Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme41fva11 Structured version   Visualization version   GIF version

Theorem cdleme41fva11 39887
Description: Part of proof of Lemma E in [Crawley] p. 113. Show that f(r) is one-to-one for r in W (r an atom not under w). TODO: FIX COMMENT. (Contributed by NM, 19-Mar-2013.)
Hypotheses
Ref Expression
cdleme41.b 𝐡 = (Baseβ€˜πΎ)
cdleme41.l ≀ = (leβ€˜πΎ)
cdleme41.j ∨ = (joinβ€˜πΎ)
cdleme41.m ∧ = (meetβ€˜πΎ)
cdleme41.a 𝐴 = (Atomsβ€˜πΎ)
cdleme41.h 𝐻 = (LHypβ€˜πΎ)
cdleme41.u π‘ˆ = ((𝑃 ∨ 𝑄) ∧ π‘Š)
cdleme41.d 𝐷 = ((𝑠 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑠) ∧ π‘Š)))
cdleme41.e 𝐸 = ((𝑑 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑑) ∧ π‘Š)))
cdleme41.g 𝐺 = ((𝑃 ∨ 𝑄) ∧ (𝐸 ∨ ((𝑠 ∨ 𝑑) ∧ π‘Š)))
cdleme41.i 𝐼 = (℩𝑦 ∈ 𝐡 βˆ€π‘‘ ∈ 𝐴 ((Β¬ 𝑑 ≀ π‘Š ∧ Β¬ 𝑑 ≀ (𝑃 ∨ 𝑄)) β†’ 𝑦 = 𝐺))
cdleme41.n 𝑁 = if(𝑠 ≀ (𝑃 ∨ 𝑄), 𝐼, 𝐷)
cdleme41.o 𝑂 = (℩𝑧 ∈ 𝐡 βˆ€π‘  ∈ 𝐴 ((Β¬ 𝑠 ≀ π‘Š ∧ (𝑠 ∨ (π‘₯ ∧ π‘Š)) = π‘₯) β†’ 𝑧 = (𝑁 ∨ (π‘₯ ∧ π‘Š))))
cdleme41.f 𝐹 = (π‘₯ ∈ 𝐡 ↦ if((𝑃 β‰  𝑄 ∧ Β¬ π‘₯ ≀ π‘Š), 𝑂, π‘₯))
Assertion
Ref Expression
cdleme41fva11 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑃 β‰  𝑄 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š)) ∧ 𝑅 β‰  𝑆) β†’ (πΉβ€˜π‘…) β‰  (πΉβ€˜π‘†))
Distinct variable groups:   𝐴,𝑠   ∨ ,𝑠   ≀ ,𝑠   ∧ ,𝑠   𝑃,𝑠   𝑄,𝑠   𝑅,𝑠   𝑆,𝑠   π‘ˆ,𝑠   π‘Š,𝑠   𝑦,𝑑,𝐴,𝑠   𝐡,𝑠,𝑑,𝑦   𝑦,𝐷   𝑦,𝐺   𝐸,𝑠,𝑦   𝐻,𝑠,𝑑,𝑦   𝑑, ∨ ,𝑦   𝐾,𝑠,𝑑,𝑦   𝑑, ≀ ,𝑦   𝑑, ∧ ,𝑦   𝑑,𝑃,𝑦   𝑑,𝑄,𝑦   𝑑,𝑅,𝑦   𝑑,𝑆,𝑦   𝑑,π‘ˆ,𝑦   𝑑,π‘Š,𝑦   π‘₯,𝑧,𝐴   π‘₯,𝐡,𝑧   𝑧,𝐸,𝑠   𝑧,𝐻   π‘₯, ∨ ,𝑧   𝑧,𝐾   π‘₯, ≀ ,𝑧   π‘₯, ∧ ,𝑧   π‘₯,𝑁,𝑧   π‘₯,𝑃,𝑧   π‘₯,𝑄,𝑧   π‘₯,𝑅,𝑧   π‘₯,𝑆,𝑧   π‘₯,π‘ˆ,𝑧   π‘₯,π‘Š,𝑧,𝑠,𝑑,𝑦
Allowed substitution hints:   𝐷(π‘₯,𝑧,𝑑,𝑠)   𝐸(π‘₯,𝑑)   𝐹(π‘₯,𝑦,𝑧,𝑑,𝑠)   𝐺(π‘₯,𝑧,𝑑,𝑠)   𝐻(π‘₯)   𝐼(π‘₯,𝑦,𝑧,𝑑,𝑠)   𝐾(π‘₯)   𝑁(𝑦,𝑑,𝑠)   𝑂(π‘₯,𝑦,𝑧,𝑑,𝑠)

Proof of Theorem cdleme41fva11
StepHypRef Expression
1 cdleme41.b . . 3 𝐡 = (Baseβ€˜πΎ)
2 cdleme41.l . . 3 ≀ = (leβ€˜πΎ)
3 cdleme41.j . . 3 ∨ = (joinβ€˜πΎ)
4 cdleme41.m . . 3 ∧ = (meetβ€˜πΎ)
5 cdleme41.a . . 3 𝐴 = (Atomsβ€˜πΎ)
6 cdleme41.h . . 3 𝐻 = (LHypβ€˜πΎ)
7 cdleme41.u . . 3 π‘ˆ = ((𝑃 ∨ 𝑄) ∧ π‘Š)
8 cdleme41.d . . 3 𝐷 = ((𝑠 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑠) ∧ π‘Š)))
9 cdleme41.e . . 3 𝐸 = ((𝑑 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑑) ∧ π‘Š)))
10 cdleme41.g . . 3 𝐺 = ((𝑃 ∨ 𝑄) ∧ (𝐸 ∨ ((𝑠 ∨ 𝑑) ∧ π‘Š)))
11 cdleme41.i . . 3 𝐼 = (℩𝑦 ∈ 𝐡 βˆ€π‘‘ ∈ 𝐴 ((Β¬ 𝑑 ≀ π‘Š ∧ Β¬ 𝑑 ≀ (𝑃 ∨ 𝑄)) β†’ 𝑦 = 𝐺))
12 cdleme41.n . . 3 𝑁 = if(𝑠 ≀ (𝑃 ∨ 𝑄), 𝐼, 𝐷)
131, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12cdleme41snaw 39886 . 2 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑃 β‰  𝑄 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š)) ∧ 𝑅 β‰  𝑆) β†’ ⦋𝑅 / π‘ β¦Œπ‘ β‰  ⦋𝑆 / π‘ β¦Œπ‘)
14 simp1 1134 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑃 β‰  𝑄 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š)) ∧ 𝑅 β‰  𝑆) β†’ ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)))
