| Step | Hyp | Ref
| Expression |
| 1 | | fveq2 6881 |
. . . . . . . 8
⊢ (𝑐 = ∅ → (𝐺‘𝑐) = (𝐺‘∅)) |
| 2 | 1 | neeq1d 2992 |
. . . . . . 7
⊢ (𝑐 = ∅ → ((𝐺‘𝑐) ≠ (𝐺‘𝑏) ↔ (𝐺‘∅) ≠ (𝐺‘𝑏))) |
| 3 | 2 | raleqbi1dv 3321 |
. . . . . 6
⊢ (𝑐 = ∅ → (∀𝑏 ∈ 𝑐 (𝐺‘𝑐) ≠ (𝐺‘𝑏) ↔ ∀𝑏 ∈ ∅ (𝐺‘∅) ≠ (𝐺‘𝑏))) |
| 4 | 3 | imbi2d 340 |
. . . . 5
⊢ (𝑐 = ∅ → ((𝜑 → ∀𝑏 ∈ 𝑐 (𝐺‘𝑐) ≠ (𝐺‘𝑏)) ↔ (𝜑 → ∀𝑏 ∈ ∅ (𝐺‘∅) ≠ (𝐺‘𝑏)))) |
| 5 | | fveq2 6881 |
. . . . . . . 8
⊢ (𝑐 = 𝑑 → (𝐺‘𝑐) = (𝐺‘𝑑)) |
| 6 | 5 | neeq1d 2992 |
. . . . . . 7
⊢ (𝑐 = 𝑑 → ((𝐺‘𝑐) ≠ (𝐺‘𝑏) ↔ (𝐺‘𝑑) ≠ (𝐺‘𝑏))) |
| 7 | 6 | raleqbi1dv 3321 |
. . . . . 6
⊢ (𝑐 = 𝑑 → (∀𝑏 ∈ 𝑐 (𝐺‘𝑐) ≠ (𝐺‘𝑏) ↔ ∀𝑏 ∈ 𝑑 (𝐺‘𝑑) ≠ (𝐺‘𝑏))) |
| 8 | 7 | imbi2d 340 |
. . . . 5
⊢ (𝑐 = 𝑑 → ((𝜑 → ∀𝑏 ∈ 𝑐 (𝐺‘𝑐) ≠ (𝐺‘𝑏)) ↔ (𝜑 → ∀𝑏 ∈ 𝑑 (𝐺‘𝑑) ≠ (𝐺‘𝑏)))) |
| 9 | | fveq2 6881 |
. . . . . . . 8
⊢ (𝑐 = suc 𝑑 → (𝐺‘𝑐) = (𝐺‘suc 𝑑)) |
| 10 | 9 | neeq1d 2992 |
. . . . . . 7
⊢ (𝑐 = suc 𝑑 → ((𝐺‘𝑐) ≠ (𝐺‘𝑏) ↔ (𝐺‘suc 𝑑) ≠ (𝐺‘𝑏))) |
| 11 | 10 | raleqbi1dv 3321 |
. . . . . 6
⊢ (𝑐 = suc 𝑑 → (∀𝑏 ∈ 𝑐 (𝐺‘𝑐) ≠ (𝐺‘𝑏) ↔ ∀𝑏 ∈ suc 𝑑(𝐺‘suc 𝑑) ≠ (𝐺‘𝑏))) |
| 12 | 11 | imbi2d 340 |
. . . . 5
⊢ (𝑐 = suc 𝑑 → ((𝜑 → ∀𝑏 ∈ 𝑐 (𝐺‘𝑐) ≠ (𝐺‘𝑏)) ↔ (𝜑 → ∀𝑏 ∈ suc 𝑑(𝐺‘suc 𝑑) ≠ (𝐺‘𝑏)))) |
| 13 | | fveq2 6881 |
. . . . . . . 8
⊢ (𝑐 = 𝑀 → (𝐺‘𝑐) = (𝐺‘𝑀)) |
| 14 | 13 | neeq1d 2992 |
. . . . . . 7
⊢ (𝑐 = 𝑀 → ((𝐺‘𝑐) ≠ (𝐺‘𝑏) ↔ (𝐺‘𝑀) ≠ (𝐺‘𝑏))) |
| 15 | 14 | raleqbi1dv 3321 |
. . . . . 6
⊢ (𝑐 = 𝑀 → (∀𝑏 ∈ 𝑐 (𝐺‘𝑐) ≠ (𝐺‘𝑏) ↔ ∀𝑏 ∈ 𝑀 (𝐺‘𝑀) ≠ (𝐺‘𝑏))) |
| 16 | 15 | imbi2d 340 |
. . . . 5
⊢ (𝑐 = 𝑀 → ((𝜑 → ∀𝑏 ∈ 𝑐 (𝐺‘𝑐) ≠ (𝐺‘𝑏)) ↔ (𝜑 → ∀𝑏 ∈ 𝑀 (𝐺‘𝑀) ≠ (𝐺‘𝑏)))) |
| 17 | | ral0 4493 |
. . . . . 6
⊢
∀𝑏 ∈
∅ (𝐺‘∅)
≠ (𝐺‘𝑏) |
| 18 | 17 | a1i 11 |
. . . . 5
⊢ (𝜑 → ∀𝑏 ∈ ∅ (𝐺‘∅) ≠ (𝐺‘𝑏)) |
