Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hdmaprnlem3N Structured version   Visualization version   GIF version

Theorem hdmaprnlem3N 39092
Description: Part of proof of part 12 in [Baer] p. 49 line 15, T P. Our (𝑀‘(𝐿‘{((𝑆𝑢) 𝑠)})) is Baer's P, where P* = G(u'+s). (Contributed by NM, 27-May-2015.) (New usage is discouraged.)
Hypotheses
Ref Expression
hdmaprnlem1.h 𝐻 = (LHyp‘𝐾)
hdmaprnlem1.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
hdmaprnlem1.v 𝑉 = (Base‘𝑈)
hdmaprnlem1.n 𝑁 = (LSpan‘𝑈)
hdmaprnlem1.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
hdmaprnlem1.l 𝐿 = (LSpan‘𝐶)
hdmaprnlem1.m 𝑀 = ((mapd‘𝐾)‘𝑊)
hdmaprnlem1.s 𝑆 = ((HDMap‘𝐾)‘𝑊)
hdmaprnlem1.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
hdmaprnlem1.se (𝜑𝑠 ∈ (𝐷 ∖ {𝑄}))
hdmaprnlem1.ve (𝜑𝑣𝑉)
hdmaprnlem1.e (𝜑 → (𝑀‘(𝑁‘{𝑣})) = (𝐿‘{𝑠}))
hdmaprnlem1.ue (𝜑𝑢𝑉)
hdmaprnlem1.un (𝜑 → ¬ 𝑢 ∈ (𝑁‘{𝑣}))
hdmaprnlem1.d 𝐷 = (Base‘𝐶)
hdmaprnlem1.q 𝑄 = (0g𝐶)
hdmaprnlem1.o 0 = (0g𝑈)
hdmaprnlem1.a = (+g𝐶)
Assertion
Ref Expression
hdmaprnlem3N (𝜑 → (𝑁‘{𝑣}) ≠ (𝑀‘(𝐿‘{((𝑆𝑢) 𝑠)})))

Proof of Theorem hdmaprnlem3N
StepHypRef Expression
1 hdmaprnlem1.d . . . . 5 𝐷 = (Base‘𝐶)
2 hdmaprnlem1.l . . . . 5 𝐿 = (LSpan‘𝐶)
3 hdmaprnlem1.h . . . . . 6 𝐻 = (LHyp‘𝐾)
4 hdmaprnlem1.c . . . . . 6 𝐶 = ((LCDual‘𝐾)‘𝑊)
5 hdmaprnlem1.k . . . . . 6 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
63, 4, 5lcdlmod 38834 . . . . 5 (𝜑𝐶 ∈ LMod)
7 hdmaprnlem1.u . . . . . . 7 𝑈 = ((DVecH‘𝐾)‘𝑊)
8 hdmaprnlem1.v . . . . . . 7 𝑉 = (Base‘𝑈)
9 hdmaprnlem1.s . . . . . . 7 𝑆 = ((HDMap‘𝐾)‘𝑊)
10 hdmaprnlem1.ue . . . . . . 7 (𝜑𝑢𝑉)
113, 7, 8, 4, 1, 9, 5, 10hdmapcl 39072 . . . . . 6 (𝜑 → (𝑆𝑢) ∈ 𝐷)
12 hdmaprnlem1.se . . . . . . 7 (𝜑𝑠 ∈ (𝐷 ∖ {𝑄}))
1312eldifad 3932 . . . . . 6 (𝜑𝑠𝐷)
14 hdmaprnlem1.a . . . . . . 7 = (+g𝐶)
151, 14lmodvacl 19651 . . . . . 6 ((𝐶 ∈ LMod ∧ (𝑆𝑢) ∈ 𝐷𝑠𝐷) → ((𝑆𝑢) 𝑠) ∈ 𝐷)
166, 11, 13, 15syl3anc 1368 . . . . 5 (𝜑 → ((𝑆𝑢) 𝑠) ∈ 𝐷)
17 eqid 2824 . . . . . 6 (LSubSp‘𝐶) = (LSubSp‘𝐶)
181, 17, 2lspsncl 19752 . . . . . . 7 ((𝐶 ∈ LMod ∧ 𝑠𝐷) → (𝐿‘{𝑠}) ∈ (LSubSp‘𝐶))
196, 13, 18syl2anc 587 . . . . . 6 (𝜑 → (𝐿‘{𝑠}) ∈ (LSubSp‘𝐶))
201, 2lspsnid 19768 . . . . . . 7 ((𝐶 ∈ LMod ∧ 𝑠𝐷) → 𝑠 ∈ (𝐿‘{𝑠}))
216, 13, 20syl2anc 587 . . . . . 6 (𝜑𝑠 ∈ (𝐿‘{𝑠}))
22 hdmaprnlem1.q . . . . . . 7 𝑄 = (0g𝐶)
233, 4, 5lcdlvec 38833 . . . . . . 7 (𝜑𝐶 ∈ LVec)
24 hdmaprnlem1.o . . . . . . . 8 0 = (0g𝑈)
25 eqid 2824 . . . . . . . . 9 (LSubSp‘𝑈) = (LSubSp‘𝑈)
263, 7, 5dvhlmod 38352 . . . . . . . . 9 (𝜑𝑈 ∈ LMod)
27 hdmaprnlem1.ve . . . . . . . . . 10 (𝜑𝑣𝑉)
