Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hdmaprnlem3N Structured version   Visualization version   GIF version

Theorem hdmaprnlem3N 38431
Description: Part of proof of part 12 in [Baer] p. 49 line 15, T P. Our (𝑀‘(𝐿‘{((𝑆𝑢) 𝑠)})) is Baer's P, where P* = G(u'+s). (Contributed by NM, 27-May-2015.) (New usage is discouraged.)
Hypotheses
Ref Expression
hdmaprnlem1.h 𝐻 = (LHyp‘𝐾)
hdmaprnlem1.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
hdmaprnlem1.v 𝑉 = (Base‘𝑈)
hdmaprnlem1.n 𝑁 = (LSpan‘𝑈)
hdmaprnlem1.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
hdmaprnlem1.l 𝐿 = (LSpan‘𝐶)
hdmaprnlem1.m 𝑀 = ((mapd‘𝐾)‘𝑊)
hdmaprnlem1.s 𝑆 = ((HDMap‘𝐾)‘𝑊)
hdmaprnlem1.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
hdmaprnlem1.se (𝜑𝑠 ∈ (𝐷 ∖ {𝑄}))
hdmaprnlem1.ve (𝜑𝑣𝑉)
hdmaprnlem1.e (𝜑 → (𝑀‘(𝑁‘{𝑣})) = (𝐿‘{𝑠}))
hdmaprnlem1.ue (𝜑𝑢𝑉)
hdmaprnlem1.un (𝜑 → ¬ 𝑢 ∈ (𝑁‘{𝑣}))
hdmaprnlem1.d 𝐷 = (Base‘𝐶)
hdmaprnlem1.q 𝑄 = (0g𝐶)
hdmaprnlem1.o 0 = (0g𝑈)
hdmaprnlem1.a = (+g𝐶)
Assertion
Ref Expression
hdmaprnlem3N (𝜑 → (𝑁‘{𝑣}) ≠ (𝑀‘(𝐿‘{((𝑆𝑢) 𝑠)})))

Proof of Theorem hdmaprnlem3N
StepHypRef Expression
1 hdmaprnlem1.d . . . . 5 𝐷 = (Base‘𝐶)
2 hdmaprnlem1.l . . . . 5 𝐿 = (LSpan‘𝐶)
3 hdmaprnlem1.h . . . . . 6 𝐻 = (LHyp‘𝐾)
4 hdmaprnlem1.c . . . . . 6 𝐶 = ((LCDual‘𝐾)‘𝑊)
5 hdmaprnlem1.k . . . . . 6 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
63, 4, 5lcdlmod 38173 . . . . 5 (𝜑𝐶 ∈ LMod)
7 hdmaprnlem1.u . . . . . . 7 𝑈 = ((DVecH‘𝐾)‘𝑊)
8 hdmaprnlem1.v . . . . . . 7 𝑉 = (Base‘𝑈)
9 hdmaprnlem1.s . . . . . . 7 𝑆 = ((HDMap‘𝐾)‘𝑊)
10 hdmaprnlem1.ue . . . . . . 7 (𝜑𝑢𝑉)
113, 7, 8, 4, 1, 9, 5, 10hdmapcl 38411 . . . . . 6 (𝜑 → (𝑆𝑢) ∈ 𝐷)
12 hdmaprnlem1.se . . . . . . 7 (𝜑𝑠 ∈ (𝐷 ∖ {𝑄}))
1312eldifad 3843 . . . . . 6 (𝜑𝑠𝐷)
14 hdmaprnlem1.a . . . . . . 7 = (+g𝐶)
151, 14lmodvacl 19373 . . . . . 6 ((𝐶 ∈ LMod ∧ (𝑆𝑢) ∈ 𝐷𝑠𝐷) → ((𝑆𝑢) 𝑠) ∈ 𝐷)
166, 11, 13, 15syl3anc 1351 . . . . 5 (𝜑 → ((𝑆𝑢) 𝑠) ∈ 𝐷)
17 eqid 2778 . . . . . 6 (LSubSp‘𝐶) = (LSubSp‘𝐶)
181, 17, 2lspsncl 19474 . . . . . . 7 ((𝐶 ∈ LMod ∧ 𝑠𝐷) → (𝐿‘{𝑠}) ∈ (LSubSp‘𝐶))