| 19 | | infpssrlem.c |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝐹:𝐵–1-1-onto→𝐴) |
| 20 | | f1ocnv 6835 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐹:𝐵–1-1-onto→𝐴 → ◡𝐹:𝐴–1-1-onto→𝐵) |
| 21 | | f1of 6823 |
. . . . . . . . . . . . . . . . . 18
⊢ (◡𝐹:𝐴–1-1-onto→𝐵 → ◡𝐹:𝐴⟶𝐵) |
| 22 | 19, 20, 21 | 3syl 18 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ◡𝐹:𝐴⟶𝐵) |
| 23 | 22 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑑 ∈ ω ∧ 𝜑) → ◡𝐹:𝐴⟶𝐵) |
| 24 | | infpssrlem.a |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝐵 ⊆ 𝐴) |
| 25 | | infpssrlem.d |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝐶 ∈ (𝐴 ∖ 𝐵)) |
| 26 | | infpssrlem.e |
. . . . . . . . . . . . . . . . . . 19
⊢ 𝐺 = (rec(◡𝐹, 𝐶) ↾ ω) |
| 27 | 24, 19, 25, 26 | infpssrlem3 10324 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝐺:ω⟶𝐴) |
| 28 | 27 | ffvelcdmda 7079 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑑 ∈ ω) → (𝐺‘𝑑) ∈ 𝐴) |
| 29 | 28 | ancoms 458 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑑 ∈ ω ∧ 𝜑) → (𝐺‘𝑑) ∈ 𝐴) |
| 30 | 23, 29 | ffvelcdmd 7080 |
. . . . . . . . . . . . . . 15
⊢ ((𝑑 ∈ ω ∧ 𝜑) → (◡𝐹‘(𝐺‘𝑑)) ∈ 𝐵) |
| 31 | 25 | eldifbd 3944 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ¬ 𝐶 ∈ 𝐵) |
| 32 | 31 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝑑 ∈ ω ∧ 𝜑) → ¬ 𝐶 ∈ 𝐵) |
| 33 | | nelne2 3031 |
. . . . . . . . . . . . . . 15
⊢ (((◡𝐹‘(𝐺‘𝑑)) ∈ 𝐵 ∧ ¬ 𝐶 ∈ 𝐵) → (◡𝐹‘(𝐺‘𝑑)) ≠ 𝐶) |
| 34 | 30, 32, 33 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢ ((𝑑 ∈ ω ∧ 𝜑) → (◡𝐹‘(𝐺‘𝑑)) ≠ 𝐶) |
| 35 | 24, 19, 25, 26 | infpssrlem2 10323 |
. . . . . . . . . . . . . . 15
⊢ (𝑑 ∈ ω → (𝐺‘suc 𝑑) = (◡𝐹‘(𝐺‘𝑑))) |
| 36 | 35 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝑑 ∈ ω ∧ 𝜑) → (𝐺‘suc 𝑑) = (◡𝐹‘(𝐺‘𝑑))) |
