![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > hdmaprnlem3N | Structured version Visualization version GIF version |
Description: Part of proof of part 12 in [Baer] p. 49 line 15, T β P. Our (β‘πβ(πΏβ{((πβπ’) β π )})) is Baer's P, where P* = G(u'+s). (Contributed by NM, 27-May-2015.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hdmaprnlem1.h | β’ π» = (LHypβπΎ) |
hdmaprnlem1.u | β’ π = ((DVecHβπΎ)βπ) |
hdmaprnlem1.v | β’ π = (Baseβπ) |
hdmaprnlem1.n | β’ π = (LSpanβπ) |
hdmaprnlem1.c | β’ πΆ = ((LCDualβπΎ)βπ) |
hdmaprnlem1.l | β’ πΏ = (LSpanβπΆ) |
hdmaprnlem1.m | β’ π = ((mapdβπΎ)βπ) |
hdmaprnlem1.s | β’ π = ((HDMapβπΎ)βπ) |
hdmaprnlem1.k | β’ (π β (πΎ β HL β§ π β π»)) |
hdmaprnlem1.se | β’ (π β π β (π· β {π})) |
hdmaprnlem1.ve | β’ (π β π£ β π) |
hdmaprnlem1.e | β’ (π β (πβ(πβ{π£})) = (πΏβ{π })) |
hdmaprnlem1.ue | β’ (π β π’ β π) |
hdmaprnlem1.un | β’ (π β Β¬ π’ β (πβ{π£})) |
hdmaprnlem1.d | β’ π· = (BaseβπΆ) |
hdmaprnlem1.q | β’ π = (0gβπΆ) |
hdmaprnlem1.o | β’ 0 = (0gβπ) |
hdmaprnlem1.a | β’ β = (+gβπΆ) |
Ref | Expression |
---|---|
hdmaprnlem3N | β’ (π β (πβ{π£}) β (β‘πβ(πΏβ{((πβπ’) β π )}))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hdmaprnlem1.d | . . . . 5 β’ π· = (BaseβπΆ) | |
2 | hdmaprnlem1.l | . . . . 5 β’ πΏ = (LSpanβπΆ) | |
3 | hdmaprnlem1.h | . . . . . 6 β’ π» = (LHypβπΎ) | |
4 | hdmaprnlem1.c | . . . . . 6 β’ πΆ = ((LCDualβπΎ)βπ) | |
5 | hdmaprnlem1.k | . . . . . 6 β’ (π β (πΎ β HL β§ π β π»)) | |
6 | 3, 4, 5 | lcdlmod 40463 | . . . . 5 β’ (π β πΆ β LMod) |
7 | hdmaprnlem1.u | . . . . . . 7 β’ π = ((DVecHβπΎ)βπ) | |
8 | hdmaprnlem1.v | . . . . . . 7 β’ π = (Baseβπ) | |
9 | hdmaprnlem1.s | . . . . . . 7 β’ π = ((HDMapβπΎ)βπ) | |
10 | hdmaprnlem1.ue | . . . . . . 7 β’ (π β π’ β π) | |
11 | 3, 7, 8, 4, 1, 9, 5, 10 | hdmapcl 40701 | . . . . . 6 β’ (π β (πβπ’) β π·) |
12 | hdmaprnlem1.se | . . . . . . 7 β’ (π β π β (π· β {π})) | |
13 | 12 | eldifad 3961 | . . . . . 6 β’ (π β π β π·) |
14 | hdmaprnlem1.a | . . . . . . 7 β’ β = (+gβπΆ) | |
15 | 1, 14 | lmodvacl 20486 | . . . . . 6 β’ ((πΆ β LMod β§ (πβπ’) β π· β§ π β π·) β ((πβπ’) β π ) β π·) |
16 | 6, 11, 13, 15 | syl3anc 1372 | . . . . 5 β’ (π β ((πβπ’) β π ) β π·) |
17 | eqid 2733 | . . . . . 6 β’ (LSubSpβπΆ) = (LSubSpβπΆ) | |
18 | 1, 17, 2 | lspsncl 20588 | . . . . . . 7 β’ ((πΆ β LMod β§ π β π·) β (πΏβ{π }) β (LSubSpβπΆ)) |
19 | 6, 13, 18 | syl2anc 585 | . . . . . 6 β’ (π β (πΏβ{π }) β (LSubSpβπΆ)) |
20 | 1, 2 | lspsnid 20604 | . . . . . . 7 β’ ((πΆ β LMod β§ π β π·) β π β (πΏβ{π })) |
21 | 6, 13, 20 | syl2anc 585 | . . . . . 6 β’ (π β π β (πΏβ{π })) |
