Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hdmaprnlem3N Structured version   Visualization version   GIF version

Theorem hdmaprnlem3N 41560
Description: Part of proof of part 12 in [Baer] p. 49 line 15, T P. Our (𝑀‘(𝐿‘{((𝑆𝑢) 𝑠)})) is Baer's P, where P* = G(u'+s). (Contributed by NM, 27-May-2015.) (New usage is discouraged.)
Hypotheses
Ref Expression
hdmaprnlem1.h 𝐻 = (LHyp‘𝐾)
hdmaprnlem1.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
hdmaprnlem1.v 𝑉 = (Base‘𝑈)
hdmaprnlem1.n 𝑁 = (LSpan‘𝑈)
hdmaprnlem1.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
hdmaprnlem1.l 𝐿 = (LSpan‘𝐶)
hdmaprnlem1.m 𝑀 = ((mapd‘𝐾)‘𝑊)
hdmaprnlem1.s 𝑆 = ((HDMap‘𝐾)‘𝑊)
hdmaprnlem1.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
hdmaprnlem1.se (𝜑𝑠 ∈ (𝐷 ∖ {𝑄}))
hdmaprnlem1.ve (𝜑𝑣𝑉)
hdmaprnlem1.e (𝜑 → (𝑀‘(𝑁‘{𝑣})) = (𝐿‘{𝑠}))
hdmaprnlem1.ue (𝜑𝑢𝑉)
hdmaprnlem1.un (𝜑 → ¬ 𝑢 ∈ (𝑁‘{𝑣}))
hdmaprnlem1.d 𝐷 = (Base‘𝐶)
hdmaprnlem1.q 𝑄 = (0g𝐶)
hdmaprnlem1.o 0 = (0g𝑈)
hdmaprnlem1.a = (+g𝐶)
Assertion
Ref Expression
hdmaprnlem3N (𝜑 → (𝑁‘{𝑣}) ≠ (𝑀‘(𝐿‘{((𝑆𝑢) 𝑠)})))

Proof of Theorem hdmaprnlem3N
StepHypRef Expression
1 hdmaprnlem1.d . . . . 5 𝐷 = (Base‘𝐶)
2 hdmaprnlem1.l . . . . 5 𝐿 = (LSpan‘𝐶)
3 hdmaprnlem1.h . . . . . 6 𝐻 = (LHyp‘𝐾)
4 hdmaprnlem1.c . . . . . 6 𝐶 = ((LCDual‘𝐾)‘𝑊)
5 hdmaprnlem1.k . . . . . 6 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
63, 4, 5lcdlmod 41302 . . . . 5 (𝜑𝐶 ∈ LMod)
7 hdmaprnlem1.u . . . . . . 7 𝑈 = ((DVecH‘𝐾)‘𝑊)
8 hdmaprnlem1.v . . . . . . 7 𝑉 = (Base‘𝑈)
9 hdmaprnlem1.s . . . . . . 7 𝑆 = ((HDMap‘𝐾)‘𝑊)
10 hdmaprnlem1.ue . . . . . . 7 (𝜑𝑢𝑉)
113, 7, 8, 4, 1, 9, 5, 10hdmapcl 41540 . . . . . 6 (𝜑 → (𝑆𝑢) ∈ 𝐷)
12 hdmaprnlem1.se . . . . . . 7 (𝜑𝑠 ∈ (𝐷 ∖ {𝑄}))
1312eldifad 3959 . . . . . 6 (𝜑𝑠𝐷)
14 hdmaprnlem1.a . . . . . . 7 = (+g𝐶)
151, 14lmodvacl 20845 . . . . . 6 ((𝐶 ∈ LMod ∧ (𝑆𝑢) ∈ 𝐷𝑠𝐷) → ((𝑆𝑢) 𝑠) ∈ 𝐷)
166, 11, 13, 15syl3anc 1368 . . . . 5 (𝜑 → ((𝑆𝑢) 𝑠) ∈ 𝐷)
17 eqid 2726 . . . . . 6 (LSubSp‘𝐶) = (LSubSp‘𝐶)
181, 17, 2lspsncl 20948 . . . . . . 7 ((𝐶 ∈ LMod ∧ 𝑠𝐷) → (𝐿‘{𝑠}) ∈ (LSubSp‘𝐶))
196, 13, 18syl2anc 582 . . . . . 6 (𝜑 → (𝐿‘{𝑠}) ∈ (LSubSp‘𝐶))
201, 2lspsnid 20964 . . . . . . 7 ((𝐶 ∈ LMod ∧ 𝑠𝐷) → 𝑠 ∈ (𝐿‘{𝑠}))
216, 13, 20syl2anc 582 . . . . . 6 (𝜑𝑠 ∈ (𝐿‘{𝑠}))
22 hdmaprnlem1.q . . . . . . 7 𝑄 = (0g𝐶)
233, 4, 5lcdlvec 41301 . . . . . . 7 (𝜑𝐶 ∈ LVec)
24 hdmaprnlem1.o . . . . . . . 8 0 = (0g𝑈)
25 eqid 2726 . . . . . . . . 9 (LSubSp‘𝑈) = (LSubSp‘𝑈)
263, 7, 5dvhlmod 40820 . . . . . . . . 9 (𝜑𝑈 ∈ LMod)
27 hdmaprnlem1.ve . . . . . . . . . 10 (𝜑𝑣𝑉)
28 hdmaprnlem1.n . . . . . . . . . . 11 𝑁 = (LSpan‘𝑈)