| 37 | 24, 19, 25, 26 | infpssrlem1 10322 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝐺‘∅) = 𝐶) |
| 38 | 37 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ ((𝑑 ∈ ω ∧ 𝜑) → (𝐺‘∅) = 𝐶) |
| 39 | 34, 36, 38 | 3netr4d 3010 |
. . . . . . . . . . . . 13
⊢ ((𝑑 ∈ ω ∧ 𝜑) → (𝐺‘suc 𝑑) ≠ (𝐺‘∅)) |
| 40 | 39 | 3adant3 1132 |
. . . . . . . . . . . 12
⊢ ((𝑑 ∈ ω ∧ 𝜑 ∧ ∀𝑏 ∈ 𝑑 (𝐺‘𝑑) ≠ (𝐺‘𝑏)) → (𝐺‘suc 𝑑) ≠ (𝐺‘∅)) |
| 41 | 1 | neeq2d 2993 |
. . . . . . . . . . . 12
⊢ (𝑐 = ∅ → ((𝐺‘suc 𝑑) ≠ (𝐺‘𝑐) ↔ (𝐺‘suc 𝑑) ≠ (𝐺‘∅))) |
| 42 | 40, 41 | imbitrrid 246 |
. . . . . . . . . . 11
⊢ (𝑐 = ∅ → ((𝑑 ∈ ω ∧ 𝜑 ∧ ∀𝑏 ∈ 𝑑 (𝐺‘𝑑) ≠ (𝐺‘𝑏)) → (𝐺‘suc 𝑑) ≠ (𝐺‘𝑐))) |
| 43 | 42 | adantrd 491 |
. . . . . . . . . 10
⊢ (𝑐 = ∅ → (((𝑑 ∈ ω ∧ 𝜑 ∧ ∀𝑏 ∈ 𝑑 (𝐺‘𝑑) ≠ (𝐺‘𝑏)) ∧ 𝑐 ∈ suc 𝑑) → (𝐺‘suc 𝑑) ≠ (𝐺‘𝑐))) |
| 44 | | simpr 484 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑑 ∈ ω ∧ 𝑐 ∈ suc 𝑑) → 𝑐 ∈ suc 𝑑) |
| 45 | | peano2 7891 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑑 ∈ ω → suc 𝑑 ∈
ω) |
| 46 | 45 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑑 ∈ ω ∧ 𝑐 ∈ suc 𝑑) → suc 𝑑 ∈ ω) |
| 47 | | elnn 7877 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑐 ∈ suc 𝑑 ∧ suc 𝑑 ∈ ω) → 𝑐 ∈ ω) |
| 48 | 44, 46, 47 | syl2anc 584 |
. . . . . . . . . . . . . . 15
⊢ ((𝑑 ∈ ω ∧ 𝑐 ∈ suc 𝑑) → 𝑐 ∈ ω) |
| 49 | 48 | 3ad2antl1 1186 |
. . . . . . . . . . . . . 14
⊢ (((𝑑 ∈ ω ∧ 𝜑 ∧ ∀𝑏 ∈ 𝑑 (𝐺‘𝑑) ≠ (𝐺‘𝑏)) ∧ 𝑐 ∈ suc 𝑑) → 𝑐 ∈ ω) |
| 50 | 49 | adantl 481 |
. . . . . . . . . . . . 13
⊢ ((𝑐 ≠ ∅ ∧ ((𝑑 ∈ ω ∧ 𝜑 ∧ ∀𝑏 ∈ 𝑑 (𝐺‘𝑑) ≠ (𝐺‘𝑏)) ∧ 𝑐 ∈ suc 𝑑)) → 𝑐 ∈ ω) |
| 51 | | simpl 482 |
. . . . . . . . . . . . 13
⊢ ((𝑐 ≠ ∅ ∧ ((𝑑 ∈ ω ∧ 𝜑 ∧ ∀𝑏 ∈ 𝑑 (𝐺‘𝑑) ≠ (𝐺‘𝑏)) ∧ 𝑐 ∈ suc 𝑑)) → 𝑐 ≠ ∅) |