22 | hdmaprnlem1.q | . . . . . . 7 β’ π = (0gβπΆ) | |
23 | 3, 4, 5 | lcdlvec 40462 | . . . . . . 7 β’ (π β πΆ β LVec) |
24 | hdmaprnlem1.o | . . . . . . . 8 β’ 0 = (0gβπ) | |
25 | eqid 2733 | . . . . . . . . 9 β’ (LSubSpβπ) = (LSubSpβπ) | |
26 | 3, 7, 5 | dvhlmod 39981 | . . . . . . . . 9 β’ (π β π β LMod) |
27 | hdmaprnlem1.ve | . . . . . . . . . 10 β’ (π β π£ β π) | |
28 | hdmaprnlem1.n | . . . . . . . . . . 11 β’ π = (LSpanβπ) | |
29 | 8, 25, 28 | lspsncl 20588 | . . . . . . . . . 10 β’ ((π β LMod β§ π£ β π) β (πβ{π£}) β (LSubSpβπ)) |
30 | 26, 27, 29 | syl2anc 585 | . . . . . . . . 9 β’ (π β (πβ{π£}) β (LSubSpβπ)) |
31 | hdmaprnlem1.un | . . . . . . . . 9 β’ (π β Β¬ π’ β (πβ{π£})) | |
32 | 24, 25, 26, 30, 10, 31 | lssneln0 20563 | . . . . . . . 8 β’ (π β π’ β (π β { 0 })) |
33 | 3, 7, 8, 24, 4, 22, 1, 9, 5, 32 | hdmapnzcl 40716 | . . . . . . 7 β’ (π β (πβπ’) β (π· β {π})) |
34 | hdmaprnlem1.m | . . . . . . . 8 β’ π = ((mapdβπΎ)βπ) | |
35 | hdmaprnlem1.e | . . . . . . . 8 β’ (π β (πβ(πβ{π£})) = (πΏβ{π })) | |
36 | 3, 7, 8, 28, 4, 2, 34, 9, 5, 12, 27, 35, 10, 31 | hdmaprnlem1N 40720 | . . . . . . 7 β’ (π β (πΏβ{(πβπ’)}) β (πΏβ{π })) |
37 | 1, 22, 2, 23, 33, 13, 36 | lspsnne1 20730 | . . . . . 6 β’ (π β Β¬ (πβπ’) β (πΏβ{π })) |
38 | 1, 14, 17, 6, 19, 21, 11, 37 | lssvancl2 20556 | . . . . 5 β’ (π β Β¬ ((πβπ’) β π ) β (πΏβ{π })) |
39 | 1, 2, 6, 16, 13, 38 | lspsnne2 20731 | . . . 4 β’ (π β (πΏβ{((πβπ’) β π )}) β (πΏβ{π })) |
40 | 39 | necomd 2997 | . . 3 β’ (π β (πΏβ{π }) β (πΏβ{((πβπ’) β π )})) |
41 | 1, 17, 2 | lspsncl 20588 | . . . . . 6 β’ ((πΆ β LMod β§ ((πβπ’) β π ) β π·) β (πΏβ{((πβπ’) β π )}) β (LSubSpβπΆ)) |
42 | 6, 16, 41 | syl2anc 585 | . . . . 5 β’ (π β (πΏβ{((πβπ’) β π )}) β (LSubSpβπΆ)) |
43 | 3, 34, 4, 17, 5 | mapdrn2 40522 | . . . . 5 β’ (π β ran π = (LSubSpβπΆ)) |
44 | 42, 43 | eleqtrrd 2837 | . . . 4 β’ (π β (πΏβ{((πβπ’) β π )}) β ran π) |
45 | 3, 34, 5, 44 | mapdcnvid2 40528 | . . 3 β’ (π β (πβ(β‘πβ(πΏβ{((πβπ’) β π )}))) = (πΏβ{((πβπ’) β π )})) |
46 | 40, 35, 45 | 3netr4d 3019 | . 2 β’ (π β (πβ(πβ{π£})) β (πβ(β‘πβ(πΏβ{((πβπ’) β π )})))) |
47 | 3, 34, 7, 25, 5, 44 | mapdcnvcl 40523 | . . . 4 β’ (π β (β‘πβ(πΏβ{((πβπ’) β π )})) β (LSubSpβπ)) |
48 | 3, 7, 25, 34, 5, 30, 47 | mapd11 40510 | . . 3 β’ (π β ((πβ(πβ{π£})) = (πβ(β‘πβ(πΏβ{((πβπ’) β π )}))) β (πβ{π£}) = (β‘πβ(πΏβ{((πβπ’) β π )})))) |
49 | 48 | necon3bid 2986 | . 2 β’ (π β ((πβ(πβ{π£})) β (πβ(β‘πβ(πΏβ{((πβπ’) β π )}))) β (πβ{π£}) β (β‘πβ(πΏβ{((πβπ’) β π )})))) |
