![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > hdmaprnlem3N | Structured version Visualization version GIF version |
Description: Part of proof of part 12 in [Baer] p. 49 line 15, T ≠ P. Our (◡𝑀‘(𝐿‘{((𝑆‘𝑢) ✚ 𝑠)})) is Baer's P, where P* = G(u'+s). (Contributed by NM, 27-May-2015.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hdmaprnlem1.h | ⊢ 𝐻 = (LHyp‘𝐾) |
hdmaprnlem1.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
hdmaprnlem1.v | ⊢ 𝑉 = (Base‘𝑈) |
hdmaprnlem1.n | ⊢ 𝑁 = (LSpan‘𝑈) |
hdmaprnlem1.c | ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) |
hdmaprnlem1.l | ⊢ 𝐿 = (LSpan‘𝐶) |
hdmaprnlem1.m | ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) |
hdmaprnlem1.s | ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) |
hdmaprnlem1.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
hdmaprnlem1.se | ⊢ (𝜑 → 𝑠 ∈ (𝐷 ∖ {𝑄})) |
hdmaprnlem1.ve | ⊢ (𝜑 → 𝑣 ∈ 𝑉) |
hdmaprnlem1.e | ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑣})) = (𝐿‘{𝑠})) |
hdmaprnlem1.ue | ⊢ (𝜑 → 𝑢 ∈ 𝑉) |
hdmaprnlem1.un | ⊢ (𝜑 → ¬ 𝑢 ∈ (𝑁‘{𝑣})) |
hdmaprnlem1.d | ⊢ 𝐷 = (Base‘𝐶) |
hdmaprnlem1.q | ⊢ 𝑄 = (0g‘𝐶) |
hdmaprnlem1.o | ⊢ 0 = (0g‘𝑈) |
hdmaprnlem1.a | ⊢ ✚ = (+g‘𝐶) |
Ref | Expression |
---|---|
hdmaprnlem3N | ⊢ (𝜑 → (𝑁‘{𝑣}) ≠ (◡𝑀‘(𝐿‘{((𝑆‘𝑢) ✚ 𝑠)}))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hdmaprnlem1.d | . . . . 5 ⊢ 𝐷 = (Base‘𝐶) | |
2 | hdmaprnlem1.l | . . . . 5 ⊢ 𝐿 = (LSpan‘𝐶) | |
3 | hdmaprnlem1.h | . . . . . 6 ⊢ 𝐻 = (LHyp‘𝐾) | |
4 | hdmaprnlem1.c | . . . . . 6 ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) | |
5 | hdmaprnlem1.k | . . . . . 6 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
6 | 3, 4, 5 | lcdlmod 41575 | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ LMod) |
7 | hdmaprnlem1.u | . . . . . . 7 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
8 | hdmaprnlem1.v | . . . . . . 7 ⊢ 𝑉 = (Base‘𝑈) | |
9 | hdmaprnlem1.s | . . . . . . 7 ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) | |
10 | hdmaprnlem1.ue | . . . . . . 7 ⊢ (𝜑 → 𝑢 ∈ 𝑉) | |
11 | 3, 7, 8, 4, 1, 9, 5, 10 | hdmapcl 41813 | . . . . . 6 ⊢ (𝜑 → (𝑆‘𝑢) ∈ 𝐷) |
12 | hdmaprnlem1.se | . . . . . . 7 ⊢ (𝜑 → 𝑠 ∈ (𝐷 ∖ {𝑄})) | |
13 | 12 | eldifad 3975 | . . . . . 6 ⊢ (𝜑 → 𝑠 ∈ 𝐷) |
14 | hdmaprnlem1.a | . . . . . . 7 ⊢ ✚ = (+g‘𝐶) | |
15 | 1, 14 | lmodvacl 20890 | . . . . . 6 ⊢ ((𝐶 ∈ LMod ∧ (𝑆‘𝑢) ∈ 𝐷 ∧ 𝑠 ∈ 𝐷) → ((𝑆‘𝑢) ✚ 𝑠) ∈ 𝐷) |
16 | 6, 11, 13, 15 | syl3anc 1370 | . . . . 5 ⊢ (𝜑 → ((𝑆‘𝑢) ✚ 𝑠) ∈ 𝐷) |
17 | eqid 2735 | . . . . . 6 ⊢ (LSubSp‘𝐶) = (LSubSp‘𝐶) | |
18 | 1, 17, 2 | lspsncl 20993 | . . . . . . 7 ⊢ ((𝐶 ∈ LMod ∧ 𝑠 ∈ 𝐷) → (𝐿‘{𝑠}) ∈ (LSubSp‘𝐶)) |
