MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  asinlem Structured version   Visualization version   GIF version

Theorem asinlem 26778
Description: The argument to the logarithm in df-asin 26775 is always nonzero. (Contributed by Mario Carneiro, 31-Mar-2015.)
Assertion
Ref Expression
asinlem (𝐴 ∈ ℂ → ((i · 𝐴) + (√‘(1 − (𝐴↑2)))) ≠ 0)

Proof of Theorem asinlem
StepHypRef Expression
1 ax-icn 11127 . . . 4 i ∈ ℂ
2 mulcl 11152 . . . 4 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ)
31, 2mpan 690 . . 3 (𝐴 ∈ ℂ → (i · 𝐴) ∈ ℂ)
4 ax-1cn 11126 . . . . 5 1 ∈ ℂ
5 sqcl 14083 . . . . 5 (𝐴 ∈ ℂ → (𝐴↑2) ∈ ℂ)
6 subcl 11420 . . . . 5 ((1 ∈ ℂ ∧ (𝐴↑2) ∈ ℂ) → (1 − (𝐴↑2)) ∈ ℂ)
74, 5, 6sylancr 587 . . . 4 (𝐴 ∈ ℂ → (1 − (𝐴↑2)) ∈ ℂ)
87sqrtcld 15406 . . 3 (𝐴 ∈ ℂ → (√‘(1 − (𝐴↑2))) ∈ ℂ)
93, 8subnegd 11540 . 2 (𝐴 ∈ ℂ → ((i · 𝐴) − -(√‘(1 − (𝐴↑2)))) = ((i · 𝐴) + (√‘(1 − (𝐴↑2)))))
108negcld 11520 . . 3 (𝐴 ∈ ℂ → -(√‘(1 − (𝐴↑2))) ∈ ℂ)
11 0ne1 12257 . . . . . 6 0 ≠ 1
12 0cnd 11167 . . . . . . 7 (𝐴 ∈ ℂ → 0 ∈ ℂ)
13 1cnd 11169 . . . . . . 7 (𝐴 ∈ ℂ → 1 ∈ ℂ)
14 subcan2 11447 . . . . . . . 8 ((0 ∈ ℂ ∧ 1 ∈ ℂ ∧ (𝐴↑2) ∈ ℂ) → ((0 − (𝐴↑2)) = (1 − (𝐴↑2)) ↔ 0 = 1))
1514necon3bid 2969 . . . . . . 7 ((0 ∈ ℂ ∧ 1 ∈ ℂ ∧ (𝐴↑2) ∈ ℂ) → ((0 − (𝐴↑2)) ≠ (1 − (𝐴↑2)) ↔ 0 ≠ 1))
1612, 13, 5, 15syl3anc 1373 . . . . . 6 (𝐴 ∈ ℂ → ((0 − (𝐴↑2)) ≠ (1 − (𝐴↑2)) ↔ 0 ≠ 1))
1711, 16mpbiri 258 . . . . 5 (𝐴 ∈ ℂ → (0 − (𝐴↑2)) ≠ (1 − (𝐴↑2)))
18 sqmul 14084 . . . . . . . 8 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((i · 𝐴)↑2) = ((i↑2) · (𝐴↑2)))
191, 18mpan 690 . . . . . . 7 (𝐴 ∈ ℂ → ((i · 𝐴)↑2) = ((i↑2) · (𝐴↑2)))
20 i2 14167 . . . . . . . . 9 (i↑2) = -1
2120oveq1i 7397 . . . . . . . 8 ((i↑2) · (𝐴↑2)) = (-1 · (𝐴↑2))
225mulm1d 11630 . . . . . . . 8 (𝐴 ∈ ℂ → (-1 · (𝐴↑2)) = -(𝐴↑2))
2321, 22eqtrid 2776 . . . . . . 7 (𝐴 ∈ ℂ → ((i↑2) · (𝐴↑2)) = -(𝐴↑2))
2419, 23eqtrd 2764 . . . . . 6 (𝐴 ∈ ℂ → ((i · 𝐴)↑2) = -(𝐴↑2))
25 df-neg 11408 . . . . . 6 -(𝐴↑2) = (0 − (𝐴↑2))
2624, 25eqtrdi 2780 . . . . 5 (𝐴 ∈ ℂ → ((i · 𝐴)↑2) = (0 − (𝐴↑2)))
27 sqneg 14080 . . . . . . 7 ((√‘(1 − (𝐴↑2))) ∈ ℂ → (-(√‘(1 − (𝐴↑2)))↑2) = ((√‘(1 − (𝐴↑2)))↑2))
288, 27syl 17 . . . . . 6 (𝐴 ∈ ℂ → (-(√‘(1 − (𝐴↑2)))↑2) = ((√‘(1 − (𝐴↑2)))↑2))
297sqsqrtd 15408 . . . . . 6 (𝐴 ∈ ℂ → ((√‘(1 − (𝐴↑2)))↑2) = (1 − (𝐴↑2)))
3028, 29eqtrd 2764 . . . . 5 (𝐴 ∈ ℂ → (-(√‘(1 − (𝐴↑2)))↑2) = (1 − (𝐴↑2)))
3117, 26, 303netr4d 3002 . . . 4 (𝐴 ∈ ℂ → ((i · 𝐴)↑2) ≠ (-(√‘(1 − (𝐴↑2)))↑2))
32 oveq1 7394 . . . . 5 ((i · 𝐴) = -(√‘(1 − (𝐴↑2))) → ((i · 𝐴)↑2) = (-(√‘(1 − (𝐴↑2)))↑2))
3332necon3i 2957 . . . 4 (((i · 𝐴)↑2) ≠ (-(√‘(1 − (𝐴↑2)))↑2) → (i · 𝐴) ≠ -(√‘(1 − (𝐴↑2))))
3431, 33syl 17 . . 3 (𝐴 ∈ ℂ → (i · 𝐴) ≠ -(√‘(1 − (𝐴↑2))))
353, 10, 34subne0d 11542 . 2 (𝐴 ∈ ℂ → ((i · 𝐴) − -(√‘(1 − (𝐴↑2)))) ≠ 0)
369, 35eqnetrrd 2993 1 (𝐴 ∈ ℂ → ((i · 𝐴) + (√‘(1 − (𝐴↑2)))) ≠ 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1086   = wceq 1540  wcel 2109  wne 2925  cfv 6511  (class class class)co 7387  cc 11066  0cc0 11068  1c1 11069  ici 11070   + caddc 11071   · cmul 11073  cmin 11405  -cneg 11406  2c2 12241  cexp 14026  csqrt 15199
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-sup 9393  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-z 12530  df-uz 12794  df-rp 12952  df-seq 13967  df-exp 14027  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202
This theorem is referenced by:  asinlem3  26781  asinf  26782  asinneg  26796  efiasin  26798  asinbnd  26809  dvasin  37698
  Copyright terms: Public domain W3C validator