Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hdmaprnlem3N Structured version   Visualization version   GIF version

Theorem hdmaprnlem3N 41895
Description: Part of proof of part 12 in [Baer] p. 49 line 15, T P. Our (𝑀‘(𝐿‘{((𝑆𝑢) 𝑠)})) is Baer's P, where P* = G(u'+s). (Contributed by NM, 27-May-2015.) (New usage is discouraged.)
Hypotheses
Ref Expression
hdmaprnlem1.h 𝐻 = (LHyp‘𝐾)
hdmaprnlem1.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
hdmaprnlem1.v 𝑉 = (Base‘𝑈)
hdmaprnlem1.n 𝑁 = (LSpan‘𝑈)
hdmaprnlem1.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
hdmaprnlem1.l 𝐿 = (LSpan‘𝐶)
hdmaprnlem1.m 𝑀 = ((mapd‘𝐾)‘𝑊)
hdmaprnlem1.s 𝑆 = ((HDMap‘𝐾)‘𝑊)
hdmaprnlem1.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
hdmaprnlem1.se (𝜑𝑠 ∈ (𝐷 ∖ {𝑄}))
hdmaprnlem1.ve (𝜑𝑣𝑉)
hdmaprnlem1.e (𝜑 → (𝑀‘(𝑁‘{𝑣})) = (𝐿‘{𝑠}))
hdmaprnlem1.ue (𝜑𝑢𝑉)
hdmaprnlem1.un (𝜑 → ¬ 𝑢 ∈ (𝑁‘{𝑣}))
hdmaprnlem1.d 𝐷 = (Base‘𝐶)
hdmaprnlem1.q 𝑄 = (0g𝐶)
hdmaprnlem1.o 0 = (0g𝑈)
hdmaprnlem1.a = (+g𝐶)
Assertion
Ref Expression
hdmaprnlem3N (𝜑 → (𝑁‘{𝑣}) ≠ (𝑀‘(𝐿‘{((𝑆𝑢) 𝑠)})))

Proof of Theorem hdmaprnlem3N
StepHypRef Expression
1 hdmaprnlem1.d . . . . 5 𝐷 = (Base‘𝐶)
2 hdmaprnlem1.l . . . . 5 𝐿 = (LSpan‘𝐶)
3 hdmaprnlem1.h . . . . . 6 𝐻 = (LHyp‘𝐾)
4 hdmaprnlem1.c . . . . . 6 𝐶 = ((LCDual‘𝐾)‘𝑊)
5 hdmaprnlem1.k . . . . . 6 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
63, 4, 5lcdlmod 41637 . . . . 5 (𝜑𝐶 ∈ LMod)
7 hdmaprnlem1.u . . . . . . 7 𝑈 = ((DVecH‘𝐾)‘𝑊)
8 hdmaprnlem1.v . . . . . . 7 𝑉 = (Base‘𝑈)
9 hdmaprnlem1.s . . . . . . 7 𝑆 = ((HDMap‘𝐾)‘𝑊)
10 hdmaprnlem1.ue . . . . . . 7 (𝜑𝑢𝑉)
113, 7, 8, 4, 1, 9, 5, 10hdmapcl 41875 . . . . . 6 (𝜑 → (𝑆𝑢) ∈ 𝐷)
12 hdmaprnlem1.se . . . . . . 7 (𝜑𝑠 ∈ (𝐷 ∖ {𝑄}))
1312eldifad 3914 . . . . . 6 (𝜑𝑠𝐷)
14 hdmaprnlem1.a . . . . . . 7 = (+g𝐶)
151, 14lmodvacl 20809 . . . . . 6 ((𝐶 ∈ LMod ∧ (𝑆𝑢) ∈ 𝐷𝑠𝐷) → ((𝑆𝑢) 𝑠) ∈ 𝐷)
166, 11, 13, 15syl3anc 1373 . . . . 5 (𝜑 → ((𝑆𝑢) 𝑠) ∈ 𝐷)
17 eqid 2731 . . . . . 6 (LSubSp‘𝐶) = (LSubSp‘𝐶)
181, 17, 2lspsncl 20911 . . . . . . 7 ((𝐶 ∈ LMod ∧ 𝑠𝐷) → (𝐿‘{𝑠}) ∈ (LSubSp‘𝐶))
196, 13, 18syl2anc 584 . . . . . 6 (𝜑 → (𝐿‘{𝑠}) ∈ (LSubSp‘𝐶))
201, 2lspsnid 20927 . . . . . . 7 ((𝐶 ∈ LMod ∧ 𝑠𝐷) → 𝑠 ∈ (𝐿‘{𝑠}))
