Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dalem4 Structured version   Visualization version   GIF version

Theorem dalem4 39659
Description: Lemma for dalemdnee 39660. (Contributed by NM, 10-Aug-2012.)
Hypotheses
Ref Expression
dalema.ph (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
dalemc.l = (le‘𝐾)
dalemc.j = (join‘𝐾)
dalemc.a 𝐴 = (Atoms‘𝐾)
dalem3.m = (meet‘𝐾)
dalem3.o 𝑂 = (LPlanes‘𝐾)
dalem3.y 𝑌 = ((𝑃 𝑄) 𝑅)
dalem3.z 𝑍 = ((𝑆 𝑇) 𝑈)
dalem3.d 𝐷 = ((𝑃 𝑄) (𝑆 𝑇))
dalem3.e 𝐸 = ((𝑄 𝑅) (𝑇 𝑈))
Assertion
Ref Expression
dalem4 ((𝜑𝐷𝑇) → 𝐷𝐸)

Proof of Theorem dalem4
StepHypRef Expression
1 dalema.ph . . . . 5 (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
2 dalemc.l . . . . 5 = (le‘𝐾)
3 dalemc.j . . . . 5 = (join‘𝐾)
4 dalemc.a . . . . 5 𝐴 = (Atoms‘𝐾)
51, 2, 3, 4dalemswapyz 39650 . . . 4 (𝜑 → (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑍𝑂𝑌𝑂) ∧ ((¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (𝐶 (𝑆 𝑃) ∧ 𝐶 (𝑇 𝑄) ∧ 𝐶 (𝑈 𝑅)))))
65adantr 480 . . 3 ((𝜑𝐷𝑇) → (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑍𝑂𝑌𝑂) ∧ ((¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (𝐶 (𝑆 𝑃) ∧ 𝐶 (𝑇 𝑄) ∧ 𝐶 (𝑈 𝑅)))))
7 dalem3.d . . . . . 6 𝐷 = ((𝑃 𝑄) (𝑆 𝑇))
81dalemkelat 39618 . . . . . . 7 (𝜑𝐾 ∈ Lat)
91, 3, 4dalempjqeb 39639 . . . . . . 7 (𝜑 → (𝑃 𝑄) ∈ (Base‘𝐾))
101, 3, 4dalemsjteb 39640 . . . . . . 7 (𝜑 → (𝑆 𝑇) ∈ (Base‘𝐾))
11 eqid 2729 . . . . . . . 8 (Base‘𝐾) = (Base‘𝐾)
12 dalem3.m . . . . . . . 8 = (meet‘𝐾)
1311, 12latmcom 18422 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ (𝑆 𝑇) ∈ (Base‘𝐾)) → ((𝑃 𝑄) (𝑆 𝑇)) = ((𝑆 𝑇) (𝑃 𝑄)))
148, 9, 10, 13syl3anc 1373 . . . . . 6 (𝜑 → ((𝑃 𝑄) (𝑆 𝑇)) = ((𝑆 𝑇) (𝑃 𝑄)))
157, 14eqtrid 2776 . . . . 5 (𝜑𝐷 = ((𝑆 𝑇) (𝑃 𝑄)))
1615neeq1d 2984 . . . 4 (𝜑 → (𝐷𝑇 ↔ ((𝑆 𝑇) (𝑃 𝑄)) ≠ 𝑇))
1716biimpa 476 . . 3 ((𝜑𝐷𝑇) → ((𝑆 𝑇) (𝑃 𝑄)) ≠ 𝑇)
18 biid 261 . . . 4 ((((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑍𝑂𝑌𝑂) ∧ ((¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (𝐶 (𝑆 𝑃) ∧ 𝐶 (𝑇 𝑄) ∧ 𝐶 (𝑈 𝑅)))) ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑍𝑂𝑌𝑂) ∧ ((¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (𝐶 (𝑆 𝑃) ∧ 𝐶 (𝑇 𝑄) ∧ 𝐶 (𝑈 𝑅)))))