196, 13, 18syl2anc 576 . . . . . 6 (𝜑 → (𝐿‘{𝑠}) ∈ (LSubSp‘𝐶))
201, 2lspsnid 19490 . . . . . . 7 ((𝐶 ∈ LMod ∧ 𝑠𝐷) → 𝑠 ∈ (𝐿‘{𝑠}))
216, 13, 20syl2anc 576 . . . . . 6 (𝜑𝑠 ∈ (𝐿‘{𝑠}))
22 hdmaprnlem1.q . . . . . . 7 𝑄 = (0g𝐶)
233, 4, 5lcdlvec 38172 . . . . . . 7 (𝜑𝐶 ∈ LVec)
24 hdmaprnlem1.o . . . . . . . 8 0 = (0g𝑈)
25 eqid 2778 . . . . . . . . 9 (LSubSp‘𝑈) = (LSubSp‘𝑈)
263, 7, 5dvhlmod 37691 . . . . . . . . 9 (𝜑𝑈 ∈ LMod)
27 hdmaprnlem1.ve . . . . . . . . . 10 (𝜑𝑣𝑉)
28 hdmaprnlem1.n . . . . . . . . . . 11 𝑁 = (LSpan‘𝑈)
298, 25, 28lspsncl 19474 . . . . . . . . . 10 ((𝑈 ∈ LMod ∧ 𝑣𝑉) → (𝑁‘{𝑣}) ∈ (LSubSp‘𝑈))
3026, 27, 29syl2anc 576 . . . . . . . . 9 (𝜑 → (𝑁‘{𝑣}) ∈ (LSubSp‘𝑈))
31 hdmaprnlem1.un . . . . . . . . 9 (𝜑 → ¬ 𝑢 ∈ (𝑁‘{𝑣}))
3224, 25, 26, 30, 10, 31lssneln0 19449 . . . . . . . 8 (𝜑𝑢 ∈ (𝑉 ∖ { 0 }))
333, 7, 8, 24, 4, 22, 1, 9, 5, 32hdmapnzcl 38426 . . . . . . 7 (𝜑 → (𝑆𝑢) ∈ (𝐷 ∖ {𝑄}))
34 hdmaprnlem1.m . . . . . . . 8 𝑀 = ((mapd‘𝐾)‘𝑊)
35 hdmaprnlem1.e . . . . . . . 8 (𝜑 → (𝑀‘(𝑁‘{𝑣})) = (𝐿‘{𝑠}))
363, 7, 8, 28, 4, 2, 34, 9, 5, 12, 27, 35, 10, 31hdmaprnlem1N 38430 . . . . . . 7 (𝜑 → (𝐿‘{(𝑆𝑢)}) ≠ (𝐿‘{𝑠}))
371, 22, 2, 23, 33, 13, 36lspsnne1 19614 . . . . . 6 (𝜑 → ¬ (𝑆𝑢) ∈ (𝐿‘{𝑠}))
381, 14, 17, 6, 19, 21, 11, 37lssvancl2 19442 . . . . 5 (𝜑 → ¬ ((𝑆𝑢) 𝑠) ∈ (𝐿‘{𝑠}))
391, 2, 6, 16, 13, 38lspsnne2 19615 . . . 4 (𝜑 → (𝐿‘{((𝑆𝑢) 𝑠)}) ≠ (𝐿‘{𝑠}))
4039necomd 3022 . . 3 (𝜑 → (𝐿‘{𝑠}) ≠ (𝐿‘{((𝑆𝑢) 𝑠)}))
411, 17, 2lspsncl 19474 . . . . . 6 ((𝐶 ∈ LMod ∧ ((𝑆𝑢) 𝑠) ∈ 𝐷) → (𝐿‘{((𝑆𝑢) 𝑠)}) ∈ (LSubSp‘𝐶))
426, 16, 41syl2anc 576 . . . . 5 (𝜑 → (𝐿‘{((𝑆𝑢) 𝑠)}) ∈ (LSubSp‘𝐶))
433, 34, 4, 17, 5mapdrn2 38232 . . . . 5 (𝜑 → ran 𝑀 = (LSubSp‘𝐶))
4442, 43eleqtrrd 2869 . . . 4 (𝜑 → (𝐿‘{((𝑆𝑢) 𝑠)}) ∈ ran 𝑀)
453, 34, 5, 44mapdcnvid2 38238 . . 3 (𝜑 → (𝑀‘(𝑀‘(𝐿‘{((𝑆𝑢) 𝑠)}))) = (𝐿‘{((𝑆𝑢) 𝑠)}))
4640, 35, 453netr4d 3044 . 2 (𝜑 → (𝑀‘(𝑁‘{𝑣})) ≠ (𝑀‘(𝑀‘(𝐿‘{((𝑆𝑢) 𝑠)}))))
473, 34, 7, 25, 5, 44mapdcnvcl 38233 . . . 4 (𝜑 → (𝑀‘(𝐿‘{((𝑆𝑢) 𝑠)})) ∈ (LSubSp‘𝑈))
483, 7, 25, 34, 5, 30, 47mapd11 38220 . . 3 (𝜑 → ((𝑀‘(𝑁‘{𝑣})) = (𝑀‘(𝑀‘(𝐿‘{((𝑆𝑢) 𝑠)}))) ↔ (𝑁‘{𝑣}) = (𝑀‘(𝐿‘{((𝑆𝑢) 𝑠)}))))