216, 13, 20syl2anc 584 . . . . . 6 (𝜑𝑠 ∈ (𝐿‘{𝑠}))
22 hdmaprnlem1.q . . . . . . 7 𝑄 = (0g𝐶)
233, 4, 5lcdlvec 41636 . . . . . . 7 (𝜑𝐶 ∈ LVec)
24 hdmaprnlem1.o . . . . . . . 8 0 = (0g𝑈)
25 eqid 2731 . . . . . . . . 9 (LSubSp‘𝑈) = (LSubSp‘𝑈)
263, 7, 5dvhlmod 41155 . . . . . . . . 9 (𝜑𝑈 ∈ LMod)
27 hdmaprnlem1.ve . . . . . . . . . 10 (𝜑𝑣𝑉)
28 hdmaprnlem1.n . . . . . . . . . . 11 𝑁 = (LSpan‘𝑈)
298, 25, 28lspsncl 20911 . . . . . . . . . 10 ((𝑈 ∈ LMod ∧ 𝑣𝑉) → (𝑁‘{𝑣}) ∈ (LSubSp‘𝑈))
3026, 27, 29syl2anc 584 . . . . . . . . 9 (𝜑 → (𝑁‘{𝑣}) ∈ (LSubSp‘𝑈))
31 hdmaprnlem1.un . . . . . . . . 9 (𝜑 → ¬ 𝑢 ∈ (𝑁‘{𝑣}))
3224, 25, 26, 30, 10, 31lssneln0 20887 . . . . . . . 8 (𝜑𝑢 ∈ (𝑉 ∖ { 0 }))
333, 7, 8, 24, 4, 22, 1, 9, 5, 32hdmapnzcl 41890 . . . . . . 7 (𝜑 → (𝑆𝑢) ∈ (𝐷 ∖ {𝑄}))
34 hdmaprnlem1.m . . . . . . . 8 𝑀 = ((mapd‘𝐾)‘𝑊)
35 hdmaprnlem1.e . . . . . . . 8 (𝜑 → (𝑀‘(𝑁‘{𝑣})) = (𝐿‘{𝑠}))
363, 7, 8, 28, 4, 2, 34, 9, 5, 12, 27, 35, 10, 31hdmaprnlem1N 41894 . . . . . . 7 (𝜑 → (𝐿‘{(𝑆𝑢)}) ≠ (𝐿‘{𝑠}))
371, 22, 2, 23, 33, 13, 36lspsnne1 21055 . . . . . 6 (𝜑 → ¬ (𝑆𝑢) ∈ (𝐿‘{𝑠}))
381, 14, 17, 6, 19, 21, 11, 37lssvancl2 20880 . . . . 5 (𝜑 → ¬ ((𝑆𝑢) 𝑠) ∈ (𝐿‘{𝑠}))
391, 2, 6, 16, 13, 38lspsnne2 21056 . . . 4 (𝜑 → (𝐿‘{((𝑆𝑢) 𝑠)}) ≠ (𝐿‘{𝑠}))
4039necomd 2983 . . 3 (𝜑 → (𝐿‘{𝑠}) ≠ (𝐿‘{((𝑆𝑢) 𝑠)}))
411, 17, 2lspsncl 20911 . . . . . 6 ((𝐶 ∈ LMod ∧ ((𝑆𝑢) 𝑠) ∈ 𝐷) → (𝐿‘{((𝑆𝑢) 𝑠)}) ∈ (LSubSp‘𝐶))
426, 16, 41syl2anc 584 . . . . 5 (𝜑 → (𝐿‘{((𝑆𝑢) 𝑠)}) ∈ (LSubSp‘𝐶))
433, 34, 4, 17, 5mapdrn2 41696 . . . . 5 (𝜑 → ran 𝑀 = (LSubSp‘𝐶))
4442, 43eleqtrrd 2834 . . . 4 (𝜑 → (𝐿‘{((𝑆𝑢) 𝑠)}) ∈ ran 𝑀)
453, 34, 5, 44mapdcnvid2 41702 . . 3 (𝜑 → (𝑀‘(𝑀‘(𝐿‘{((𝑆𝑢) 𝑠)}))) = (𝐿‘{((𝑆𝑢) 𝑠)}))
4640, 35, 453netr4d 3005 . 2 (𝜑 → (𝑀‘(𝑁‘{𝑣})) ≠ (𝑀‘(𝑀‘(𝐿‘{((𝑆𝑢) 𝑠)}))))
473, 34, 7, 25, 5, 44mapdcnvcl 41697 . . . 4 (𝜑 → (𝑀‘(𝐿‘{((𝑆𝑢) 𝑠)})) ∈ (LSubSp‘𝑈))
483, 7, 25, 34, 5, 30, 47mapd11 41684 . . 3 (𝜑 → ((𝑀‘(𝑁‘{𝑣})) = (𝑀‘(𝑀‘(𝐿‘{((𝑆𝑢) 𝑠)}))) ↔ (𝑁‘{𝑣}) = (𝑀‘(𝐿‘{((𝑆𝑢) 𝑠)}))))
4948necon3bid 2972 . 2 (𝜑 → ((𝑀‘(𝑁‘{𝑣})) ≠ (𝑀‘(𝑀‘(𝐿‘{((𝑆𝑢) 𝑠)}))) ↔ (𝑁‘{𝑣}) ≠ (𝑀‘(𝐿‘{((𝑆𝑢) 𝑠)}))))
