Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hdmaprnlem3N Structured version   Visualization version   GIF version

Theorem hdmaprnlem3N 38988
Description: Part of proof of part 12 in [Baer] p. 49 line 15, T P. Our (𝑀‘(𝐿‘{((𝑆𝑢) 𝑠)})) is Baer's P, where P* = G(u'+s). (Contributed by NM, 27-May-2015.) (New usage is discouraged.)
Hypotheses
Ref Expression
hdmaprnlem1.h 𝐻 = (LHyp‘𝐾)
hdmaprnlem1.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
hdmaprnlem1.v 𝑉 = (Base‘𝑈)
hdmaprnlem1.n 𝑁 = (LSpan‘𝑈)
hdmaprnlem1.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
hdmaprnlem1.l 𝐿 = (LSpan‘𝐶)
hdmaprnlem1.m 𝑀 = ((mapd‘𝐾)‘𝑊)
hdmaprnlem1.s 𝑆 = ((HDMap‘𝐾)‘𝑊)
hdmaprnlem1.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
hdmaprnlem1.se (𝜑𝑠 ∈ (𝐷 ∖ {𝑄}))
hdmaprnlem1.ve (𝜑𝑣𝑉)
hdmaprnlem1.e (𝜑 → (𝑀‘(𝑁‘{𝑣})) = (𝐿‘{𝑠}))
hdmaprnlem1.ue (𝜑𝑢𝑉)
hdmaprnlem1.un (𝜑 → ¬ 𝑢 ∈ (𝑁‘{𝑣}))
hdmaprnlem1.d 𝐷 = (Base‘𝐶)
hdmaprnlem1.q 𝑄 = (0g𝐶)
hdmaprnlem1.o 0 = (0g𝑈)
hdmaprnlem1.a = (+g𝐶)
Assertion
Ref Expression
hdmaprnlem3N (𝜑 → (𝑁‘{𝑣}) ≠ (𝑀‘(𝐿‘{((𝑆𝑢) 𝑠)})))

Proof of Theorem hdmaprnlem3N
StepHypRef Expression
1 hdmaprnlem1.d . . . . 5 𝐷 = (Base‘𝐶)
2 hdmaprnlem1.l . . . . 5 𝐿 = (LSpan‘𝐶)
3 hdmaprnlem1.h . . . . . 6 𝐻 = (LHyp‘𝐾)
4 hdmaprnlem1.c . . . . . 6 𝐶 = ((LCDual‘𝐾)‘𝑊)
5 hdmaprnlem1.k . . . . . 6 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
63, 4, 5lcdlmod 38730 . . . . 5 (𝜑𝐶 ∈ LMod)
7 hdmaprnlem1.u . . . . . . 7 𝑈 = ((DVecH‘𝐾)‘𝑊)
8 hdmaprnlem1.v . . . . . . 7 𝑉 = (Base‘𝑈)
9 hdmaprnlem1.s . . . . . . 7 𝑆 = ((HDMap‘𝐾)‘𝑊)
10 hdmaprnlem1.ue . . . . . . 7 (𝜑𝑢𝑉)
113, 7, 8, 4, 1, 9, 5, 10hdmapcl 38968 . . . . . 6 (𝜑 → (𝑆𝑢) ∈ 𝐷)
12 hdmaprnlem1.se . . . . . . 7 (𝜑𝑠 ∈ (𝐷 ∖ {𝑄}))
1312eldifad 3950 . . . . . 6 (𝜑𝑠𝐷)
14 hdmaprnlem1.a . . . . . . 7 = (+g𝐶)
151, 14lmodvacl 19650 . . . . . 6 ((𝐶 ∈ LMod ∧ (𝑆𝑢) ∈ 𝐷𝑠𝐷) → ((𝑆𝑢) 𝑠) ∈ 𝐷)
166, 11, 13, 15syl3anc 1367 . . . . 5 (𝜑 → ((𝑆𝑢) 𝑠) ∈ 𝐷)
17 eqid 2823 . . . . . 6 (LSubSp‘𝐶) = (LSubSp‘𝐶)
181, 17, 2lspsncl 19751 . . . . . . 7 ((𝐶 ∈ LMod ∧ 𝑠𝐷) → (𝐿‘{𝑠}) ∈ (LSubSp‘𝐶))
196, 13, 18syl2anc 586 . . . . . 6 (𝜑 → (𝐿‘{𝑠}) ∈ (LSubSp‘𝐶))
201, 2lspsnid 19767 . . . . . . 7 ((𝐶 ∈ LMod ∧ 𝑠𝐷) → 𝑠 ∈ (𝐿‘{𝑠}))
216, 13, 20syl2anc 586 . . . . . 6 (𝜑𝑠 ∈ (𝐿‘{𝑠}))
