) = (𝐹‘(𝐺𝑏)) ↔ (𝐺𝑑) = (𝐺𝑏)))
7974, 75, 77, 78syl12anc 865 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑑 ∈ ω ∧ 𝜑) ∧ 𝑏 ∈ ω) → ((𝐹‘(𝐺𝑑)) = (𝐹‘(𝐺𝑏)) ↔ (𝐺𝑑) = (𝐺𝑏)))
8079necon3bid 2980 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑑 ∈ ω ∧ 𝜑) ∧ 𝑏 ∈ ω) → ((𝐹‘(𝐺𝑑)) ≠ (𝐹‘(𝐺𝑏)) ↔ (𝐺𝑑) ≠ (𝐺𝑏)))
8180biimprd 239 . . . . . . . . . . . . . . . . . . . . 21 (((𝑑 ∈ ω ∧ 𝜑) ∧ 𝑏 ∈ ω) → ((𝐺𝑑) ≠ (𝐺𝑏) → (𝐹‘(𝐺𝑑)) ≠ (𝐹‘(𝐺𝑏))))
8235adantr 472 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑑 ∈ ω ∧ 𝑏 ∈ ω) → (𝐺‘suc 𝑑) = (𝐹‘(𝐺𝑑)))
8324, 19, 25, 26infpssrlem2 9378 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑏 ∈ ω → (𝐺‘suc 𝑏) = (𝐹‘(𝐺𝑏)))
8483adantl 473 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑑 ∈ ω ∧ 𝑏 ∈ ω) → (𝐺‘suc 𝑏) = (𝐹‘(𝐺𝑏)))
8582, 84neeq12d 2997 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑑 ∈ ω ∧ 𝑏 ∈ ω) → ((𝐺‘suc 𝑑) ≠ (𝐺‘suc 𝑏) ↔ (𝐹‘(𝐺𝑑)) ≠ (𝐹‘(𝐺𝑏))))
8685adantlr 706 . . . . . . . . . . . . . . . . . . . . 21 (((𝑑 ∈ ω ∧ 𝜑) ∧ 𝑏 ∈ ω) → ((𝐺‘suc 𝑑) ≠ (𝐺‘suc 𝑏) ↔ (𝐹‘(𝐺𝑑)) ≠ (𝐹‘(𝐺𝑏))))
8781, 86sylibrd 250 . . . . . . . . . . . . . . . . . . . 20 (((𝑑 ∈ ω ∧ 𝜑) ∧ 𝑏 ∈ ω) → ((𝐺𝑑) ≠ (𝐺𝑏) → (𝐺‘suc 𝑑) ≠ (𝐺‘suc 𝑏)))
8887adantrl 707 . . . . . . . . . . . . . . . . . . 19 (((𝑑 ∈ ω ∧ 𝜑) ∧ (suc 𝑏 ∈ suc 𝑑𝑏 ∈ ω)) → ((𝐺𝑑) ≠ (𝐺𝑏) → (𝐺‘suc 𝑑) ≠ (𝐺‘suc 𝑏)))
89883adantl3 1209 . . . . . . . . . . . . . . . . . 18 (((𝑑 ∈ ω ∧ 𝜑 ∧ ∀𝑏𝑑 (𝐺𝑑) ≠ (𝐺𝑏)) ∧ (suc 𝑏 ∈ suc 𝑑𝑏 ∈ ω)) → ((𝐺𝑑) ≠ (𝐺𝑏) → (𝐺‘suc 𝑑) ≠ (𝐺‘suc 𝑏)))
9071, 89mpd 15 . . . . . . . . . . . . . . . . 17 (((𝑑 ∈ ω ∧ 𝜑 ∧ ∀𝑏𝑑 (𝐺𝑑) ≠ (𝐺𝑏)) ∧ (suc 𝑏 ∈ suc 𝑑𝑏 ∈ ω)) → (𝐺‘suc 𝑑) ≠ (𝐺‘suc 𝑏))
9190expr 448 . . . . . . . . . . . . . . . 16 (((𝑑 ∈ ω ∧ 𝜑 ∧ ∀𝑏𝑑 (𝐺𝑑) ≠ (𝐺𝑏)) ∧ suc 𝑏 ∈ suc 𝑑) → (𝑏 ∈ ω → (𝐺‘suc 𝑑) ≠ (𝐺‘suc 𝑏)))
92 eleq1 2831 . . . . . . . . . . . . . . . . . 18 (𝑐 = suc 𝑏 → (𝑐 ∈ suc 𝑑 ↔ suc 𝑏 ∈ suc 𝑑))
9392anbi2d 622 . . . . . . . . . . . . . . . . 17 (𝑐 = suc 𝑏 → (((𝑑 ∈ ω ∧ 𝜑 ∧ ∀𝑏𝑑 (𝐺𝑑) ≠ (𝐺𝑏)) ∧ 𝑐 ∈ suc 𝑑) ↔ ((𝑑 ∈ ω ∧ 𝜑 ∧ ∀𝑏𝑑 (𝐺𝑑) ≠ (𝐺𝑏)) ∧ suc 𝑏 ∈ suc 𝑑)))