28 hdmaprnlem1.n . . . . . . . . . . 11 𝑁 = (LSpan‘𝑈)
298, 25, 28lspsncl 19752 . . . . . . . . . 10 ((𝑈 ∈ LMod ∧ 𝑣𝑉) → (𝑁‘{𝑣}) ∈ (LSubSp‘𝑈))
3026, 27, 29syl2anc 587 . . . . . . . . 9 (𝜑 → (𝑁‘{𝑣}) ∈ (LSubSp‘𝑈))
31 hdmaprnlem1.un . . . . . . . . 9 (𝜑 → ¬ 𝑢 ∈ (𝑁‘{𝑣}))
3224, 25, 26, 30, 10, 31lssneln0 19727 . . . . . . . 8 (𝜑𝑢 ∈ (𝑉 ∖ { 0 }))
333, 7, 8, 24, 4, 22, 1, 9, 5, 32hdmapnzcl 39087 . . . . . . 7 (𝜑 → (𝑆𝑢) ∈ (𝐷 ∖ {𝑄}))
34 hdmaprnlem1.m . . . . . . . 8 𝑀 = ((mapd‘𝐾)‘𝑊)
35 hdmaprnlem1.e . . . . . . . 8 (𝜑 → (𝑀‘(𝑁‘{𝑣})) = (𝐿‘{𝑠}))
363, 7, 8, 28, 4, 2, 34, 9, 5, 12, 27, 35, 10, 31hdmaprnlem1N 39091 . . . . . . 7 (𝜑 → (𝐿‘{(𝑆𝑢)}) ≠ (𝐿‘{𝑠}))
371, 22, 2, 23, 33, 13, 36lspsnne1 19892 . . . . . 6 (𝜑 → ¬ (𝑆𝑢) ∈ (𝐿‘{𝑠}))
381, 14, 17, 6, 19, 21, 11, 37lssvancl2 19720 . . . . 5 (𝜑 → ¬ ((𝑆𝑢) 𝑠) ∈ (𝐿‘{𝑠}))
391, 2, 6, 16, 13, 38lspsnne2 19893 . . . 4 (𝜑 → (𝐿‘{((𝑆𝑢) 𝑠)}) ≠ (𝐿‘{𝑠}))
4039necomd 3069 . . 3 (𝜑 → (𝐿‘{𝑠}) ≠ (𝐿‘{((𝑆𝑢) 𝑠)}))
411, 17, 2lspsncl 19752 . . . . . 6 ((𝐶 ∈ LMod ∧ ((𝑆𝑢) 𝑠) ∈ 𝐷) → (𝐿‘{((𝑆𝑢) 𝑠)}) ∈ (LSubSp‘𝐶))
426, 16, 41syl2anc 587 . . . . 5 (𝜑 → (𝐿‘{((𝑆𝑢) 𝑠)}) ∈ (LSubSp‘𝐶))
433, 34, 4, 17, 5mapdrn2 38893 . . . . 5 (𝜑 → ran 𝑀 = (LSubSp‘𝐶))
4442, 43eleqtrrd 2919 . . . 4 (𝜑 → (𝐿‘{((𝑆𝑢) 𝑠)}) ∈ ran 𝑀)
453, 34, 5, 44mapdcnvid2 38899 . . 3 (𝜑 → (𝑀‘(𝑀‘(𝐿‘{((𝑆𝑢) 𝑠)}))) = (𝐿‘{((𝑆𝑢) 𝑠)}))
4640, 35, 453netr4d 3091 . 2 (𝜑 → (𝑀‘(𝑁‘{𝑣})) ≠ (𝑀‘(𝑀‘(𝐿‘{((𝑆𝑢) 𝑠)}))))
473, 34, 7, 25, 5, 44mapdcnvcl 38894 . . . 4 (𝜑 → (𝑀‘(𝐿‘{((𝑆𝑢) 𝑠)})) ∈ (LSubSp‘𝑈))
483, 7, 25, 34, 5, 30, 47mapd11 38881 . . 3 (𝜑 → ((𝑀‘(𝑁‘{𝑣})) = (𝑀‘(𝑀‘(𝐿‘{((𝑆𝑢) 𝑠)}))) ↔ (𝑁‘{𝑣}) = (𝑀‘(𝐿‘{((𝑆𝑢) 𝑠)}))))
4948necon3bid 3058 . 2 (𝜑 → ((𝑀‘(𝑁‘{𝑣})) ≠ (𝑀‘(𝑀‘(𝐿‘{((𝑆𝑢) 𝑠)}))) ↔ (𝑁‘{𝑣}) ≠ (𝑀‘(𝐿‘{((𝑆𝑢) 𝑠)}))))
5046, 49mpbid 235 1 (𝜑 → (𝑁‘{𝑣}) ≠ (𝑀‘(𝐿‘{((𝑆𝑢) 𝑠)})))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399   = wceq 1538  wcel 2115  wne 3014  cdif 3917  {csn 4551  ccnv 5542  ran crn 5544  cfv 6344  (class class class)co 7150  Basecbs 16486  +gcplusg 16568  0gc0g 16716  LModclmod 19637  LSubSpclss 19706  LSpanclspn 19746  HLchlt 36592  LHypclh 37226  DVecHcdvh 38320  LCDualclcd 38828  mapdcmpd 38866  HDMapchdma 39034
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5177  ax-sep 5190  ax-nul 5197  ax-pow 5254  ax-pr 5318  ax-un 7456  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613  ax-riotaBAD 36195