| 52 | | nnsuc 7884 |
. . . . . . . . . . . . 13
⊢ ((𝑐 ∈ ω ∧ 𝑐 ≠ ∅) →
∃𝑏 ∈ ω
𝑐 = suc 𝑏) |
| 53 | 50, 51, 52 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ ((𝑐 ≠ ∅ ∧ ((𝑑 ∈ ω ∧ 𝜑 ∧ ∀𝑏 ∈ 𝑑 (𝐺‘𝑑) ≠ (𝐺‘𝑏)) ∧ 𝑐 ∈ suc 𝑑)) → ∃𝑏 ∈ ω 𝑐 = suc 𝑏) |
| 54 | | nfv 1914 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑏 𝑑 ∈ ω |
| 55 | | nfv 1914 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑏𝜑 |
| 56 | | nfra1 3270 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑏∀𝑏 ∈ 𝑑 (𝐺‘𝑑) ≠ (𝐺‘𝑏) |
| 57 | 54, 55, 56 | nf3an 1901 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑏(𝑑 ∈ ω ∧ 𝜑 ∧ ∀𝑏 ∈ 𝑑 (𝐺‘𝑑) ≠ (𝐺‘𝑏)) |
| 58 | | nfv 1914 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑏 𝑐 ∈ suc 𝑑 |
| 59 | 57, 58 | nfan 1899 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑏((𝑑 ∈ ω ∧ 𝜑 ∧ ∀𝑏 ∈ 𝑑 (𝐺‘𝑑) ≠ (𝐺‘𝑏)) ∧ 𝑐 ∈ suc 𝑑) |
| 60 | | nfv 1914 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑏(𝐺‘suc 𝑑) ≠ (𝐺‘𝑐) |
| 61 | | simpl3 1194 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑑 ∈ ω ∧ 𝜑 ∧ ∀𝑏 ∈ 𝑑 (𝐺‘𝑑) ≠ (𝐺‘𝑏)) ∧ (suc 𝑏 ∈ suc 𝑑 ∧ 𝑏 ∈ ω)) → ∀𝑏 ∈ 𝑑 (𝐺‘𝑑) ≠ (𝐺‘𝑏)) |
| 62 | | simpr 484 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑑 ∈ ω ∧ suc 𝑏 ∈ suc 𝑑) → suc 𝑏 ∈ suc 𝑑) |
| 63 | | nnord 7874 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑑 ∈ ω → Ord 𝑑) |
| 64 | 63 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑑 ∈ ω ∧ suc 𝑏 ∈ suc 𝑑) → Ord 𝑑) |
| 65 | | ordsucelsuc 7821 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (Ord
𝑑 → (𝑏 ∈ 𝑑 ↔ suc 𝑏 ∈ suc 𝑑)) |
| 66 | 64, 65 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑑 ∈ ω ∧ suc 𝑏 ∈ suc 𝑑) → (𝑏 ∈ 𝑑 ↔ suc 𝑏 ∈ suc 𝑑)) |