22 hdmaprnlem1.q . . . . . . 7 𝑄 = (0g𝐶)
233, 4, 5lcdlvec 38729 . . . . . . 7 (𝜑𝐶 ∈ LVec)
24 hdmaprnlem1.o . . . . . . . 8 0 = (0g𝑈)
25 eqid 2823 . . . . . . . . 9 (LSubSp‘𝑈) = (LSubSp‘𝑈)
263, 7, 5dvhlmod 38248 . . . . . . . . 9 (𝜑𝑈 ∈ LMod)
27 hdmaprnlem1.ve . . . . . . . . . 10 (𝜑𝑣𝑉)
28 hdmaprnlem1.n . . . . . . . . . . 11 𝑁 = (LSpan‘𝑈)
298, 25, 28lspsncl 19751 . . . . . . . . . 10 ((𝑈 ∈ LMod ∧ 𝑣𝑉) → (𝑁‘{𝑣}) ∈ (LSubSp‘𝑈))
3026, 27, 29syl2anc 586 . . . . . . . . 9 (𝜑 → (𝑁‘{𝑣}) ∈ (LSubSp‘𝑈))
31 hdmaprnlem1.un . . . . . . . . 9 (𝜑 → ¬ 𝑢 ∈ (𝑁‘{𝑣}))
3224, 25, 26, 30, 10, 31lssneln0 19726 . . . . . . . 8 (𝜑𝑢 ∈ (𝑉 ∖ { 0 }))
333, 7, 8, 24, 4, 22, 1, 9, 5, 32hdmapnzcl 38983 . . . . . . 7 (𝜑 → (𝑆𝑢) ∈ (𝐷 ∖ {𝑄}))
34 hdmaprnlem1.m . . . . . . . 8 𝑀 = ((mapd‘𝐾)‘𝑊)
35 hdmaprnlem1.e . . . . . . . 8 (𝜑 → (𝑀‘(𝑁‘{𝑣})) = (𝐿‘{𝑠}))
363, 7, 8, 28, 4, 2, 34, 9, 5, 12, 27, 35, 10, 31hdmaprnlem1N 38987 . . . . . . 7 (𝜑 → (𝐿‘{(𝑆𝑢)}) ≠ (𝐿‘{𝑠}))
371, 22, 2, 23, 33, 13, 36lspsnne1 19891 . . . . . 6 (𝜑 → ¬ (𝑆𝑢) ∈ (𝐿‘{𝑠}))
381, 14, 17, 6, 19, 21, 11, 37lssvancl2 19719 . . . . 5 (𝜑 → ¬ ((𝑆𝑢) 𝑠) ∈ (𝐿‘{𝑠}))
391, 2, 6, 16, 13, 38lspsnne2 19892 . . . 4 (𝜑 → (𝐿‘{((𝑆𝑢) 𝑠)}) ≠ (𝐿‘{𝑠}))
4039necomd 3073 . . 3 (𝜑 → (𝐿‘{𝑠}) ≠ (𝐿‘{((𝑆𝑢) 𝑠)}))
411, 17, 2lspsncl 19751 . . . . . 6 ((𝐶 ∈ LMod ∧ ((𝑆𝑢) 𝑠) ∈ 𝐷) → (𝐿‘{((𝑆𝑢) 𝑠)}) ∈ (LSubSp‘𝐶))
426, 16, 41syl2anc 586 . . . . 5 (𝜑 → (𝐿‘{((𝑆𝑢) 𝑠)}) ∈ (LSubSp‘𝐶))
433, 34, 4, 17, 5mapdrn2 38789 . . . . 5 (𝜑 → ran 𝑀 = (LSubSp‘𝐶))
4442, 43eleqtrrd 2918 . . . 4 (𝜑 → (𝐿‘{((𝑆𝑢) 𝑠)}) ∈ ran 𝑀)
453, 34, 5, 44mapdcnvid2 38795 . . 3 (𝜑 → (𝑀‘(𝑀‘(𝐿‘{((𝑆𝑢) 𝑠)}))) = (𝐿‘{((𝑆𝑢) 𝑠)}))
4640, 35, 453netr4d 3095 . 2 (𝜑 → (𝑀‘(𝑁‘{𝑣})) ≠ (𝑀‘(𝑀‘(𝐿‘{((𝑆𝑢) 𝑠)}))))
473, 34, 7, 25, 5, 44mapdcnvcl 38790 . . . 4 (𝜑 → (𝑀‘(𝐿‘{((𝑆𝑢) 𝑠)})) ∈ (LSubSp‘𝑈))
483, 7, 25, 34, 5, 30, 47mapd11 38777 . . 3 (𝜑 → ((𝑀‘(𝑁‘{𝑣})) = (𝑀‘(𝑀‘(𝐿‘{((𝑆𝑢) 𝑠)}))) ↔ (𝑁‘{𝑣}) = (𝑀‘(𝐿‘{((𝑆𝑢) 𝑠)}))))
4948necon3bid 3062 . 2 (𝜑 → ((𝑀‘(𝑁‘{𝑣})) ≠ (𝑀‘(𝑀‘(𝐿‘{((𝑆𝑢) 𝑠)}))) ↔ (𝑁‘{𝑣}) ≠ (𝑀‘(𝐿‘{((𝑆𝑢) 𝑠)}))))
5046, 49mpbid 234 1 (𝜑 → (𝑁‘{𝑣}) ≠ (𝑀‘(𝐿‘{((𝑆𝑢) 𝑠)})))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398   = wceq 1537  wcel 2114  wne 3018  cdif 3935  {csn 4569  ccnv 5556  ran crn 5558  cfv 6357  (class class class)co 7158  Basecbs 16485  +gcplusg 16567  0gc0g 16715  LModclmod 19636  LSubSpclss 19705  LSpanclspn 19745  HLchlt 36488  LHypclh 37122  DVecHcdvh 38216  LCDualclcd 38724  mapdcmpd 38762  HDMapchdma 38930
