| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > 3oalem1 | Structured version Visualization version GIF version | ||
| Description: Lemma for 3OA (weak) orthoarguesian law. (Contributed by NM, 19-Oct-1999.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| 3oalem1.1 | ⊢ 𝐵 ∈ Cℋ |
| 3oalem1.2 | ⊢ 𝐶 ∈ Cℋ |
| 3oalem1.3 | ⊢ 𝑅 ∈ Cℋ |
| 3oalem1.4 | ⊢ 𝑆 ∈ Cℋ |
| Ref | Expression |
|---|---|
| 3oalem1 | ⊢ ((((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝑅) ∧ 𝑣 = (𝑥 +ℎ 𝑦)) ∧ ((𝑧 ∈ 𝐶 ∧ 𝑤 ∈ 𝑆) ∧ 𝑣 = (𝑧 +ℎ 𝑤))) → (((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ 𝑣 ∈ ℋ) ∧ (𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3oalem1.1 | . . . . 5 ⊢ 𝐵 ∈ Cℋ | |
| 2 | 1 | cheli 31179 | . . . 4 ⊢ (𝑥 ∈ 𝐵 → 𝑥 ∈ ℋ) |
| 3 | 3oalem1.3 | . . . . 5 ⊢ 𝑅 ∈ Cℋ | |
| 4 | 3 | cheli 31179 | . . . 4 ⊢ (𝑦 ∈ 𝑅 → 𝑦 ∈ ℋ) |
| 5 | 2, 4 | anim12i 613 | . . 3 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝑅) → (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) |
| 6 | hvaddcl 30959 | . . . . 5 ⊢ ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑥 +ℎ 𝑦) ∈ ℋ) | |
| 7 | eleq1 2821 | . . . . 5 ⊢ (𝑣 = (𝑥 +ℎ 𝑦) → (𝑣 ∈ ℋ ↔ (𝑥 +ℎ 𝑦) ∈ ℋ)) | |
| 8 | 6, 7 | syl5ibrcom 247 | . . . 4 ⊢ ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑣 = (𝑥 +ℎ 𝑦) → 𝑣 ∈ ℋ)) |
| 9 | 8 | imdistani 568 | . . 3 ⊢ (((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ 𝑣 = (𝑥 +ℎ 𝑦)) → ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ 𝑣 ∈ ℋ)) |
| 10 | 5, 9 | sylan 580 | . 2 ⊢ (((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝑅) ∧ 𝑣 = (𝑥 +ℎ 𝑦)) → ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ 𝑣 ∈ ℋ)) |
| 11 | 3oalem1.2 | . . . . 5 ⊢ 𝐶 ∈ Cℋ | |
| 12 | 11 | cheli 31179 | . . . 4 ⊢ (𝑧 ∈ 𝐶 → 𝑧 ∈ ℋ) |
| 13 | 3oalem1.4 | . . . . 5 ⊢ 𝑆 ∈ Cℋ | |
| 14 | 13 | cheli 31179 | . . . 4 ⊢ (𝑤 ∈ 𝑆 → 𝑤 ∈ ℋ) |
| 15 | 12, 14 | anim12i 613 | . . 3 ⊢ ((𝑧 ∈ 𝐶 ∧ 𝑤 ∈ 𝑆) → (𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ)) |
| 16 | 15 | adantr 480 | . 2 ⊢ (((𝑧 ∈ 𝐶 ∧ 𝑤 ∈ 𝑆) ∧ 𝑣 = (𝑧 +ℎ 𝑤)) → (𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ)) |
| 17 | 10, 16 | anim12i 613 | 1 ⊢ ((((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝑅) ∧ 𝑣 = (𝑥 +ℎ 𝑦)) ∧ ((𝑧 ∈ 𝐶 ∧ 𝑤 ∈ 𝑆) ∧ 𝑣 = (𝑧 +ℎ 𝑤))) → (((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ 𝑣 ∈ ℋ) ∧ (𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 (class class class)co 7413 ℋchba 30866 +ℎ cva 30867 Cℋ cch 30876 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 ax-hilex 30946 ax-hfvadd 30947 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-fv 6549 df-ov 7416 df-sh 31154 df-ch 31168 |
| This theorem is referenced by: 3oalem2 31610 |
| Copyright terms: Public domain | W3C validator |