MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  asinlem Structured version   Visualization version   GIF version

Theorem asinlem 26018
Description: The argument to the logarithm in df-asin 26015 is always nonzero. (Contributed by Mario Carneiro, 31-Mar-2015.)
Assertion
Ref Expression
asinlem (𝐴 ∈ ℂ → ((i · 𝐴) + (√‘(1 − (𝐴↑2)))) ≠ 0)

Proof of Theorem asinlem
StepHypRef Expression
1 ax-icn 10930 . . . 4 i ∈ ℂ
2 mulcl 10955 . . . 4 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ)
31, 2mpan 687 . . 3 (𝐴 ∈ ℂ → (i · 𝐴) ∈ ℂ)
4 ax-1cn 10929 . . . . 5 1 ∈ ℂ
5 sqcl 13838 . . . . 5 (𝐴 ∈ ℂ → (𝐴↑2) ∈ ℂ)
6 subcl 11220 . . . . 5 ((1 ∈ ℂ ∧ (𝐴↑2) ∈ ℂ) → (1 − (𝐴↑2)) ∈ ℂ)
74, 5, 6sylancr 587 . . . 4 (𝐴 ∈ ℂ → (1 − (𝐴↑2)) ∈ ℂ)
87sqrtcld 15149 . . 3 (𝐴 ∈ ℂ → (√‘(1 − (𝐴↑2))) ∈ ℂ)
93, 8subnegd 11339 . 2 (𝐴 ∈ ℂ → ((i · 𝐴) − -(√‘(1 − (𝐴↑2)))) = ((i · 𝐴) + (√‘(1 − (𝐴↑2)))))
108negcld 11319 . . 3 (𝐴 ∈ ℂ → -(√‘(1 − (𝐴↑2))) ∈ ℂ)
11 0ne1 12044 . . . . . 6 0 ≠ 1
12 0cnd 10968 . . . . . . 7 (𝐴 ∈ ℂ → 0 ∈ ℂ)
13 1cnd 10970 . . . . . . 7 (𝐴 ∈ ℂ → 1 ∈ ℂ)
14 subcan2 11246 . . . . . . . 8 ((0 ∈ ℂ ∧ 1 ∈ ℂ ∧ (𝐴↑2) ∈ ℂ) → ((0 − (𝐴↑2)) = (1 − (𝐴↑2)) ↔ 0 = 1))
1514necon3bid 2988 . . . . . . 7 ((0 ∈ ℂ ∧ 1 ∈ ℂ ∧ (𝐴↑2) ∈ ℂ) → ((0 − (𝐴↑2)) ≠ (1 − (𝐴↑2)) ↔ 0 ≠ 1))
1612, 13, 5, 15syl3anc 1370 . . . . . 6 (𝐴 ∈ ℂ → ((0 − (𝐴↑2)) ≠ (1 − (𝐴↑2)) ↔ 0 ≠ 1))
1711, 16mpbiri 257 . . . . 5 (𝐴 ∈ ℂ → (0 − (𝐴↑2)) ≠ (1 − (𝐴↑2)))
18 sqmul 13839 . . . . . . . 8 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((i · 𝐴)↑2) = ((i↑2) · (𝐴↑2)))
191, 18mpan 687 . . . . . . 7 (𝐴 ∈ ℂ → ((i · 𝐴)↑2) = ((i↑2) · (𝐴↑2)))
20 i2 13919 . . . . . . . . 9 (i↑2) = -1
2120oveq1i 7285 . . . . . . . 8 ((i↑2) · (𝐴↑2)) = (-1 · (𝐴↑2))
225mulm1d 11427 . . . . . . . 8 (𝐴 ∈ ℂ → (-1 · (𝐴↑2)) = -(𝐴↑2))
2321, 22eqtrid 2790 . . . . . . 7 (𝐴 ∈ ℂ → ((i↑2) · (𝐴↑2)) = -(𝐴↑2))
2419, 23eqtrd 2778 . . . . . 6 (𝐴 ∈ ℂ → ((i · 𝐴)↑2) = -(𝐴↑2))
25 df-neg 11208 . . . . . 6 -(𝐴↑2) = (0 − (𝐴↑2))
2624, 25eqtrdi 2794 . . . . 5 (𝐴 ∈ ℂ → ((i · 𝐴)↑2) = (0 − (𝐴↑2)))
27 sqneg 13836 . . . . . . 7 ((√‘(1 − (𝐴↑2))) ∈ ℂ → (-(√‘(1 − (𝐴↑2)))↑2) = ((√‘(1 − (𝐴↑2)))↑2))
288, 27syl 17 . . . . . 6 (𝐴 ∈ ℂ → (-(√‘(1 − (𝐴↑2)))↑2) = ((√‘(1 − (𝐴↑2)))↑2))
297sqsqrtd 15151 . . . . . 6 (𝐴 ∈ ℂ → ((√‘(1 − (𝐴↑2)))↑2) = (1 − (𝐴↑2)))
3028, 29eqtrd 2778 . . . . 5 (𝐴 ∈ ℂ → (-(√‘(1 − (𝐴↑2)))↑2) = (1 − (𝐴↑2)))
3117, 26, 303netr4d 3021 . . . 4 (𝐴 ∈ ℂ → ((i · 𝐴)↑2) ≠ (-(√‘(1 − (𝐴↑2)))↑2))
32 oveq1 7282 . . . . 5 ((i · 𝐴) = -(√‘(1 − (𝐴↑2))) → ((i · 𝐴)↑2) = (-(√‘(1 − (𝐴↑2)))↑2))
3332necon3i 2976 . . . 4 (((i · 𝐴)↑2) ≠ (-(√‘(1 − (𝐴↑2)))↑2) → (i · 𝐴) ≠ -(√‘(1 − (𝐴↑2))))
3431, 33syl 17 . . 3 (𝐴 ∈ ℂ → (i · 𝐴) ≠ -(√‘(1 − (𝐴↑2))))
353, 10, 34subne0d 11341 . 2 (𝐴 ∈ ℂ → ((i · 𝐴) − -(√‘(1 − (𝐴↑2)))) ≠ 0)
369, 35eqnetrrd 3012 1 (𝐴 ∈ ℂ → ((i · 𝐴) + (√‘(1 − (𝐴↑2)))) ≠ 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  w3a 1086   = wceq 1539  wcel 2106  wne 2943  cfv 6433  (class class class)co 7275  cc 10869  0cc0 10871  1c1 10872  ici 10873   + caddc 10874   · cmul 10876  cmin 11205  -cneg 11206  2c2 12028  cexp 13782  csqrt 14944
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-sup 9201  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12583  df-rp 12731  df-seq 13722  df-exp 13783  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947
This theorem is referenced by:  asinlem3  26021  asinf  26022  asinneg  26036  efiasin  26038  asinbnd  26049  dvasin  35861
  Copyright terms: Public domain W3C validator