4948necon3bid 3011 . 2 (𝜑 → ((𝑀‘(𝑁‘{𝑣})) ≠ (𝑀‘(𝑀‘(𝐿‘{((𝑆𝑢) 𝑠)}))) ↔ (𝑁‘{𝑣}) ≠ (𝑀‘(𝐿‘{((𝑆𝑢) 𝑠)}))))
5046, 49mpbid 224 1 (𝜑 → (𝑁‘{𝑣}) ≠ (𝑀‘(𝐿‘{((𝑆𝑢) 𝑠)})))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 387   = wceq 1507  wcel 2050  wne 2967  cdif 3828  {csn 4442  ccnv 5407  ran crn 5409  cfv 6190  (class class class)co 6978  Basecbs 16342  +gcplusg 16424  0gc0g 16572  LModclmod 19359  LSubSpclss 19428  LSpanclspn 19468  HLchlt 35931  LHypclh 36565  DVecHcdvh 37659  LCDualclcd 38167  mapdcmpd 38205  HDMapchdma 38373
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2750  ax-rep 5050  ax-sep 5061  ax-nul 5068  ax-pow 5120  ax-pr 5187  ax-un 7281  ax-cnex 10393  ax-resscn 10394  ax-1cn 10395  ax-icn 10396  ax-addcl 10397  ax-addrcl 10398  ax-mulcl 10399  ax-mulrcl 10400  ax-mulcom 10401  ax-addass 10402  ax-mulass 10403  ax-distr 10404  ax-i2m1 10405  ax-1ne0 10406  ax-1rid 10407  ax-rnegex 10408  ax-rrecex 10409  ax-cnre 10410  ax-pre-lttri 10411  ax-pre-lttrn 10412  ax-pre-ltadd 10413  ax-pre-mulgt0 10414  ax-riotaBAD 35534
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-fal 1520  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2583  df-clab 2759  df-cleq 2771  df-clel 2846  df-nfc 2918  df-ne 2968  df-nel 3074  df-ral 3093  df-rex 3094  df-reu 3095  df-rmo 3096  df-rab 3097  df-v 3417  df-sbc 3684  df-csb 3789  df-dif 3834  df-un 3836  df-in 3838  df-ss 3845  df-pss 3847  df-nul 4181  df-if 4352  df-pw 4425  df-sn 4443  df-pr 4445  df-tp 4447  df-op 4449  df-ot 4451  df-uni 4714  df-int 4751  df-iun 4795  df-iin 4796  df-br 4931  df-opab 4993  df-mpt 5010  df-tr 5032  df-id 5313  df-eprel 5318  df-po 5327  df-so 5328  df-fr 5367  df-we 5369  df-xp 5414  df-rel 5415  df-cnv 5416  df-co 5417  df-dm 5418  df-rn 5419  df-res 5420  df-ima 5421  df-pred 5988  df-ord 6034  df-on 6035  df-lim 6036  df-suc 6037  df-iota 6154  df-fun 6192  df-fn 6193  df-f 6194  df-f1 6195  df-fo 6196  df-f1o 6197  df-fv 6198  df-riota 