![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > 3oalem1 | Structured version Visualization version GIF version |
Description: Lemma for 3OA (weak) orthoarguesian law. (Contributed by NM, 19-Oct-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
3oalem1.1 | ⊢ 𝐵 ∈ Cℋ |
3oalem1.2 | ⊢ 𝐶 ∈ Cℋ |
3oalem1.3 | ⊢ 𝑅 ∈ Cℋ |
3oalem1.4 | ⊢ 𝑆 ∈ Cℋ |
Ref | Expression |
---|---|
3oalem1 | ⊢ ((((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝑅) ∧ 𝑣 = (𝑥 +ℎ 𝑦)) ∧ ((𝑧 ∈ 𝐶 ∧ 𝑤 ∈ 𝑆) ∧ 𝑣 = (𝑧 +ℎ 𝑤))) → (((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ 𝑣 ∈ ℋ) ∧ (𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3oalem1.1 | . . . . 5 ⊢ 𝐵 ∈ Cℋ | |
2 | 1 | cheli 30480 | . . . 4 ⊢ (𝑥 ∈ 𝐵 → 𝑥 ∈ ℋ) |
3 | 3oalem1.3 | . . . . 5 ⊢ 𝑅 ∈ Cℋ | |
4 | 3 | cheli 30480 | . . . 4 ⊢ (𝑦 ∈ 𝑅 → 𝑦 ∈ ℋ) |
5 | 2, 4 | anim12i 613 | . . 3 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝑅) → (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) |
6 | hvaddcl 30260 | . . . . 5 ⊢ ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑥 +ℎ 𝑦) ∈ ℋ) | |
7 | eleq1 2821 | . . . . 5 ⊢ (𝑣 = (𝑥 +ℎ 𝑦) → (𝑣 ∈ ℋ ↔ (𝑥 +ℎ 𝑦) ∈ ℋ)) | |
8 | 6, 7 | syl5ibrcom 246 | . . . 4 ⊢ ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑣 = (𝑥 +ℎ 𝑦) → 𝑣 ∈ ℋ)) |
9 | 8 | imdistani 569 | . . 3 ⊢ (((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ 𝑣 = (𝑥 +ℎ 𝑦)) → ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ 𝑣 ∈ ℋ)) |
10 | 5, 9 | sylan 580 | . 2 ⊢ (((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝑅) ∧ 𝑣 = (𝑥 +ℎ 𝑦)) → ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ 𝑣 ∈ ℋ)) |
11 | 3oalem1.2 | . . . . 5 ⊢ 𝐶 ∈ Cℋ | |
12 | 11 | cheli 30480 | . . . 4 ⊢ (𝑧 ∈ 𝐶 → 𝑧 ∈ ℋ) |
13 | 3oalem1.4 | . . . . 5 ⊢ 𝑆 ∈ Cℋ | |
14 | 13 | cheli 30480 | . . . 4 ⊢ (𝑤 ∈ 𝑆 → 𝑤 ∈ ℋ) |
15 | 12, 14 | anim12i 613 | . . 3 ⊢ ((𝑧 ∈ 𝐶 ∧ 𝑤 ∈ 𝑆) → (𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ)) |
16 | 15 | adantr 481 | . 2 ⊢ (((𝑧 ∈ 𝐶 ∧ 𝑤 ∈ 𝑆) ∧ 𝑣 = (𝑧 +ℎ 𝑤)) → (𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ)) |
17 | 10, 16 | anim12i 613 | 1 ⊢ ((((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝑅) ∧ 𝑣 = (𝑥 +ℎ 𝑦)) ∧ ((𝑧 ∈ 𝐶 ∧ 𝑤 ∈ 𝑆) ∧ 𝑣 = (𝑧 +ℎ 𝑤))) → (((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ 𝑣 ∈ ℋ) ∧ (𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 (class class class)co 7408 ℋchba 30167 +ℎ cva 30168 Cℋ cch 30177 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 ax-hilex 30247 ax-hfvadd 30248 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-fv 6551 df-ov 7411 df-sh 30455 df-ch 30469 |
This theorem is referenced by: 3oalem2 30911 |
Copyright terms: Public domain | W3C validator |