MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  asinlem Structured version   Visualization version   GIF version

Theorem asinlem 26776
Description: The argument to the logarithm in df-asin 26773 is always nonzero. (Contributed by Mario Carneiro, 31-Mar-2015.)
Assertion
Ref Expression
asinlem (𝐴 ∈ ℂ → ((i · 𝐴) + (√‘(1 − (𝐴↑2)))) ≠ 0)

Proof of Theorem asinlem
StepHypRef Expression
1 ax-icn 11068 . . . 4 i ∈ ℂ
2 mulcl 11093 . . . 4 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ)
31, 2mpan 690 . . 3 (𝐴 ∈ ℂ → (i · 𝐴) ∈ ℂ)
4 ax-1cn 11067 . . . . 5 1 ∈ ℂ
5 sqcl 14025 . . . . 5 (𝐴 ∈ ℂ → (𝐴↑2) ∈ ℂ)
6 subcl 11362 . . . . 5 ((1 ∈ ℂ ∧ (𝐴↑2) ∈ ℂ) → (1 − (𝐴↑2)) ∈ ℂ)
74, 5, 6sylancr 587 . . . 4 (𝐴 ∈ ℂ → (1 − (𝐴↑2)) ∈ ℂ)
87sqrtcld 15347 . . 3 (𝐴 ∈ ℂ → (√‘(1 − (𝐴↑2))) ∈ ℂ)
93, 8subnegd 11482 . 2 (𝐴 ∈ ℂ → ((i · 𝐴) − -(√‘(1 − (𝐴↑2)))) = ((i · 𝐴) + (√‘(1 − (𝐴↑2)))))
108negcld 11462 . . 3 (𝐴 ∈ ℂ → -(√‘(1 − (𝐴↑2))) ∈ ℂ)
11 0ne1 12199 . . . . . 6 0 ≠ 1
12 0cnd 11108 . . . . . . 7 (𝐴 ∈ ℂ → 0 ∈ ℂ)
13 1cnd 11110 . . . . . . 7 (𝐴 ∈ ℂ → 1 ∈ ℂ)
14 subcan2 11389 . . . . . . . 8 ((0 ∈ ℂ ∧ 1 ∈ ℂ ∧ (𝐴↑2) ∈ ℂ) → ((0 − (𝐴↑2)) = (1 − (𝐴↑2)) ↔ 0 = 1))
1514necon3bid 2969 . . . . . . 7 ((0 ∈ ℂ ∧ 1 ∈ ℂ ∧ (𝐴↑2) ∈ ℂ) → ((0 − (𝐴↑2)) ≠ (1 − (𝐴↑2)) ↔ 0 ≠ 1))
1612, 13, 5, 15syl3anc 1373 . . . . . 6 (𝐴 ∈ ℂ → ((0 − (𝐴↑2)) ≠ (1 − (𝐴↑2)) ↔ 0 ≠ 1))
1711, 16mpbiri 258 . . . . 5 (𝐴 ∈ ℂ → (0 − (𝐴↑2)) ≠ (1 − (𝐴↑2)))
18 sqmul 14026 . . . . . . . 8 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((i · 𝐴)↑2) = ((i↑2) · (𝐴↑2)))
191, 18mpan 690 . . . . . . 7 (𝐴 ∈ ℂ → ((i · 𝐴)↑2) = ((i↑2) · (𝐴↑2)))
20 i2 14109 . . . . . . . . 9 (i↑2) = -1
2120oveq1i 7359 . . . . . . . 8 ((i↑2) · (𝐴↑2)) = (-1 · (𝐴↑2))
225mulm1d 11572 . . . . . . . 8 (𝐴 ∈ ℂ → (-1 · (𝐴↑2)) = -(𝐴↑2))
2321, 22eqtrid 2776 . . . . . . 7 (𝐴 ∈ ℂ → ((i↑2) · (𝐴↑2)) = -(𝐴↑2))
2419, 23eqtrd 2764 . . . . . 6 (𝐴 ∈ ℂ → ((i · 𝐴)↑2) = -(𝐴↑2))
25 df-neg 11350 . . . . . 6 -(𝐴↑2) = (0 − (𝐴↑2))
2624, 25eqtrdi 2780 . . . . 5 (𝐴 ∈ ℂ → ((i · 𝐴)↑2) = (0 − (𝐴↑2)))
27 sqneg 14022 . . . . . . 7 ((√‘(1 − (𝐴↑2))) ∈ ℂ → (-(√‘(1 − (𝐴↑2)))↑2) = ((√‘(1 − (𝐴↑2)))↑2))
288, 27syl 17 . . . . . 6 (𝐴 ∈ ℂ → (-(√‘(1 − (𝐴↑2)))↑2) = ((√‘(1 − (𝐴↑2)))↑2))
297sqsqrtd 15349 . . . . . 6 (𝐴 ∈ ℂ → ((√‘(1 − (𝐴↑2)))↑2) = (1 − (𝐴↑2)))
3028, 29eqtrd 2764 . . . . 5 (𝐴 ∈ ℂ → (-(√‘(1 − (𝐴↑2)))↑2) = (1 − (𝐴↑2)))
3117, 26, 303netr4d 3002 . . . 4 (𝐴 ∈ ℂ → ((i · 𝐴)↑2) ≠ (-(√‘(1 − (𝐴↑2)))↑2))
32 oveq1 7356 . . . . 5 ((i · 𝐴) = -(√‘(1 − (𝐴↑2))) → ((i · 𝐴)↑2) = (-(√‘(1 − (𝐴↑2)))↑2))
3332necon3i 2957 . . . 4 (((i · 𝐴)↑2) ≠ (-(√‘(1 − (𝐴↑2)))↑2) → (i · 𝐴) ≠ -(√‘(1 − (𝐴↑2))))
3431, 33syl 17 . . 3 (𝐴 ∈ ℂ → (i · 𝐴) ≠ -(√‘(1 − (𝐴↑2))))
353, 10, 34subne0d 11484 . 2 (𝐴 ∈ ℂ → ((i · 𝐴) − -(√‘(1 − (𝐴↑2)))) ≠ 0)
369, 35eqnetrrd 2993 1 (𝐴 ∈ ℂ → ((i · 𝐴) + (√‘(1 − (𝐴↑2)))) ≠ 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1086   = wceq 1540  wcel 2109  wne 2925  cfv 6482  (class class class)co 7349  cc 11007  0cc0 11009  1c1 11010  ici 11011   + caddc 11012   · cmul 11014  cmin 11347  -cneg 11348  2c2 12183  cexp 13968  csqrt 15140
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-sup 9332  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-n0 12385  df-z 12472  df-uz 12736  df-rp 12894  df-seq 13909  df-exp 13969  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143
This theorem is referenced by:  asinlem3  26779  asinf  26780  asinneg  26794  efiasin  26796  asinbnd  26807  dvasin  37684
  Copyright terms: Public domain W3C validator