6939  df-ov 6981  df-oprab 6982  df-mpo 6983  df-of 7229  df-om 7399  df-1st 7503  df-2nd 7504  df-tpos 7697  df-undef 7744  df-wrecs 7752  df-recs 7814  df-rdg 7852  df-1o 7907  df-oadd 7911  df-er 8091  df-map 8210  df-en 8309  df-dom 8310  df-sdom 8311  df-fin 8312  df-pnf 10478  df-mnf 10479  df-xr 10480  df-ltxr 10481  df-le 10482  df-sub 10674  df-neg 10675  df-nn 11442  df-2 11506  df-3 11507  df-4 11508  df-5 11509  df-6 11510  df-n0 11711  df-z 11797  df-uz 12062  df-fz 12712  df-struct 16344  df-ndx 16345  df-slot 16346  df-base 16348  df-sets 16349  df-ress 16350  df-plusg 16437  df-mulr 16438  df-sca 16440  df-vsca 16441  df-0g 16574  df-mre 16718  df-mrc 16719  df-acs 16721  df-proset 17399  df-poset 17417  df-plt 17429  df-lub 17445  df-glb 17446  df-join 17447  df-meet 17448  df-p0 17510  df-p1 17511  df-lat 17517  df-clat 17579  df-mgm 17713  df-sgrp 17755  df-mnd 17766  df-submnd 17807  df-grp 17897  df-minusg 17898  df-sbg 17899  df-subg 18063  df-cntz 18221  df-oppg 18248  df-lsm 18525  df-cmn 18671  df-abl 18672  df-mgp 18966  df-ur 18978  df-ring 19025  df-oppr 19099  df-dvdsr 19117  df-unit 19118  df-invr 19148  df-dvr 19159  df-drng 19230  df-lmod 19361  df-lss 19429  df-lsp 19469  df-lvec 19600  df-lsatoms 35557  df-lshyp 35558  df-lcv 35600  df-lfl 35639  df-lkr 35667  df-ldual 35705  df-oposet 35757  df-ol 35759  df-oml 35760  df-covers 35847  df-ats 35848  df-atl 35879  df-cvlat 35903  df-hlat 35932  df-llines 36079  df-lplanes 36080  df-lvols 36081  df-lines 36082  df-psubsp 36084  df-pmap 36085  df-padd 36377  df-lhyp 36569  df-laut 36570  df-ldil 36685  df-ltrn 36686  df-trl 36740  df-tgrp 37324  df-tendo 37336  df-edring 37338  df-dveca 37584  df-disoa 37610  df-dvech 37660  df-dib 37720  df-dic 37754  df-dih 37810  df-doch 37929  df-djh 37976  df-lcdual 38168  df-mapd 38206  df-hvmap 38338  df-hdmap1 38374  df-hdmap 38375
This theorem is referenced by:  hdmaprnlem9N  38438  hdmaprnlem3eN  38439
  Copyright terms: Public domain W3C validator