5046, 49mpbid 232 1 (𝜑 → (𝑁‘{𝑣}) ≠ (𝑀‘(𝐿‘{((𝑆𝑢) 𝑠)})))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wcel 2111  wne 2928  cdif 3899  {csn 4576  ccnv 5615  ran crn 5617  cfv 6481  (class class class)co 7346  Basecbs 17120  +gcplusg 17161  0gc0g 17343  LModclmod 20794  LSubSpclss 20865  LSpanclspn 20905  HLchlt 39395  LHypclh 40029  DVecHcdvh 41123  LCDualclcd 41631  mapdcmpd 41669  HDMapchdma 41837
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-riotaBAD 38998
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-tp 4581  df-op 4583  df-ot 4585  df-uni 4860  df-int 4898  df-iun 4943  df-iin 4944  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-tpos 8156  df-undef 8203  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-n0 12382  df-z 12469  df-uz 12733  df-fz 13408  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-sca 17177  df-vsca 17178  df-0g 17345  df-mre 17488  df-mrc 17489  df-acs 17491  df-proset 18200  df-poset 18219  df-plt 18234  df-lub 18250  df-glb 18251  df-join 18252  df-meet 18253  df-p0 18329  df-p1 18330  df-lat 18338  df-clat 18405  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-submnd 18692  df-grp 18849  df-minusg 18850  df-sbg 18851  df-subg 19036  df-cntz 19230  df-oppg 19259  df-lsm 19549  df-cmn 19695  df-abl 19696  df-mgp 20060  df-rng 20072  df-ur 20101  df-ring 20154  df-oppr 20256  df-dvdsr 20276  df-unit 20277  df-invr 20307  df-dvr 20320  df-nzr 20429  df-rlreg 20610  df-domn 20611  df-drng 20647  df-lmod 20796  df-lss 20866  df-lsp 20906  df-lvec 21038  df-lsatoms 39021  df-lshyp 39022  df-lcv 39064  df-lfl 39103  df-lkr 39131  df-ldual 39169  df-oposet 39221  df-ol 39223  df-oml 39224  df-covers 39311  df-ats 39312  df-atl 39343  df-cvlat 39367  df-hlat 39396  df-llines 39543  df-lplanes 39544  df-lvols 39545  df-lines 39546  df-psubsp 39548  df-pmap 39549  df-padd 39841  df-lhyp 40033  df-laut 40034  df-ldil 40149  df-ltrn 40150  df-trl 40204  df-tgrp 40788  df-tendo 40800  df-edring 40802  df-dveca 41048  df-disoa 41074  df-dvech 41124  df-dib 41184  df-dic 41218  df-dih 41274  df-doch 41393  df-djh 41440  df-lcdual 41632  df-mapd 41670  df-hvmap 41802  df-hdmap1 41838  df-hdmap 41839
This theorem is referenced by:  hdmaprnlem9N  41902  hdmaprnlem3eN  41903
  Copyright terms: Public domain W3C validator