50 | 46, 49 | mpbid 231 | 1 β’ (π β (πβ{π£}) β (β‘πβ(πΏβ{((πβπ’) β π )}))) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β§ wa 397 = wceq 1542 β wcel 2107 β wne 2941 β cdif 3946 {csn 4629 β‘ccnv 5676 ran crn 5678 βcfv 6544 (class class class)co 7409 Basecbs 17144 +gcplusg 17197 0gc0g 17385 LModclmod 20471 LSubSpclss 20542 LSpanclspn 20582 HLchlt 38220 LHypclh 38855 DVecHcdvh 39949 LCDualclcd 40457 mapdcmpd 40495 HDMapchdma 40663 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-cnex 11166 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 ax-pre-mulgt0 11187 ax-riotaBAD 37823 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-tp 4634 df-op 4636 df-ot 4638 df-uni 4910 df-int 4952 df-iun 5000 df-iin 5001 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-of 7670 df-om 7856 df-1st 7975 df-2nd 7976 df-tpos 8211 df-undef 8258 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-1o 8466 df-er 8703 df-map 8822 df-en 8940 df-dom 8941 df-sdom 8942 df-fin 8943 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-sub 11446 df-neg 11447 df-nn 12213 df-2 12275 df-3 12276 df-4 12277 df-5 12278 df-6 12279 df-n0 12473 df-z 12559 df-uz 12823 df-fz 13485 df-struct 17080 df-sets 17097 df-slot 17115 df-ndx 17127 df-base 17145 df-ress 17174 df-plusg 17210 df-mulr 17211 df-sca 17213 df-vsca 17214 df-0g 17387 df-mre 17530 df-mrc 17531 df-acs 17533 df-proset 18248 df-poset 18266 df-plt 18283 df-lub 18299 df-glb 18300 df-join 18301 df-meet 18302 df-p0 18378 df-p1 18379 df-lat 18385 df-clat 18452 df-mgm 18561 df-sgrp 18610 df-mnd 18626 df-submnd 18672 df-grp 18822 df-minusg 18823 df-sbg 18824 df-subg 19003 df-cntz 19181 df-oppg 19210 df-lsm 19504 df-cmn 19650 df-abl 19651 df-mgp 19988 df-ur 20005 df-ring 20058 df-oppr 20150 df-dvdsr 20171 df-unit 20172 df-invr 20202 df-dvr 20215 df-drng 20359 df-lmod 20473 df-lss 20543 df-lsp 20583 df-lvec 20714 df-lsatoms 37846 df-lshyp 37847 df-lcv 37889 df-lfl 37928 df-lkr 37956 df-ldual 37994 df-oposet 38046 df-ol 38048 df-oml 38049 df-covers 38136 df-ats 38137 df-atl 38168 df-cvlat 38192 df-hlat 38221 df-llines 38369 df-lplanes 38370 df-lvols 38371 df-lines 38372 df-psubsp 38374 df-pmap 38375 df-padd 38667 df-lhyp 38859 df-laut 38860 df-ldil 38975 df-ltrn 38976 df-trl 39030 df-tgrp 39614 df-tendo 39626 df-edring 39628 df-dveca 39874 df-disoa 39900 df-dvech 39950 df-dib 40010 df-dic 40044 df-dih 40100 df-doch 40219 df-djh 40266 df-lcdual 40458 df-mapd 40496 df-hvmap 40628 df-hdmap1 40664 df-hdmap 40665 |
This theorem is referenced by: hdmaprnlem9N 40728 hdmaprnlem3eN 40729 |
Copyright terms: Public domain | W3C validator |