| 67 | 62, 66 | mpbird 257 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑑 ∈ ω ∧ suc 𝑏 ∈ suc 𝑑) → 𝑏 ∈ 𝑑) |
| 68 | 67 | 3ad2antl1 1186 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑑 ∈ ω ∧ 𝜑 ∧ ∀𝑏 ∈ 𝑑 (𝐺‘𝑑) ≠ (𝐺‘𝑏)) ∧ suc 𝑏 ∈ suc 𝑑) → 𝑏 ∈ 𝑑) |
| 69 | 68 | adantrr 717 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑑 ∈ ω ∧ 𝜑 ∧ ∀𝑏 ∈ 𝑑 (𝐺‘𝑑) ≠ (𝐺‘𝑏)) ∧ (suc 𝑏 ∈ suc 𝑑 ∧ 𝑏 ∈ ω)) → 𝑏 ∈ 𝑑) |
| 70 | | rsp 3234 |
. . . . . . . . . . . . . . . . . . 19
⊢
(∀𝑏 ∈
𝑑 (𝐺‘𝑑) ≠ (𝐺‘𝑏) → (𝑏 ∈ 𝑑 → (𝐺‘𝑑) ≠ (𝐺‘𝑏))) |
| 71 | 61, 69, 70 | sylc 65 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑑 ∈ ω ∧ 𝜑 ∧ ∀𝑏 ∈ 𝑑 (𝐺‘𝑑) ≠ (𝐺‘𝑏)) ∧ (suc 𝑏 ∈ suc 𝑑 ∧ 𝑏 ∈ ω)) → (𝐺‘𝑑) ≠ (𝐺‘𝑏)) |
| 72 | | f1of1 6822 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (◡𝐹:𝐴–1-1-onto→𝐵 → ◡𝐹:𝐴–1-1→𝐵) |
| 73 | 19, 20, 72 | 3syl 18 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝜑 → ◡𝐹:𝐴–1-1→𝐵) |
| 74 | 73 | ad2antlr 727 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝑑 ∈ ω ∧ 𝜑) ∧ 𝑏 ∈ ω) → ◡𝐹:𝐴–1-1→𝐵) |
| 75 | 29 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝑑 ∈ ω ∧ 𝜑) ∧ 𝑏 ∈ ω) → (𝐺‘𝑑) ∈ 𝐴) |
| 76 | 27 | ffvelcdmda 7079 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ 𝑏 ∈ ω) → (𝐺‘𝑏) ∈ 𝐴) |
| 77 | 76 | adantll 714 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝑑 ∈ ω ∧ 𝜑) ∧ 𝑏 ∈ ω) → (𝐺‘𝑏) ∈ 𝐴) |
| 78 | | f1fveq 7260 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((◡𝐹:𝐴–1-1→𝐵 ∧ ((𝐺‘𝑑) ∈ 𝐴 ∧ (𝐺‘𝑏) ∈ 𝐴)) → ((◡𝐹‘(𝐺‘𝑑)) = (◡𝐹‘(𝐺‘𝑏)) ↔ (𝐺‘𝑑) = (𝐺‘𝑏))) |
| 79 | 74, 75, 77, 78 | syl12anc 836 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑑 ∈ ω ∧ 𝜑) ∧ 𝑏 ∈ ω) → ((◡𝐹‘(𝐺‘𝑑)) = (◡𝐹‘(𝐺‘𝑏)) ↔ (𝐺‘𝑑) = (𝐺‘𝑏))) |
