| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > asinlem | Structured version Visualization version GIF version | ||
| Description: The argument to the logarithm in df-asin 26782 is always nonzero. (Contributed by Mario Carneiro, 31-Mar-2015.) |
| Ref | Expression |
|---|---|
| asinlem | ⊢ (𝐴 ∈ ℂ → ((i · 𝐴) + (√‘(1 − (𝐴↑2)))) ≠ 0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-icn 11134 | . . . 4 ⊢ i ∈ ℂ | |
| 2 | mulcl 11159 | . . . 4 ⊢ ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ) | |
| 3 | 1, 2 | mpan 690 | . . 3 ⊢ (𝐴 ∈ ℂ → (i · 𝐴) ∈ ℂ) |
| 4 | ax-1cn 11133 | . . . . 5 ⊢ 1 ∈ ℂ | |
| 5 | sqcl 14090 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (𝐴↑2) ∈ ℂ) | |
| 6 | subcl 11427 | . . . . 5 ⊢ ((1 ∈ ℂ ∧ (𝐴↑2) ∈ ℂ) → (1 − (𝐴↑2)) ∈ ℂ) | |
| 7 | 4, 5, 6 | sylancr 587 | . . . 4 ⊢ (𝐴 ∈ ℂ → (1 − (𝐴↑2)) ∈ ℂ) |
| 8 | 7 | sqrtcld 15413 | . . 3 ⊢ (𝐴 ∈ ℂ → (√‘(1 − (𝐴↑2))) ∈ ℂ) |
| 9 | 3, 8 | subnegd 11547 | . 2 ⊢ (𝐴 ∈ ℂ → ((i · 𝐴) − -(√‘(1 − (𝐴↑2)))) = ((i · 𝐴) + (√‘(1 − (𝐴↑2))))) |
| 10 | 8 | negcld 11527 | . . 3 ⊢ (𝐴 ∈ ℂ → -(√‘(1 − (𝐴↑2))) ∈ ℂ) |
| 11 | 0ne1 12264 | . . . . . 6 ⊢ 0 ≠ 1 | |
| 12 | 0cnd 11174 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → 0 ∈ ℂ) | |
| 13 | 1cnd 11176 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → 1 ∈ ℂ) | |
| 14 | subcan2 11454 | . . . . . . . 8 ⊢ ((0 ∈ ℂ ∧ 1 ∈ ℂ ∧ (𝐴↑2) ∈ ℂ) → ((0 − (𝐴↑2)) = (1 − (𝐴↑2)) ↔ 0 = 1)) | |
| 15 | 14 | necon3bid 2970 | . . . . . . 7 ⊢ ((0 ∈ ℂ ∧ 1 ∈ ℂ ∧ (𝐴↑2) ∈ ℂ) → ((0 − (𝐴↑2)) ≠ (1 − (𝐴↑2)) ↔ 0 ≠ 1)) |
| 16 | 12, 13, 5, 15 | syl3anc 1373 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → ((0 − (𝐴↑2)) ≠ (1 − (𝐴↑2)) ↔ 0 ≠ 1)) |
| 17 | 11, 16 | mpbiri 258 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (0 − (𝐴↑2)) ≠ (1 − (𝐴↑2))) |
| 18 | sqmul 14091 | . . . . . . . 8 ⊢ ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((i · 𝐴)↑2) = ((i↑2) · (𝐴↑2))) | |
| 19 | 1, 18 | mpan 690 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → ((i · 𝐴)↑2) = ((i↑2) · (𝐴↑2))) |
| 20 | i2 14174 | . . . . . . . . 9 ⊢ (i↑2) = -1 | |
| 21 | 20 | oveq1i 7400 | . . . . . . . 8 ⊢ ((i↑2) · (𝐴↑2)) = (-1 · (𝐴↑2)) |
| 22 | 5 | mulm1d 11637 | . . . . . . . 8 ⊢ (𝐴 ∈ ℂ → (-1 · (𝐴↑2)) = -(𝐴↑2)) |
| 23 | 21, 22 | eqtrid 2777 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → ((i↑2) · (𝐴↑2)) = -(𝐴↑2)) |
| 24 | 19, 23 | eqtrd 2765 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → ((i · 𝐴)↑2) = -(𝐴↑2)) |
| 25 | df-neg 11415 | . . . . . 6 ⊢ -(𝐴↑2) = (0 − (𝐴↑2)) | |
| 26 | 24, 25 | eqtrdi 2781 | . . . . 5 ⊢ (𝐴 ∈ ℂ → ((i · 𝐴)↑2) = (0 − (𝐴↑2))) |
| 27 | sqneg 14087 | . . . . . . 7 ⊢ ((√‘(1 − (𝐴↑2))) ∈ ℂ → (-(√‘(1 − (𝐴↑2)))↑2) = ((√‘(1 − (𝐴↑2)))↑2)) | |
| 28 | 8, 27 | syl 17 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (-(√‘(1 − (𝐴↑2)))↑2) = ((√‘(1 − (𝐴↑2)))↑2)) |
| 29 | 7 | sqsqrtd 15415 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → ((√‘(1 − (𝐴↑2)))↑2) = (1 − (𝐴↑2))) |
| 30 | 28, 29 | eqtrd 2765 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (-(√‘(1 − (𝐴↑2)))↑2) = (1 − (𝐴↑2))) |
| 31 | 17, 26, 30 | 3netr4d 3003 | . . . 4 ⊢ (𝐴 ∈ ℂ → ((i · 𝐴)↑2) ≠ (-(√‘(1 − (𝐴↑2)))↑2)) |
| 32 | oveq1 7397 | . . . . 5 ⊢ ((i · 𝐴) = -(√‘(1 − (𝐴↑2))) → ((i · 𝐴)↑2) = (-(√‘(1 − (𝐴↑2)))↑2)) | |
| 33 | 32 | necon3i 2958 | . . . 4 ⊢ (((i · 𝐴)↑2) ≠ (-(√‘(1 − (𝐴↑2)))↑2) → (i · 𝐴) ≠ -(√‘(1 − (𝐴↑2)))) |
| 34 | 31, 33 | syl 17 | . . 3 ⊢ (𝐴 ∈ ℂ → (i · 𝐴) ≠ -(√‘(1 − (𝐴↑2)))) |
| 35 | 3, 10, 34 | subne0d 11549 | . 2 ⊢ (𝐴 ∈ ℂ → ((i · 𝐴) − -(√‘(1 − (𝐴↑2)))) ≠ 0) |
| 36 | 9, 35 | eqnetrrd 2994 | 1 ⊢ (𝐴 ∈ ℂ → ((i · 𝐴) + (√‘(1 − (𝐴↑2)))) ≠ 0) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 ‘cfv 6514 (class class class)co 7390 ℂcc 11073 0cc0 11075 1c1 11076 ici 11077 + caddc 11078 · cmul 11080 − cmin 11412 -cneg 11413 2c2 12248 ↑cexp 14033 √csqrt 15206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-sup 9400 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-3 12257 df-n0 12450 df-z 12537 df-uz 12801 df-rp 12959 df-seq 13974 df-exp 14034 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 |
| This theorem is referenced by: asinlem3 26788 asinf 26789 asinneg 26803 efiasin 26805 asinbnd 26816 dvasin 37705 |
| Copyright terms: Public domain | W3C validator |