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3483  df-sbc 3760  df-csb 3868  df-dif 3923  df-un 3925  df-in 3927  df-ss 3937  df-pss 3939  df-nul 4278  df-if 4452  df-pw 4525  df-sn 4552  df-pr 4554  df-tp 4556  df-op 4558  df-ot 4560  df-uni 4826  df-int 4864  df-iun 4908  df-iin 4909  df-br 5054  df-opab 5116  df-mpt 5134  df-tr 5160  df-id 5448  df-eprel 5453  df-po 5462  df-so 5463  df-fr 5502  df-we 5504  df-xp 5549  df-rel 5550  df-cnv 5551  df-co 5552  df-dm 5553  df-rn 5554  df-res 5555  df-ima 5556  df-pred 6136  df-ord 6182  df-on 6183  df-lim 6184  df-suc 6185  df-iota 6303  df-fun 6346  df-fn 6347  df-f 6348  df-f1 6349  df-fo 6350  df-f1o 6351  df-fv 6352  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-of 7404  df-om 7576  df-1st 7685  df-2nd 7686  df-tpos 7889  df-undef 7936  df-wrecs 7944  df-recs 8005  df-rdg 8043  df-1o 8099  df-oadd 8103  df-er 8286  df-map 8405  df-en 8507  df-dom 8508  df-sdom 8509  df-fin 8510  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-nn 11638  df-2 11700  df-3 11701  df-4 11702  df-5 11703  df-6 11704  df-n0 11898  df-z 11982  df-uz 12244  df-fz 12898  df-struct 16488  df-ndx 16489  df-slot 16490  df-base 16492  df-sets 16493  df-ress 16494  df-plusg 16581  df-mulr 16582  df-sca 16584  df-vsca 16585  df-0g 16718  df-mre 16860  df-mrc 16861  df-acs 16863  df-proset 17541  df-poset 17559  df-plt 17571  df-lub 17587  df-glb 17588  df-join 17589  df-meet 17590  df-p0 17652  df-p1 17653  df-lat 17659  df-clat 17721  df-mgm 17855  df-sgrp 17904  df-mnd 17915  df-submnd 17960  df-grp 18109  df-minusg 18110  df-sbg 18111  df-subg 18279  df-cntz 18450  df-oppg 18477  df-lsm 18764  df-cmn 18911  df-abl 18912  df-mgp 19243  df-ur 19255  df-ring 19302  df-oppr 19379  df-dvdsr 19397  df-unit 19398  df-invr 19428  df-dvr 19439  df-drng 19507  df-lmod 19639  df-lss 19707  df-lsp 19747  df-lvec 19878  df-lsatoms 36218  df-lshyp 36219  df-lcv 36261  df-lfl 36300  df-lkr 36328  df-ldual 36366  df-oposet 36418  df-ol 36420  df-oml 36421  df-covers 36508  df-ats 36509  df-atl 36540  df-cvlat 36564  df-hlat 36593  df-llines 36740  df-lplanes 36741  df-lvols 36742  df-lines 36743  df-psubsp 36745  df-pmap 36746  df-padd 37038  df-lhyp 37230  df-laut 37231  df-ldil 37346  df-ltrn 37347  df-trl 37401  df-tgrp 37985  df-tendo 37997  df-edring 37999  df-dveca 38245  df-disoa 38271  df-dvech 38321  df-dib 38381  df-dic 38415  df-dih 38471  df-doch 38590  df-djh 38637  df-lcdual 38829  df-mapd 38867  df-hvmap 38999  df-hdmap1 39035  df-hdmap 39036
This theorem is referenced by:  hdmaprnlem9N  39099  hdmaprnlem3eN  39100
  Copyright terms: Public domain W3C validator