| 80 | 79 | necon3bid 2977 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑑 ∈ ω ∧ 𝜑) ∧ 𝑏 ∈ ω) → ((◡𝐹‘(𝐺‘𝑑)) ≠ (◡𝐹‘(𝐺‘𝑏)) ↔ (𝐺‘𝑑) ≠ (𝐺‘𝑏))) |
| 81 | 80 | biimprd 248 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑑 ∈ ω ∧ 𝜑) ∧ 𝑏 ∈ ω) → ((𝐺‘𝑑) ≠ (𝐺‘𝑏) → (◡𝐹‘(𝐺‘𝑑)) ≠ (◡𝐹‘(𝐺‘𝑏)))) |
| 82 | 35 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑑 ∈ ω ∧ 𝑏 ∈ ω) → (𝐺‘suc 𝑑) = (◡𝐹‘(𝐺‘𝑑))) |
| 83 | 24, 19, 25, 26 | infpssrlem2 10323 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑏 ∈ ω → (𝐺‘suc 𝑏) = (◡𝐹‘(𝐺‘𝑏))) |
| 84 | 83 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑑 ∈ ω ∧ 𝑏 ∈ ω) → (𝐺‘suc 𝑏) = (◡𝐹‘(𝐺‘𝑏))) |
| 85 | 82, 84 | neeq12d 2994 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑑 ∈ ω ∧ 𝑏 ∈ ω) → ((𝐺‘suc 𝑑) ≠ (𝐺‘suc 𝑏) ↔ (◡𝐹‘(𝐺‘𝑑)) ≠ (◡𝐹‘(𝐺‘𝑏)))) |
| 86 | 85 | adantlr 715 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑑 ∈ ω ∧ 𝜑) ∧ 𝑏 ∈ ω) → ((𝐺‘suc 𝑑) ≠ (𝐺‘suc 𝑏) ↔ (◡𝐹‘(𝐺‘𝑑)) ≠ (◡𝐹‘(𝐺‘𝑏)))) |
| 87 | 81, 86 | sylibrd 259 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑑 ∈ ω ∧ 𝜑) ∧ 𝑏 ∈ ω) → ((𝐺‘𝑑) ≠ (𝐺‘𝑏) → (𝐺‘suc 𝑑) ≠ (𝐺‘suc 𝑏))) |
| 88 | 87 | adantrl 716 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑑 ∈ ω ∧ 𝜑) ∧ (suc 𝑏 ∈ suc 𝑑 ∧ 𝑏 ∈ ω)) → ((𝐺‘𝑑) ≠ (𝐺‘𝑏) → (𝐺‘suc 𝑑) ≠ (𝐺‘suc 𝑏))) |
| 89 | 88 | 3adantl3 1169 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑑 ∈ ω ∧ 𝜑 ∧ ∀𝑏 ∈ 𝑑 (𝐺‘𝑑) ≠ (𝐺‘𝑏)) ∧ (suc 𝑏 ∈ suc 𝑑 ∧ 𝑏 ∈ ω)) → ((𝐺‘𝑑) ≠ (𝐺‘𝑏) → (𝐺‘suc 𝑑) ≠ (𝐺‘suc 𝑏))) |
| 90 | 71, 89 | mpd 15 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑑 ∈ ω ∧ 𝜑 ∧ ∀𝑏 ∈ 𝑑 (𝐺‘𝑑) ≠ (𝐺‘𝑏)) ∧ (suc 𝑏 ∈ suc 𝑑 ∧ 𝑏 ∈ ω)) → (𝐺‘suc 𝑑) ≠ (𝐺‘suc 𝑏)) |
| 91 | 90 | expr 456 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑑 ∈ ω ∧ 𝜑 ∧ ∀𝑏 ∈ 𝑑 (𝐺‘𝑑) ≠ (𝐺‘𝑏)) ∧ suc 𝑏 ∈ suc 𝑑) → (𝑏 ∈ ω → (𝐺‘suc 𝑑) ≠ (𝐺‘suc 𝑏))) |