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-riotaBAD 36091
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-ot 4578  df-uni 4841  df-int 4879  df-iun 4923  df-iin 4924  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-of 7411  df-om 7583  df-1st 7691  df-2nd 7692  df-tpos 7894  df-undef 7941  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-oadd 8108  df-er 8291  df-map 8410  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-n0 11901  df-z 11985  df-uz 12247  df-fz 12896  df-struct 16487  df-ndx 16488  df-slot 16489  df-base 16491  df-sets 16492  df-ress 16493  df-plusg 16580  df-mulr 16581  df-sca 16583  df-vsca 16584  df-0g 16717  df-mre 16859  df-mrc 16860  df-acs 16862  df-proset 17540  df-poset 17558  df-plt 17570  df-lub 17586  df-glb 17587  df-join 17588  df-meet 17589  df-p0 17651  df-p1 17652  df-lat 17658  df-clat 17720  df-mgm 17854  df-sgrp 17903  df-mnd 17914  df-submnd 17959  df-grp 18108  df-minusg 18109  df-sbg 18110  df-subg 18278  df-cntz 18449  df-oppg 18476  df-lsm 18763  df-cmn 18910  df-abl 18911  df-mgp 19242  df-ur 19254  df-ring 19301  df-oppr 19375  df-dvdsr 19393  df-unit 19394  df-invr 19424  df-dvr 19435  df-drng 19506  df-lmod 19638  df-lss 19706  df-lsp 19746  df-lvec 19877  df-lsatoms 36114  df-lshyp 36115  df-lcv 36157  df-lfl 36196  df-lkr 36224  df-ldual 36262  df-oposet 36314  df-ol 36316  df-oml 36317  df-covers 36404  df-ats 36405  df-atl 36436  df-cvlat 36460  df-hlat 36489  df-llines 36636  df-lplanes 36637  df-lvols 36638  df-lines 36639  df-psubsp 36641  df-pmap 36642  df-padd 36934  df-lhyp 37126  df-laut 37127  df-ldil 37242  df-ltrn 37243  df-trl 37297  df-tgrp 37881  df-tendo 37893  df-edring 37895  df-dveca 38141  df-disoa 38167  df-dvech 38217  df-dib 38277  df-dic 38311  df-dih 38367  df-doch 38486  df-djh 38533  df-lcdual 38725  df-mapd 38763  df-hvmap 38895  df-hdmap1 38931  df-hdmap 38932
This theorem is referenced by:  hdmaprnlem9N  38995  hdmaprnlem3eN  38996
  Copyright terms: Public domain W3C validator