298, 25, 28lspsncl 20948 . . . . . . . . . 10 ((𝑈 ∈ LMod ∧ 𝑣𝑉) → (𝑁‘{𝑣}) ∈ (LSubSp‘𝑈))
3026, 27, 29syl2anc 582 . . . . . . . . 9 (𝜑 → (𝑁‘{𝑣}) ∈ (LSubSp‘𝑈))
31 hdmaprnlem1.un . . . . . . . . 9 (𝜑 → ¬ 𝑢 ∈ (𝑁‘{𝑣}))
3224, 25, 26, 30, 10, 31lssneln0 20924 . . . . . . . 8 (𝜑𝑢 ∈ (𝑉 ∖ { 0 }))
333, 7, 8, 24, 4, 22, 1, 9, 5, 32hdmapnzcl 41555 . . . . . . 7 (𝜑 → (𝑆𝑢) ∈ (𝐷 ∖ {𝑄}))
34 hdmaprnlem1.m . . . . . . . 8 𝑀 = ((mapd‘𝐾)‘𝑊)
35 hdmaprnlem1.e . . . . . . . 8 (𝜑 → (𝑀‘(𝑁‘{𝑣})) = (𝐿‘{𝑠}))
363, 7, 8, 28, 4, 2, 34, 9, 5, 12, 27, 35, 10, 31hdmaprnlem1N 41559 . . . . . . 7 (𝜑 → (𝐿‘{(𝑆𝑢)}) ≠ (𝐿‘{𝑠}))
371, 22, 2, 23, 33, 13, 36lspsnne1 21092 . . . . . 6 (𝜑 → ¬ (𝑆𝑢) ∈ (𝐿‘{𝑠}))
381, 14, 17, 6, 19, 21, 11, 37lssvancl2 20917 . . . . 5 (𝜑 → ¬ ((𝑆𝑢) 𝑠) ∈ (𝐿‘{𝑠}))
391, 2, 6, 16, 13, 38lspsnne2 21093 . . . 4 (𝜑 → (𝐿‘{((𝑆𝑢) 𝑠)}) ≠ (𝐿‘{𝑠}))
4039necomd 2986 . . 3 (𝜑 → (𝐿‘{𝑠}) ≠ (𝐿‘{((𝑆𝑢) 𝑠)}))
411, 17, 2lspsncl 20948 . . . . . 6 ((𝐶 ∈ LMod ∧ ((𝑆𝑢) 𝑠) ∈ 𝐷) → (𝐿‘{((𝑆𝑢) 𝑠)}) ∈ (LSubSp‘𝐶))
426, 16, 41syl2anc 582 . . . . 5 (𝜑 → (𝐿‘{((𝑆𝑢) 𝑠)}) ∈ (LSubSp‘𝐶))
433, 34, 4, 17, 5mapdrn2 41361 . . . . 5 (𝜑 → ran 𝑀 = (LSubSp‘𝐶))
4442, 43eleqtrrd 2829 . . . 4 (𝜑 → (𝐿‘{((𝑆𝑢) 𝑠)}) ∈ ran 𝑀)
453, 34, 5, 44mapdcnvid2 41367 . . 3 (𝜑 → (𝑀‘(𝑀‘(𝐿‘{((𝑆𝑢) 𝑠)}))) = (𝐿‘{((𝑆𝑢) 𝑠)}))
4640, 35, 453netr4d 3008 . 2 (𝜑 → (𝑀‘(𝑁‘{𝑣})) ≠ (𝑀‘(𝑀‘(𝐿‘{((𝑆𝑢) 𝑠)}))))
473, 34, 7, 25, 5, 44mapdcnvcl 41362 . . . 4 (𝜑 → (𝑀‘(𝐿‘{((𝑆𝑢) 𝑠)})) ∈ (LSubSp‘𝑈))
483, 7, 25, 34, 5, 30, 47mapd11 41349 . . 3 (𝜑 → ((𝑀‘(𝑁‘{𝑣})) = (𝑀‘(𝑀‘(𝐿‘{((𝑆𝑢) 𝑠)}))) ↔ (𝑁‘{𝑣}) = (𝑀‘(𝐿‘{((𝑆𝑢) 𝑠)}))))
4948necon3bid 2975 . 2 (𝜑 → ((𝑀‘(𝑁‘{𝑣})) ≠ (𝑀‘(𝑀‘(𝐿‘{((𝑆𝑢) 𝑠)}))) ↔ (𝑁‘{𝑣}) ≠ (𝑀‘(𝐿‘{((𝑆𝑢) 𝑠)}))))
5046, 49mpbid 231 1 (𝜑 → (𝑁‘{𝑣}) ≠ (𝑀‘(𝐿‘{((𝑆𝑢) 𝑠)})))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 394   = wceq 1534  wcel 2099  wne 2930  cdif 3944  {csn 4624  ccnv 5672  ran crn 5674  cfv 6544  (class class class)co 7414  Basecbs 17206  +gcplusg 17259  0gc0g 17447  LModclmod 20830  LSubSpclss 20902  LSpanclspn 20942  HLchlt 39059  LHypclh 39694  DVecHcdvh 40788  LCDualclcd 41296  mapdcmpd 41334  HDMapchdma 41502
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5281  ax-sep 5295  ax-nul 5302  ax-pow 5360  ax-pr 5424  ax-un 7736  ax-cnex 11203  ax-resscn 11204  ax-1cn 11205  ax-icn 11206  ax-addcl 11207  ax-addrcl 11208  ax-mulcl 11209  ax-mulrcl 11210  ax-mulcom 11211  ax-addass 11212  ax-mulass 11213  ax-distr 11214  ax-i2m1 11215  ax-1ne0 11216  ax-1rid 11217  ax-rnegex 11218  ax-rrecex 11219  ax-cnre 11220  ax-pre-lttri 11221  ax-pre-lttrn 11222  ax-pre-ltadd 11223  ax-pre-mulgt0 11224  ax-riotaBAD 38662