| 92 | | eleq1 2823 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑐 = suc 𝑏 → (𝑐 ∈ suc 𝑑 ↔ suc 𝑏 ∈ suc 𝑑)) |
| 93 | 92 | anbi2d 630 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑐 = suc 𝑏 → (((𝑑 ∈ ω ∧ 𝜑 ∧ ∀𝑏 ∈ 𝑑 (𝐺‘𝑑) ≠ (𝐺‘𝑏)) ∧ 𝑐 ∈ suc 𝑑) ↔ ((𝑑 ∈ ω ∧ 𝜑 ∧ ∀𝑏 ∈ 𝑑 (𝐺‘𝑑) ≠ (𝐺‘𝑏)) ∧ suc 𝑏 ∈ suc 𝑑))) |
| 94 | | fveq2 6881 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑐 = suc 𝑏 → (𝐺‘𝑐) = (𝐺‘suc 𝑏)) |
| 95 | 94 | neeq2d 2993 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑐 = suc 𝑏 → ((𝐺‘suc 𝑑) ≠ (𝐺‘𝑐) ↔ (𝐺‘suc 𝑑) ≠ (𝐺‘suc 𝑏))) |
| 96 | 95 | imbi2d 340 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑐 = suc 𝑏 → ((𝑏 ∈ ω → (𝐺‘suc 𝑑) ≠ (𝐺‘𝑐)) ↔ (𝑏 ∈ ω → (𝐺‘suc 𝑑) ≠ (𝐺‘suc 𝑏)))) |
| 97 | 93, 96 | imbi12d 344 |
. . . . . . . . . . . . . . . 16
⊢ (𝑐 = suc 𝑏 → ((((𝑑 ∈ ω ∧ 𝜑 ∧ ∀𝑏 ∈ 𝑑 (𝐺‘𝑑) ≠ (𝐺‘𝑏)) ∧ 𝑐 ∈ suc 𝑑) → (𝑏 ∈ ω → (𝐺‘suc 𝑑) ≠ (𝐺‘𝑐))) ↔ (((𝑑 ∈ ω ∧ 𝜑 ∧ ∀𝑏 ∈ 𝑑 (𝐺‘𝑑) ≠ (𝐺‘𝑏)) ∧ suc 𝑏 ∈ suc 𝑑) → (𝑏 ∈ ω → (𝐺‘suc 𝑑) ≠ (𝐺‘suc 𝑏))))) |
| 98 | 91, 97 | mpbiri 258 |
. . . . . . . . . . . . . . 15
⊢ (𝑐 = suc 𝑏 → (((𝑑 ∈ ω ∧ 𝜑 ∧ ∀𝑏 ∈ 𝑑 (𝐺‘𝑑) ≠ (𝐺‘𝑏)) ∧ 𝑐 ∈ suc 𝑑) → (𝑏 ∈ ω → (𝐺‘suc 𝑑) ≠ (𝐺‘𝑐)))) |
| 99 | 98 | com3l 89 |
. . . . . . . . . . . . . 14
⊢ (((𝑑 ∈ ω ∧ 𝜑 ∧ ∀𝑏 ∈ 𝑑 (𝐺‘𝑑) ≠ (𝐺‘𝑏)) ∧ 𝑐 ∈ suc 𝑑) → (𝑏 ∈ ω → (𝑐 = suc 𝑏 → (𝐺‘suc 𝑑) ≠ (𝐺‘𝑐)))) |
| 100 | 59, 60, 99 | rexlimd 3253 |
. . . . . . . . . . . . 13
⊢ (((𝑑 ∈ ω ∧ 𝜑 ∧ ∀𝑏 ∈ 𝑑 (𝐺‘𝑑) ≠ (𝐺‘𝑏)) ∧ 𝑐 ∈ suc 𝑑) → (∃𝑏 ∈ ω 𝑐 = suc 𝑏 → (𝐺‘suc 𝑑) ≠ (𝐺‘𝑐))) |
| 101 | 100 | adantl 481 |
. . . . . . . . . . . 12
⊢ ((𝑐 ≠ ∅ ∧ ((𝑑 ∈ ω ∧ 𝜑 ∧ ∀𝑏 ∈ 𝑑 (𝐺‘𝑑) ≠ (𝐺‘𝑏)) ∧ 𝑐 ∈ suc 𝑑)) → (∃𝑏 ∈ ω 𝑐 = suc 𝑏 → (𝐺‘suc 𝑑) ≠ (𝐺‘𝑐))) |