94 fveq2 6374 . . . . . . . . . . . . . . . . . . 19 (𝑐 = suc 𝑏 → (𝐺𝑐) = (𝐺‘suc 𝑏))
9594neeq2d 2996 . . . . . . . . . . . . . . . . . 18 (𝑐 = suc 𝑏 → ((𝐺‘suc 𝑑) ≠ (𝐺𝑐) ↔ (𝐺‘suc 𝑑) ≠ (𝐺‘suc 𝑏)))
9695imbi2d 331 . . . . . . . . . . . . . . . . 17 (𝑐 = suc 𝑏 → ((𝑏 ∈ ω → (𝐺‘suc 𝑑) ≠ (𝐺𝑐)) ↔ (𝑏 ∈ ω → (𝐺‘suc 𝑑) ≠ (𝐺‘suc 𝑏))))
9793, 96imbi12d 335 . . . . . . . . . . . . . . . 16 (𝑐 = suc 𝑏 → ((((𝑑 ∈ ω ∧ 𝜑 ∧ ∀𝑏𝑑 (𝐺𝑑) ≠ (𝐺𝑏)) ∧ 𝑐 ∈ suc 𝑑) → (𝑏 ∈ ω → (𝐺‘suc 𝑑) ≠ (𝐺𝑐))) ↔ (((𝑑 ∈ ω ∧ 𝜑 ∧ ∀𝑏𝑑 (𝐺𝑑) ≠ (𝐺𝑏)) ∧ suc 𝑏 ∈ suc 𝑑) → (𝑏 ∈ ω → (𝐺‘suc 𝑑) ≠ (𝐺‘suc 𝑏)))))
9891, 97mpbiri 249 . . . . . . . . . . . . . . 15 (𝑐 = suc 𝑏 → (((𝑑 ∈ ω ∧ 𝜑 ∧ ∀𝑏𝑑 (𝐺𝑑) ≠ (𝐺𝑏)) ∧ 𝑐 ∈ suc 𝑑) → (𝑏 ∈ ω → (𝐺‘suc 𝑑) ≠ (𝐺𝑐))))
9998com3l 89 . . . . . . . . . . . . . 14 (((𝑑 ∈ ω ∧ 𝜑 ∧ ∀𝑏𝑑 (𝐺𝑑) ≠ (𝐺𝑏)) ∧ 𝑐 ∈ suc 𝑑) → (𝑏 ∈ ω → (𝑐 = suc 𝑏 → (𝐺‘suc 𝑑) ≠ (𝐺𝑐))))
10059, 60, 99rexlimd 3172 . . . . . . . . . . . . 13 (((𝑑 ∈ ω ∧ 𝜑 ∧ ∀𝑏𝑑 (𝐺𝑑) ≠ (𝐺𝑏)) ∧ 𝑐 ∈ suc 𝑑) → (∃𝑏 ∈ ω 𝑐 = suc 𝑏 → (𝐺‘suc 𝑑) ≠ (𝐺𝑐)))
101100adantl 473 . . . . . . . . . . . 12 ((𝑐 ≠ ∅ ∧ ((𝑑 ∈ ω ∧ 𝜑 ∧ ∀𝑏𝑑 (𝐺𝑑) ≠ (𝐺𝑏)) ∧ 𝑐 ∈ suc 𝑑)) → (∃𝑏 ∈ ω 𝑐 = suc 𝑏 → (𝐺‘suc 𝑑) ≠ (𝐺𝑐)))
10253, 101mpd 15 . . . . . . . . . . 11 ((𝑐 ≠ ∅ ∧ ((𝑑 ∈ ω ∧ 𝜑 ∧ ∀𝑏𝑑 (𝐺𝑑) ≠ (𝐺𝑏)) ∧ 𝑐 ∈ suc 𝑑)) → (𝐺‘suc 𝑑) ≠ (𝐺𝑐))
103102ex 401 . . . . . . . . . 10 (𝑐 ≠ ∅ → (((𝑑 ∈ ω ∧ 𝜑 ∧ ∀𝑏𝑑 (𝐺𝑑) ≠ (𝐺𝑏)) ∧ 𝑐 ∈ suc 𝑑) → (𝐺‘suc 𝑑) ≠ (𝐺𝑐)))
10443, 103pm2.61ine 3019 . . . . . . . . 9 (((𝑑 ∈ ω ∧ 𝜑 ∧ ∀𝑏𝑑 (𝐺𝑑) ≠ (𝐺𝑏)) ∧ 𝑐 ∈ suc 𝑑) → (𝐺‘suc 𝑑) ≠ (𝐺𝑐))
105104ralrimiva 3112 . . . . . . . 8 ((𝑑 ∈ ω ∧ 𝜑 ∧ ∀𝑏𝑑 (𝐺𝑑) ≠ (𝐺𝑏)) → ∀𝑐 ∈ suc 𝑑(𝐺‘suc 𝑑) ≠ (𝐺𝑐))
106 fveq2 6374 . . . . . . . . . 10 (𝑐 = 𝑏 → (𝐺𝑐) = (𝐺𝑏))
107106neeq2d 2996 . . . . . . . . 9 (𝑐 = 𝑏 → ((𝐺‘suc 𝑑) ≠ (𝐺𝑐) ↔ (𝐺‘suc 𝑑) ≠ (𝐺𝑏)))
108107cbvralv 3318 . . . . . . . 8 (∀𝑐 ∈ suc 𝑑(𝐺‘suc 𝑑) ≠ (𝐺𝑐) ↔ ∀𝑏 ∈ suc 𝑑(𝐺‘suc 𝑑) ≠ (𝐺𝑏))
109105, 108sylib 209 . . . . . . 7 ((𝑑 ∈ ω ∧ 𝜑 ∧ ∀𝑏𝑑 (𝐺𝑑) ≠ (𝐺𝑏)) → ∀𝑏 ∈ suc 𝑑(𝐺‘suc 𝑑) ≠ (𝐺𝑏))
1101093exp 1148 . . . . . 6 (𝑑 ∈ ω → (𝜑 → (∀𝑏𝑑 (𝐺𝑑) ≠ (𝐺𝑏) → ∀𝑏 ∈ suc 𝑑(𝐺‘suc 𝑑) ≠ (𝐺𝑏))))