19 dalem3.o . . . 4 𝑂 = (LPlanes‘𝐾)
20 dalem3.z . . . 4 𝑍 = ((𝑆 𝑇) 𝑈)
21 dalem3.y . . . 4 𝑌 = ((𝑃 𝑄) 𝑅)
22 eqid 2729 . . . 4 ((𝑆 𝑇) (𝑃 𝑄)) = ((𝑆 𝑇) (𝑃 𝑄))
23 eqid 2729 . . . 4 ((𝑇 𝑈) (𝑄 𝑅)) = ((𝑇 𝑈) (𝑄 𝑅))
2418, 2, 3, 4, 12, 19, 20, 21, 22, 23dalem3 39658 . . 3 (((((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑍𝑂𝑌𝑂) ∧ ((¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (𝐶 (𝑆 𝑃) ∧ 𝐶 (𝑇 𝑄) ∧ 𝐶 (𝑈 𝑅)))) ∧ ((𝑆 𝑇) (𝑃 𝑄)) ≠ 𝑇) → ((𝑆 𝑇) (𝑃 𝑄)) ≠ ((𝑇 𝑈) (𝑄 𝑅)))
256, 17, 24syl2anc 584 . 2 ((𝜑𝐷𝑇) → ((𝑆 𝑇) (𝑃 𝑄)) ≠ ((𝑇 𝑈) (𝑄 𝑅)))
2615adantr 480 . 2 ((𝜑𝐷𝑇) → 𝐷 = ((𝑆 𝑇) (𝑃 𝑄)))
27 dalem3.e . . . 4 𝐸 = ((𝑄 𝑅) (𝑇 𝑈))
281dalemkehl 39617 . . . . . 6 (𝜑𝐾 ∈ HL)
291dalemqea 39621 . . . . . 6 (𝜑𝑄𝐴)
301dalemrea 39622 . . . . . 6 (𝜑𝑅𝐴)
3111, 3, 4hlatjcl 39360 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑄𝐴𝑅𝐴) → (𝑄 𝑅) ∈ (Base‘𝐾))
3228, 29, 30, 31syl3anc 1373 . . . . 5 (𝜑 → (𝑄 𝑅) ∈ (Base‘𝐾))
331, 3, 4dalemtjueb 39641 . . . . 5 (𝜑 → (𝑇 𝑈) ∈ (Base‘𝐾))
3411, 12latmcom 18422 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑄 𝑅) ∈ (Base‘𝐾) ∧ (𝑇 𝑈) ∈ (Base‘𝐾)) → ((𝑄 𝑅) (𝑇 𝑈)) = ((𝑇 𝑈) (𝑄 𝑅)))
358, 32, 33, 34syl3anc 1373 . . . 4 (𝜑 → ((𝑄 𝑅) (𝑇 𝑈)) = ((𝑇 𝑈) (𝑄 𝑅)))
3627, 35eqtrid 2776 . . 3 (𝜑𝐸 = ((𝑇 𝑈) (𝑄 𝑅)))
3736adantr 480 . 2 ((𝜑𝐷𝑇) → 𝐸 = ((𝑇 𝑈) (𝑄 𝑅)))
3825, 26, 373netr4d 3002 1 ((𝜑𝐷𝑇) → 𝐷𝐸)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925   class class class wbr 5107  cfv 6511  (class class class)co 7387  Basecbs 17179  lecple 17227  joincjn 18272  meetcmee 18273  Latclat 18390  Atomscatm 39256  HLchlt 39343  LPlanesclpl 39486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-proset 18255  df-poset 18274  df-plt 18289  df-lub 18305  df-glb 18306  df-join 18307  df-meet 18308  df-p0 18384  df-lat 18391  df-clat 18458  df-oposet 39169  df-ol 39171  df-oml 39172  df-covers 39259  df-ats 39260  df-atl 39291  df-cvlat 39315  df-hlat 39344  df-llines 39492  df-lplanes 39493
This theorem is referenced by:  dalemdnee  39660
  Copyright terms: Public domain W3C validator