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3365  df-reu 3366  df-rab 3421  df-v 3465  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4324  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-tp 4629  df-op 4631  df-ot 4633  df-uni 4907  df-int 4948  df-iun 4996  df-iin 4997  df-br 5145  df-opab 5207  df-mpt 5228  df-tr 5262  df-id 5571  df-eprel 5577  df-po 5585  df-so 5586  df-fr 5628  df-we 5630  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-res 5685  df-ima 5686  df-pred 6303  df-ord 6369  df-on 6370  df-lim 6371  df-suc 6372  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-of 7680  df-om 7867  df-1st 7993  df-2nd 7994  df-tpos 8231  df-undef 8278  df-frecs 8286  df-wrecs 8317  df-recs 8391  df-rdg 8430  df-1o 8486  df-2o 8487  df-er 8724  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-pnf 11289  df-mnf 11290  df-xr 11291  df-ltxr 11292  df-le 11293  df-sub 11485  df-neg 11486  df-nn 12257  df-2 12319  df-3 12320  df-4 12321  df-5 12322  df-6 12323  df-n0 12517  df-z 12603  df-uz 12867  df-fz 13531  df-struct 17142  df-sets 17159  df-slot 17177  df-ndx 17189  df-base 17207  df-ress 17236  df-plusg 17272  df-mulr 17273  df-sca 17275  df-vsca 17276  df-0g 17449  df-mre 17592  df-mrc 17593  df-acs 17595  df-proset 18313  df-poset 18331  df-plt 18348  df-lub 18364  df-glb 18365  df-join 18366  df-meet 18367  df-p0 18443  df-p1 18444  df-lat 18450  df-clat 18517  df-mgm 18626  df-sgrp 18705  df-mnd 18721  df-submnd 18767  df-grp 18924  df-minusg 18925  df-sbg 18926  df-subg 19111  df-cntz 19305  df-oppg 19334  df-lsm 19628  df-cmn 19774  df-abl 19775  df-mgp 20112  df-rng 20130  df-ur 20159  df-ring 20212  df-oppr 20310  df-dvdsr 20333  df-unit 20334  df-invr 20364  df-dvr 20377  df-nzr 20489  df-rlreg 20666  df-domn 20667  df-drng 20703  df-lmod 20832  df-lss 20903  df-lsp 20943  df-lvec 21075  df-lsatoms 38685  df-lshyp 38686  df-lcv 38728  df-lfl 38767  df-lkr 38795  df-ldual 38833  df-oposet 38885  df-ol 38887  df-oml 38888  df-covers 38975  df-ats 38976  df-atl 39007  df-cvlat 39031  df-hlat 39060  df-llines 39208  df-lplanes 39209  df-lvols 39210  df-lines 39211  df-psubsp 39213  df-pmap 39214  df-padd 39506  df-lhyp 39698  df-laut 39699  df-ldil 39814  df-ltrn 39815  df-trl 39869  df-tgrp 40453  df-tendo 40465  df-edring 40467  df-dveca 40713  df-disoa 40739  df-dvech 40789  df-dib 40849  df-dic 40883  df-dih 40939  df-doch 41058  df-djh 41105  df-lcdual 41297  df-mapd 41335  df-hvmap 41467  df-hdmap1 41503  df-hdmap 41504
This theorem is referenced by:  hdmaprnlem9N  41567  hdmaprnlem3eN  41568
  Copyright terms: Public domain W3C validator