111110a2d 29 . . . . 5 (𝑑 ∈ ω → ((𝜑 → ∀𝑏𝑑 (𝐺𝑑) ≠ (𝐺𝑏)) → (𝜑 → ∀𝑏 ∈ suc 𝑑(𝐺‘suc 𝑑) ≠ (𝐺𝑏))))
1124, 8, 12, 16, 18, 111finds 7289 . . . 4 (𝑀 ∈ ω → (𝜑 → ∀𝑏𝑀 (𝐺𝑀) ≠ (𝐺𝑏)))
113112impcom 396 . . 3 ((𝜑𝑀 ∈ ω) → ∀𝑏𝑀 (𝐺𝑀) ≠ (𝐺𝑏))
114 fveq2 6374 . . . . 5 (𝑏 = 𝑁 → (𝐺𝑏) = (𝐺𝑁))
115114neeq2d 2996 . . . 4 (𝑏 = 𝑁 → ((𝐺𝑀) ≠ (𝐺𝑏) ↔ (𝐺𝑀) ≠ (𝐺𝑁)))
116115rspccv 3457 . . 3 (∀𝑏𝑀 (𝐺𝑀) ≠ (𝐺𝑏) → (𝑁𝑀 → (𝐺𝑀) ≠ (𝐺𝑁)))
117113, 116syl 17 . 2 ((𝜑𝑀 ∈ ω) → (𝑁𝑀 → (𝐺𝑀) ≠ (𝐺𝑁)))
1181173impia 1145 1 ((𝜑𝑀 ∈ ω ∧ 𝑁𝑀) → (𝐺𝑀) ≠ (𝐺𝑁))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 197  wa 384  w3a 1107   = wceq 1652  wcel 2155  wne 2936  wral 3054  wrex 3055  cdif 3728  wss 3731  c0 4078  ccnv 5275  cres 5278  Ord word 5906  suc csuc 5909  wf 6063  1-1wf1 6064  1-1-ontowf1o 6066  cfv 6067  ωcom 7262  reccrdg 7708
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2069  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2349  ax-ext 2742  ax-sep 4940  ax-nul 4948  ax-pow 5000  ax-pr 5061  ax-un 7146
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2062  df-mo 2564  df-eu 2581  df-clab 2751  df-cleq 2757  df-clel 2760  df-nfc 2895  df-ne 2937  df-ral 3059  df-rex 3060  df-reu 3061  df-rab 3063  df-v 3351  df-sbc 3596  df-csb 3691  df-dif 3734  df-un 3736  df-in 3738  df-ss 3745  df-pss 3747  df-nul 4079  df-if 4243  df-pw 4316  df-sn 4334  df-pr 4336  df-tp 4338  df-op 4340  df-uni 4594  df-iun 4677  df-br 4809  df-opab 4871  df-mpt 4888  df-tr 4911  df-id 5184  df-eprel 5189  df-po 5197  df-so 5198  df-fr 5235  df-we 5237  df-xp 5282  df-rel 5283  df-cnv 5284  df-co 5285  df-dm 5286  df-rn 5287  df-res 5288  df-ima 5289  df-pred 5864  df-ord 5910  df-on 5911  df-lim 5912  df-suc 5913  df-iota 6030  df-fun 6069  df-fn 6070  df-f 6071  df-f1 6072  df-fo 6073  df-f1o 6074  df-fv 6075  df-om 7263  df-wrecs 7609  df-recs 7671  df-rdg 7709
This theorem is referenced by:  infpssrlem5  9381
  Copyright terms: Public domain W3C validator