19 | 6, 13, 18 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → (𝐿‘{𝑠}) ∈ (LSubSp‘𝐶)) |
20 | 1, 2 | lspsnid 21009 | . . . . . . 7 ⊢ ((𝐶 ∈ LMod ∧ 𝑠 ∈ 𝐷) → 𝑠 ∈ (𝐿‘{𝑠})) |
21 | 6, 13, 20 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → 𝑠 ∈ (𝐿‘{𝑠})) |
22 | hdmaprnlem1.q | . . . . . . 7 ⊢ 𝑄 = (0g‘𝐶) | |
23 | 3, 4, 5 | lcdlvec 41574 | . . . . . . 7 ⊢ (𝜑 → 𝐶 ∈ LVec) |
24 | hdmaprnlem1.o | . . . . . . . 8 ⊢ 0 = (0g‘𝑈) | |
25 | eqid 2735 | . . . . . . . . 9 ⊢ (LSubSp‘𝑈) = (LSubSp‘𝑈) | |
26 | 3, 7, 5 | dvhlmod 41093 | . . . . . . . . 9 ⊢ (𝜑 → 𝑈 ∈ LMod) |
27 | hdmaprnlem1.ve | . . . . . . . . . 10 ⊢ (𝜑 → 𝑣 ∈ 𝑉) | |
28 | hdmaprnlem1.n | . . . . . . . . . . 11 ⊢ 𝑁 = (LSpan‘𝑈) | |
29 | 8, 25, 28 | lspsncl 20993 | . . . . . . . . . 10 ⊢ ((𝑈 ∈ LMod ∧ 𝑣 ∈ 𝑉) → (𝑁‘{𝑣}) ∈ (LSubSp‘𝑈)) |
30 | 26, 27, 29 | syl2anc 584 | . . . . . . . . 9 ⊢ (𝜑 → (𝑁‘{𝑣}) ∈ (LSubSp‘𝑈)) |
31 | hdmaprnlem1.un | . . . . . . . . 9 ⊢ (𝜑 → ¬ 𝑢 ∈ (𝑁‘{𝑣})) | |
32 | 24, 25, 26, 30, 10, 31 | lssneln0 20969 | . . . . . . . 8 ⊢ (𝜑 → 𝑢 ∈ (𝑉 ∖ { 0 })) |
33 | 3, 7, 8, 24, 4, 22, 1, 9, 5, 32 | hdmapnzcl 41828 | . . . . . . 7 ⊢ (𝜑 → (𝑆‘𝑢) ∈ (𝐷 ∖ {𝑄})) |
34 | hdmaprnlem1.m | . . . . . . . 8 ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) | |
35 | hdmaprnlem1.e | . . . . . . . 8 ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑣})) = (𝐿‘{𝑠})) | |
36 | 3, 7, 8, 28, 4, 2, 34, 9, 5, 12, 27, 35, 10, 31 | hdmaprnlem1N 41832 | . . . . . . 7 ⊢ (𝜑 → (𝐿‘{(𝑆‘𝑢)}) ≠ (𝐿‘{𝑠})) |
37 | 1, 22, 2, 23, 33, 13, 36 | lspsnne1 21137 | . . . . . 6 ⊢ (𝜑 → ¬ (𝑆‘𝑢) ∈ (𝐿‘{𝑠})) |
38 | 1, 14, 17, 6, 19, 21, 11, 37 | lssvancl2 20962 | . . . . 5 ⊢ (𝜑 → ¬ ((𝑆‘𝑢) ✚ 𝑠) ∈ (𝐿‘{𝑠})) |
39 | 1, 2, 6, 16, 13, 38 | lspsnne2 21138 | . . . 4 ⊢ (𝜑 → (𝐿‘{((𝑆‘𝑢) ✚ 𝑠)}) ≠ (𝐿‘{𝑠})) |
40 | 39 | necomd 2994 | . . 3 ⊢ (𝜑 → (𝐿‘{𝑠}) ≠ (𝐿‘{((𝑆‘𝑢) ✚ 𝑠)})) |
41 | 1, 17, 2 | lspsncl 20993 | . . . . . 6 ⊢ ((𝐶 ∈ LMod ∧ ((𝑆‘𝑢) ✚ 𝑠) ∈ 𝐷) → (𝐿‘{((𝑆‘𝑢) ✚ 𝑠)}) ∈ (LSubSp‘𝐶)) |
42 | 6, 16, 41 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → (𝐿‘{((𝑆‘𝑢) ✚ 𝑠)}) ∈ (LSubSp‘𝐶)) |
43 | 3, 34, 4, 17, 5 | mapdrn2 41634 | . . . . 5 ⊢ (𝜑 → ran 𝑀 = (LSubSp‘𝐶)) |
44 | 42, 43 | eleqtrrd 2842 | . . . 4 ⊢ (𝜑 → (𝐿‘{((𝑆‘𝑢) ✚ 𝑠)}) ∈ ran 𝑀) |
45 | 3, 34, 5, 44 | mapdcnvid2 41640 | . . 3 ⊢ (𝜑 → (𝑀‘(◡𝑀‘(𝐿‘{((𝑆‘𝑢) ✚ 𝑠)}))) = (𝐿‘{((𝑆‘𝑢) ✚ 𝑠)})) |
46 | 40, 35, 45 | 3netr4d 3016 | . 2 ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑣})) ≠ (𝑀‘(◡𝑀‘(𝐿‘{((𝑆‘𝑢) ✚ 𝑠)})))) |
47 | 3, 34, 7, 25, 5, 44 | mapdcnvcl 41635 | . . . 4 ⊢ (𝜑 → (◡𝑀‘(𝐿‘{((𝑆‘𝑢) ✚ 𝑠)})) ∈ (LSubSp‘𝑈)) |