15 simp22 1205 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑃 β‰  𝑄 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š)) ∧ 𝑅 β‰  𝑆) β†’ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š))
16 simp21 1204 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑃 β‰  𝑄 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š)) ∧ 𝑅 β‰  𝑆) β†’ 𝑃 β‰  𝑄)
17 cdleme41.o . . . 4 𝑂 = (℩𝑧 ∈ 𝐡 βˆ€π‘  ∈ 𝐴 ((Β¬ 𝑠 ≀ π‘Š ∧ (𝑠 ∨ (π‘₯ ∧ π‘Š)) = π‘₯) β†’ 𝑧 = (𝑁 ∨ (π‘₯ ∧ π‘Š))))
18 cdleme41.f . . . 4 𝐹 = (π‘₯ ∈ 𝐡 ↦ if((𝑃 β‰  𝑄 ∧ Β¬ π‘₯ ≀ π‘Š), 𝑂, π‘₯))
191, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 17, 18cdleme32fva1 39848 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ 𝑃 β‰  𝑄) β†’ (πΉβ€˜π‘…) = ⦋𝑅 / π‘ β¦Œπ‘)
2014, 15, 16, 19syl3anc 1369 . 2 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑃 β‰  𝑄 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š)) ∧ 𝑅 β‰  𝑆) β†’ (πΉβ€˜π‘…) = ⦋𝑅 / π‘ β¦Œπ‘)
21 simp23 1206 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑃 β‰  𝑄 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š)) ∧ 𝑅 β‰  𝑆) β†’ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š))
221, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 17, 18cdleme32fva1 39848 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑃 β‰  𝑄) β†’ (πΉβ€˜π‘†) = ⦋𝑆 / π‘ β¦Œπ‘)
2314, 21, 16, 22syl3anc 1369 . 2 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑃 β‰  𝑄 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š)) ∧ 𝑅 β‰  𝑆) β†’ (πΉβ€˜π‘†) = ⦋𝑆 / π‘ β¦Œπ‘)
2413, 20, 233netr4d 3013 1 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑃 β‰  𝑄 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š)) ∧ 𝑅 β‰  𝑆) β†’ (πΉβ€˜π‘…) β‰  (πΉβ€˜π‘†))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ∧ wa 395   ∧ w3a 1085   = wceq 1534   ∈ wcel 2099   β‰  wne 2935  βˆ€wral 3056  β¦‹csb 3889  ifcif 4524   class class class wbr 5142   ↦ cmpt 5225  β€˜cfv 6542  β„©crio 7369  (class class class)co 7414  Basecbs 17171  lecple 17231  joincjn 18294  meetcmee 18295  Atomscatm 38672  HLchlt 38759  LHypclh 39394
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-riotaBAD 38362
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-ral 3057  df-rex 3066  df-rmo 3371  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-iin 4994  df-br 5143  df-opab 5205  df-mpt 5226  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-1st 7987  df-2nd 7988  df-undef 8272  df-proset 18278  df-poset 18296  df-plt 18313  df-lub 18329  df-glb 18330  df-join 18331  df-meet 18332  df-p0 18408  df-p1 18409  df-lat 18415  df-clat 18482  df-oposet 38585  df-ol 38587  df-oml 38588  df-covers 38675  df-ats 38676  df-atl 38707  df-cvlat 38731  df-hlat 38760  df-llines 38908  df-lplanes 38909  df-lvols 38910  df-lines 38911  df-psubsp 38913  df-pmap 38914  df-padd 39206  df-lhyp 39398
This theorem is referenced by:  cdleme42k  39894
  Copyright terms: Public domain W3C validator