Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > asinlem | Structured version Visualization version GIF version |
Description: The argument to the logarithm in df-asin 26015 is always nonzero. (Contributed by Mario Carneiro, 31-Mar-2015.) |
Ref | Expression |
---|---|
asinlem | ⊢ (𝐴 ∈ ℂ → ((i · 𝐴) + (√‘(1 − (𝐴↑2)))) ≠ 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-icn 10930 | . . . 4 ⊢ i ∈ ℂ | |
2 | mulcl 10955 | . . . 4 ⊢ ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ) | |
3 | 1, 2 | mpan 687 | . . 3 ⊢ (𝐴 ∈ ℂ → (i · 𝐴) ∈ ℂ) |
4 | ax-1cn 10929 | . . . . 5 ⊢ 1 ∈ ℂ | |
5 | sqcl 13838 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (𝐴↑2) ∈ ℂ) | |
6 | subcl 11220 | . . . . 5 ⊢ ((1 ∈ ℂ ∧ (𝐴↑2) ∈ ℂ) → (1 − (𝐴↑2)) ∈ ℂ) | |
7 | 4, 5, 6 | sylancr 587 | . . . 4 ⊢ (𝐴 ∈ ℂ → (1 − (𝐴↑2)) ∈ ℂ) |
8 | 7 | sqrtcld 15149 | . . 3 ⊢ (𝐴 ∈ ℂ → (√‘(1 − (𝐴↑2))) ∈ ℂ) |
9 | 3, 8 | subnegd 11339 | . 2 ⊢ (𝐴 ∈ ℂ → ((i · 𝐴) − -(√‘(1 − (𝐴↑2)))) = ((i · 𝐴) + (√‘(1 − (𝐴↑2))))) |
10 | 8 | negcld 11319 | . . 3 ⊢ (𝐴 ∈ ℂ → -(√‘(1 − (𝐴↑2))) ∈ ℂ) |
11 | 0ne1 12044 | . . . . . 6 ⊢ 0 ≠ 1 | |
12 | 0cnd 10968 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → 0 ∈ ℂ) | |
13 | 1cnd 10970 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → 1 ∈ ℂ) | |
14 | subcan2 11246 | . . . . . . . 8 ⊢ ((0 ∈ ℂ ∧ 1 ∈ ℂ ∧ (𝐴↑2) ∈ ℂ) → ((0 − (𝐴↑2)) = (1 − (𝐴↑2)) ↔ 0 = 1)) | |
15 | 14 | necon3bid 2988 | . . . . . . 7 ⊢ ((0 ∈ ℂ ∧ 1 ∈ ℂ ∧ (𝐴↑2) ∈ ℂ) → ((0 − (𝐴↑2)) ≠ (1 − (𝐴↑2)) ↔ 0 ≠ 1)) |
16 | 12, 13, 5, 15 | syl3anc 1370 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → ((0 − (𝐴↑2)) ≠ (1 − (𝐴↑2)) ↔ 0 ≠ 1)) |
17 | 11, 16 | mpbiri 257 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (0 − (𝐴↑2)) ≠ (1 − (𝐴↑2))) |
18 | sqmul 13839 | . . . . . . . 8 ⊢ ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((i · 𝐴)↑2) = ((i↑2) · (𝐴↑2))) | |
19 | 1, 18 | mpan 687 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → ((i · 𝐴)↑2) = ((i↑2) · (𝐴↑2))) |
20 | i2 13919 | . . . . . . . . 9 ⊢ (i↑2) = -1 | |
21 | 20 | oveq1i 7285 | . . . . . . . 8 ⊢ ((i↑2) · (𝐴↑2)) = (-1 · (𝐴↑2)) |
22 | 5 | mulm1d 11427 | . . . . . . . 8 ⊢ (𝐴 ∈ ℂ → (-1 · (𝐴↑2)) = -(𝐴↑2)) |
23 | 21, 22 | eqtrid 2790 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → ((i↑2) · (𝐴↑2)) = -(𝐴↑2)) |
24 | 19, 23 | eqtrd 2778 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → ((i · 𝐴)↑2) = -(𝐴↑2)) |
25 | df-neg 11208 | . . . . . 6 ⊢ -(𝐴↑2) = (0 − (𝐴↑2)) | |
26 | 24, 25 | eqtrdi 2794 | . . . . 5 ⊢ (𝐴 ∈ ℂ → ((i · 𝐴)↑2) = (0 − (𝐴↑2))) |
27 | sqneg 13836 | . . . . . . 7 ⊢ ((√‘(1 − (𝐴↑2))) ∈ ℂ → (-(√‘(1 − (𝐴↑2)))↑2) = ((√‘(1 − (𝐴↑2)))↑2)) | |
28 | 8, 27 | syl 17 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (-(√‘(1 − (𝐴↑2)))↑2) = ((√‘(1 − (𝐴↑2)))↑2)) |
29 | 7 | sqsqrtd 15151 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → ((√‘(1 − (𝐴↑2)))↑2) = (1 − (𝐴↑2))) |
30 | 28, 29 | eqtrd 2778 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (-(√‘(1 − (𝐴↑2)))↑2) = (1 − (𝐴↑2))) |
31 | 17, 26, 30 | 3netr4d 3021 | . . . 4 ⊢ (𝐴 ∈ ℂ → ((i · 𝐴)↑2) ≠ (-(√‘(1 − (𝐴↑2)))↑2)) |
32 | oveq1 7282 | . . . . 5 ⊢ ((i · 𝐴) = -(√‘(1 − (𝐴↑2))) → ((i · 𝐴)↑2) = (-(√‘(1 − (𝐴↑2)))↑2)) | |
33 | 32 | necon3i 2976 | . . . 4 ⊢ (((i · 𝐴)↑2) ≠ (-(√‘(1 − (𝐴↑2)))↑2) → (i · 𝐴) ≠ -(√‘(1 − (𝐴↑2)))) |
34 | 31, 33 | syl 17 | . . 3 ⊢ (𝐴 ∈ ℂ → (i · 𝐴) ≠ -(√‘(1 − (𝐴↑2)))) |
35 | 3, 10, 34 | subne0d 11341 | . 2 ⊢ (𝐴 ∈ ℂ → ((i · 𝐴) − -(√‘(1 − (𝐴↑2)))) ≠ 0) |
36 | 9, 35 | eqnetrrd 3012 | 1 ⊢ (𝐴 ∈ ℂ → ((i · 𝐴) + (√‘(1 − (𝐴↑2)))) ≠ 0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 ‘cfv 6433 (class class class)co 7275 ℂcc 10869 0cc0 10871 1c1 10872 ici 10873 + caddc 10874 · cmul 10876 − cmin 11205 -cneg 11206 2c2 12028 ↑cexp 13782 √csqrt 14944 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-pre-sup 10949 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-sup 9201 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-n0 12234 df-z 12320 df-uz 12583 df-rp 12731 df-seq 13722 df-exp 13783 df-cj 14810 df-re 14811 df-im 14812 df-sqrt 14946 df-abs 14947 |
This theorem is referenced by: asinlem3 26021 asinf 26022 asinneg 26036 efiasin 26038 asinbnd 26049 dvasin 35861 |
Copyright terms: Public domain | W3C validator |