| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > asinlem | Structured version Visualization version GIF version | ||
| Description: The argument to the logarithm in df-asin 26797 is always nonzero. (Contributed by Mario Carneiro, 31-Mar-2015.) |
| Ref | Expression |
|---|---|
| asinlem | ⊢ (𝐴 ∈ ℂ → ((i · 𝐴) + (√‘(1 − (𝐴↑2)))) ≠ 0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-icn 11060 | . . . 4 ⊢ i ∈ ℂ | |
| 2 | mulcl 11085 | . . . 4 ⊢ ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ) | |
| 3 | 1, 2 | mpan 690 | . . 3 ⊢ (𝐴 ∈ ℂ → (i · 𝐴) ∈ ℂ) |
| 4 | ax-1cn 11059 | . . . . 5 ⊢ 1 ∈ ℂ | |
| 5 | sqcl 14020 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (𝐴↑2) ∈ ℂ) | |
| 6 | subcl 11354 | . . . . 5 ⊢ ((1 ∈ ℂ ∧ (𝐴↑2) ∈ ℂ) → (1 − (𝐴↑2)) ∈ ℂ) | |
| 7 | 4, 5, 6 | sylancr 587 | . . . 4 ⊢ (𝐴 ∈ ℂ → (1 − (𝐴↑2)) ∈ ℂ) |
| 8 | 7 | sqrtcld 15342 | . . 3 ⊢ (𝐴 ∈ ℂ → (√‘(1 − (𝐴↑2))) ∈ ℂ) |
| 9 | 3, 8 | subnegd 11474 | . 2 ⊢ (𝐴 ∈ ℂ → ((i · 𝐴) − -(√‘(1 − (𝐴↑2)))) = ((i · 𝐴) + (√‘(1 − (𝐴↑2))))) |
| 10 | 8 | negcld 11454 | . . 3 ⊢ (𝐴 ∈ ℂ → -(√‘(1 − (𝐴↑2))) ∈ ℂ) |
| 11 | 0ne1 12191 | . . . . . 6 ⊢ 0 ≠ 1 | |
| 12 | 0cnd 11100 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → 0 ∈ ℂ) | |
| 13 | 1cnd 11102 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → 1 ∈ ℂ) | |
| 14 | subcan2 11381 | . . . . . . . 8 ⊢ ((0 ∈ ℂ ∧ 1 ∈ ℂ ∧ (𝐴↑2) ∈ ℂ) → ((0 − (𝐴↑2)) = (1 − (𝐴↑2)) ↔ 0 = 1)) | |
| 15 | 14 | necon3bid 2972 | . . . . . . 7 ⊢ ((0 ∈ ℂ ∧ 1 ∈ ℂ ∧ (𝐴↑2) ∈ ℂ) → ((0 − (𝐴↑2)) ≠ (1 − (𝐴↑2)) ↔ 0 ≠ 1)) |
| 16 | 12, 13, 5, 15 | syl3anc 1373 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → ((0 − (𝐴↑2)) ≠ (1 − (𝐴↑2)) ↔ 0 ≠ 1)) |
| 17 | 11, 16 | mpbiri 258 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (0 − (𝐴↑2)) ≠ (1 − (𝐴↑2))) |
| 18 | sqmul 14021 | . . . . . . . 8 ⊢ ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((i · 𝐴)↑2) = ((i↑2) · (𝐴↑2))) | |
| 19 | 1, 18 | mpan 690 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → ((i · 𝐴)↑2) = ((i↑2) · (𝐴↑2))) |
| 20 | i2 14104 | . . . . . . . . 9 ⊢ (i↑2) = -1 | |
| 21 | 20 | oveq1i 7351 | . . . . . . . 8 ⊢ ((i↑2) · (𝐴↑2)) = (-1 · (𝐴↑2)) |
| 22 | 5 | mulm1d 11564 | . . . . . . . 8 ⊢ (𝐴 ∈ ℂ → (-1 · (𝐴↑2)) = -(𝐴↑2)) |
| 23 | 21, 22 | eqtrid 2778 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → ((i↑2) · (𝐴↑2)) = -(𝐴↑2)) |
| 24 | 19, 23 | eqtrd 2766 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → ((i · 𝐴)↑2) = -(𝐴↑2)) |
| 25 | df-neg 11342 | . . . . . 6 ⊢ -(𝐴↑2) = (0 − (𝐴↑2)) | |
| 26 | 24, 25 | eqtrdi 2782 | . . . . 5 ⊢ (𝐴 ∈ ℂ → ((i · 𝐴)↑2) = (0 − (𝐴↑2))) |
| 27 | sqneg 14017 | . . . . . . 7 ⊢ ((√‘(1 − (𝐴↑2))) ∈ ℂ → (-(√‘(1 − (𝐴↑2)))↑2) = ((√‘(1 − (𝐴↑2)))↑2)) | |
| 28 | 8, 27 | syl 17 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (-(√‘(1 − (𝐴↑2)))↑2) = ((√‘(1 − (𝐴↑2)))↑2)) |
| 29 | 7 | sqsqrtd 15344 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → ((√‘(1 − (𝐴↑2)))↑2) = (1 − (𝐴↑2))) |
| 30 | 28, 29 | eqtrd 2766 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (-(√‘(1 − (𝐴↑2)))↑2) = (1 − (𝐴↑2))) |
| 31 | 17, 26, 30 | 3netr4d 3005 | . . . 4 ⊢ (𝐴 ∈ ℂ → ((i · 𝐴)↑2) ≠ (-(√‘(1 − (𝐴↑2)))↑2)) |
| 32 | oveq1 7348 | . . . . 5 ⊢ ((i · 𝐴) = -(√‘(1 − (𝐴↑2))) → ((i · 𝐴)↑2) = (-(√‘(1 − (𝐴↑2)))↑2)) | |
| 33 | 32 | necon3i 2960 | . . . 4 ⊢ (((i · 𝐴)↑2) ≠ (-(√‘(1 − (𝐴↑2)))↑2) → (i · 𝐴) ≠ -(√‘(1 − (𝐴↑2)))) |
| 34 | 31, 33 | syl 17 | . . 3 ⊢ (𝐴 ∈ ℂ → (i · 𝐴) ≠ -(√‘(1 − (𝐴↑2)))) |
| 35 | 3, 10, 34 | subne0d 11476 | . 2 ⊢ (𝐴 ∈ ℂ → ((i · 𝐴) − -(√‘(1 − (𝐴↑2)))) ≠ 0) |
| 36 | 9, 35 | eqnetrrd 2996 | 1 ⊢ (𝐴 ∈ ℂ → ((i · 𝐴) + (√‘(1 − (𝐴↑2)))) ≠ 0) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ‘cfv 6476 (class class class)co 7341 ℂcc 10999 0cc0 11001 1c1 11002 ici 11003 + caddc 11004 · cmul 11006 − cmin 11339 -cneg 11340 2c2 12175 ↑cexp 13963 √csqrt 15135 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 ax-pre-sup 11079 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-sup 9321 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-div 11770 df-nn 12121 df-2 12183 df-3 12184 df-n0 12377 df-z 12464 df-uz 12728 df-rp 12886 df-seq 13904 df-exp 13964 df-cj 15001 df-re 15002 df-im 15003 df-sqrt 15137 df-abs 15138 |
| This theorem is referenced by: asinlem3 26803 asinf 26804 asinneg 26818 efiasin 26820 asinbnd 26831 dvasin 37744 |
| Copyright terms: Public domain | W3C validator |