| 102 | 53, 101 | mpd 15 |
. . . . . . . . . . 11
⊢ ((𝑐 ≠ ∅ ∧ ((𝑑 ∈ ω ∧ 𝜑 ∧ ∀𝑏 ∈ 𝑑 (𝐺‘𝑑) ≠ (𝐺‘𝑏)) ∧ 𝑐 ∈ suc 𝑑)) → (𝐺‘suc 𝑑) ≠ (𝐺‘𝑐)) |
| 103 | 102 | ex 412 |
. . . . . . . . . 10
⊢ (𝑐 ≠ ∅ → (((𝑑 ∈ ω ∧ 𝜑 ∧ ∀𝑏 ∈ 𝑑 (𝐺‘𝑑) ≠ (𝐺‘𝑏)) ∧ 𝑐 ∈ suc 𝑑) → (𝐺‘suc 𝑑) ≠ (𝐺‘𝑐))) |
| 104 | 43, 103 | pm2.61ine 3016 |
. . . . . . . . 9
⊢ (((𝑑 ∈ ω ∧ 𝜑 ∧ ∀𝑏 ∈ 𝑑 (𝐺‘𝑑) ≠ (𝐺‘𝑏)) ∧ 𝑐 ∈ suc 𝑑) → (𝐺‘suc 𝑑) ≠ (𝐺‘𝑐)) |
| 105 | 104 | ralrimiva 3133 |
. . . . . . . 8
⊢ ((𝑑 ∈ ω ∧ 𝜑 ∧ ∀𝑏 ∈ 𝑑 (𝐺‘𝑑) ≠ (𝐺‘𝑏)) → ∀𝑐 ∈ suc 𝑑(𝐺‘suc 𝑑) ≠ (𝐺‘𝑐)) |
| 106 | | fveq2 6881 |
. . . . . . . . . 10
⊢ (𝑐 = 𝑏 → (𝐺‘𝑐) = (𝐺‘𝑏)) |
| 107 | 106 | neeq2d 2993 |
. . . . . . . . 9
⊢ (𝑐 = 𝑏 → ((𝐺‘suc 𝑑) ≠ (𝐺‘𝑐) ↔ (𝐺‘suc 𝑑) ≠ (𝐺‘𝑏))) |
| 108 | 107 | cbvralvw 3224 |
. . . . . . . 8
⊢
(∀𝑐 ∈
suc 𝑑(𝐺‘suc 𝑑) ≠ (𝐺‘𝑐) ↔ ∀𝑏 ∈ suc 𝑑(𝐺‘suc 𝑑) ≠ (𝐺‘𝑏)) |
| 109 | 105, 108 | sylib 218 |
. . . . . . 7
⊢ ((𝑑 ∈ ω ∧ 𝜑 ∧ ∀𝑏 ∈ 𝑑 (𝐺‘𝑑) ≠ (𝐺‘𝑏)) → ∀𝑏 ∈ suc 𝑑(𝐺‘suc 𝑑) ≠ (𝐺‘𝑏)) |
| 110 | 109 | 3exp 1119 |
. . . . . 6
⊢ (𝑑 ∈ ω → (𝜑 → (∀𝑏 ∈ 𝑑 (𝐺‘𝑑) ≠ (𝐺‘𝑏) → ∀𝑏 ∈ suc 𝑑(𝐺‘suc 𝑑) ≠ (𝐺‘𝑏)))) |
| 111 | 110 | a2d 29 |
. . . . 5
⊢ (𝑑 ∈ ω → ((𝜑 → ∀𝑏 ∈ 𝑑 (𝐺‘𝑑) ≠ (𝐺‘𝑏)) → (𝜑 → ∀𝑏 ∈ suc 𝑑(𝐺‘suc 𝑑) ≠ (𝐺‘𝑏)))) |
| 112 | 4, 8, 12, 16, 18, 111 | finds 7897 |
. . . 4
⊢ (𝑀 ∈ ω → (𝜑 → ∀𝑏 ∈ 𝑀 (𝐺‘𝑀) ≠ (𝐺‘𝑏))) |
| 113 | 112 | impcom 407 |
. . 3
⊢ ((𝜑 ∧ 𝑀 ∈ ω) → ∀𝑏 ∈ 𝑀 (𝐺‘𝑀) ≠ (𝐺‘𝑏)) |
| 114 | | fveq2 6881 |
. . . . 5
⊢ (𝑏 = 𝑁 → (𝐺‘𝑏) = (𝐺‘𝑁)) |
| 115 | 114 | neeq2d 2993 |
. . . 4
⊢ (𝑏 = 𝑁 → ((𝐺‘𝑀) ≠ (𝐺‘𝑏) ↔ (𝐺‘𝑀) ≠ (𝐺‘𝑁))) |
| 116 | 115 | rspccv 3603 |
. . 3
⊢
(∀𝑏 ∈
𝑀 (𝐺‘𝑀) ≠ (𝐺‘𝑏) → (𝑁 ∈ 𝑀 → (𝐺‘𝑀) ≠ (𝐺‘𝑁))) |
| 117 | 113, 116 | syl 17 |
. 2
⊢ ((𝜑 ∧ 𝑀 ∈ ω) → (𝑁 ∈ 𝑀 → (𝐺‘𝑀) ≠ (𝐺‘𝑁))) |
| 118 | 117 | 3impia 1117 |
1
⊢ ((𝜑 ∧ 𝑀 ∈ ω ∧ 𝑁 ∈ 𝑀) → (𝐺‘𝑀) ≠ (𝐺‘𝑁)) |