48 | 3, 7, 25, 34, 5, 30, 47 | mapd11 41622 | . . 3 ⊢ (𝜑 → ((𝑀‘(𝑁‘{𝑣})) = (𝑀‘(◡𝑀‘(𝐿‘{((𝑆‘𝑢) ✚ 𝑠)}))) ↔ (𝑁‘{𝑣}) = (◡𝑀‘(𝐿‘{((𝑆‘𝑢) ✚ 𝑠)})))) |
49 | 48 | necon3bid 2983 | . 2 ⊢ (𝜑 → ((𝑀‘(𝑁‘{𝑣})) ≠ (𝑀‘(◡𝑀‘(𝐿‘{((𝑆‘𝑢) ✚ 𝑠)}))) ↔ (𝑁‘{𝑣}) ≠ (◡𝑀‘(𝐿‘{((𝑆‘𝑢) ✚ 𝑠)})))) |
50 | 46, 49 | mpbid 232 | 1 ⊢ (𝜑 → (𝑁‘{𝑣}) ≠ (◡𝑀‘(𝐿‘{((𝑆‘𝑢) ✚ 𝑠)}))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ≠ wne 2938 ∖ cdif 3960 {csn 4631 ◡ccnv 5688 ran crn 5690 ‘cfv 6563 (class class class)co 7431 Basecbs 17245 +gcplusg 17298 0gc0g 17486 LModclmod 20875 LSubSpclss 20947 LSpanclspn 20987 HLchlt 39332 LHypclh 39967 DVecHcdvh 41061 LCDualclcd 41569 mapdcmpd 41607 HDMapchdma 41775 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 ax-riotaBAD 38935 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-tp 4636 df-op 4638 df-ot 4640 df-uni 4913 df-int 4952 df-iun 4998 df-iin 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-of 7697 df-om 7888 df-1st 8013 df-2nd 8014 df-tpos 8250 df-undef 8297 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-2o 8506 df-er 8744 df-map 8867 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-n0 12525 df-z 12612 df-uz 12877 df-fz 13545 df-struct 17181 df-sets 17198 df-slot 17216 df-ndx 17228 df-base 17246 df-ress 17275 df-plusg 17311 df-mulr 17312 df-sca 17314 df-vsca 17315 df-0g 17488 df-mre 17631 df-mrc 17632 df-acs 17634 df-proset 18352 df-poset 18371 df-plt 18388 df-lub 18404 df-glb 18405 df-join 18406 df-meet 18407 df-p0 18483 df-p1 18484 df-lat 18490 df-clat 18557 df-mgm 18666 df-sgrp 18745 df-mnd 18761 df-submnd 18810 df-grp 18967 df-minusg 18968 df-sbg 18969 df-subg 19154 df-cntz 19348 df-oppg 19377 df-lsm 19669 df-cmn 19815 df-abl 19816 df-mgp 20153 df-rng 20171 df-ur 20200 df-ring 20253 df-oppr 20351 df-dvdsr 20374 df-unit 20375 df-invr 20405 df-dvr 20418 df-nzr 20530 df-rlreg 20711 df-domn 20712 df-drng 20748 df-lmod 20877 df-lss 20948 df-lsp 20988 df-lvec 21120 df-lsatoms 38958 df-lshyp 38959 df-lcv 39001 df-lfl 39040 df-lkr 39068 df-ldual 39106 df-oposet 39158 df-ol 39160 df-oml 39161 df-covers 39248 df-ats 39249 df-atl 39280 df-cvlat 39304 df-hlat 39333 df-llines 39481 df-lplanes 39482 df-lvols 39483 df-lines 39484 df-psubsp 39486 df-pmap 39487 df-padd 39779 df-lhyp 39971 df-laut 39972 df-ldil 40087 df-ltrn 40088 df-trl 40142 df-tgrp 40726 df-tendo 40738 df-edring 40740 df-dveca 40986 df-disoa 41012 df-dvech 41062 df-dib 41122 df-dic 41156 df-dih 41212 df-doch 41331 df-djh 41378 df-lcdual 41570 df-mapd 41608 df-hvmap 41740 df-hdmap1 41776 df-hdmap 41777 |
This theorem is referenced by: hdmaprnlem9N 41840 hdmaprnlem3eN 41841 |
Copyright terms: Public domain | W3C validator |