![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > 3oalem1 | Structured version Visualization version GIF version |
Description: Lemma for 3OA (weak) orthoarguesian law. (Contributed by NM, 19-Oct-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
3oalem1.1 | ⊢ 𝐵 ∈ Cℋ |
3oalem1.2 | ⊢ 𝐶 ∈ Cℋ |
3oalem1.3 | ⊢ 𝑅 ∈ Cℋ |
3oalem1.4 | ⊢ 𝑆 ∈ Cℋ |
Ref | Expression |
---|---|
3oalem1 | ⊢ ((((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝑅) ∧ 𝑣 = (𝑥 +ℎ 𝑦)) ∧ ((𝑧 ∈ 𝐶 ∧ 𝑤 ∈ 𝑆) ∧ 𝑣 = (𝑧 +ℎ 𝑤))) → (((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ 𝑣 ∈ ℋ) ∧ (𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3oalem1.1 | . . . . 5 ⊢ 𝐵 ∈ Cℋ | |
2 | 1 | cheli 31277 | . . . 4 ⊢ (𝑥 ∈ 𝐵 → 𝑥 ∈ ℋ) |
3 | 3oalem1.3 | . . . . 5 ⊢ 𝑅 ∈ Cℋ | |
4 | 3 | cheli 31277 | . . . 4 ⊢ (𝑦 ∈ 𝑅 → 𝑦 ∈ ℋ) |
5 | 2, 4 | anim12i 613 | . . 3 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝑅) → (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) |
6 | hvaddcl 31057 | . . . . 5 ⊢ ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑥 +ℎ 𝑦) ∈ ℋ) | |
7 | eleq1 2829 | . . . . 5 ⊢ (𝑣 = (𝑥 +ℎ 𝑦) → (𝑣 ∈ ℋ ↔ (𝑥 +ℎ 𝑦) ∈ ℋ)) | |
8 | 6, 7 | syl5ibrcom 247 | . . . 4 ⊢ ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑣 = (𝑥 +ℎ 𝑦) → 𝑣 ∈ ℋ)) |
9 | 8 | imdistani 568 | . . 3 ⊢ (((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ 𝑣 = (𝑥 +ℎ 𝑦)) → ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ 𝑣 ∈ ℋ)) |
10 | 5, 9 | sylan 580 | . 2 ⊢ (((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝑅) ∧ 𝑣 = (𝑥 +ℎ 𝑦)) → ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ 𝑣 ∈ ℋ)) |
11 | 3oalem1.2 | . . . . 5 ⊢ 𝐶 ∈ Cℋ | |
12 | 11 | cheli 31277 | . . . 4 ⊢ (𝑧 ∈ 𝐶 → 𝑧 ∈ ℋ) |
13 | 3oalem1.4 | . . . . 5 ⊢ 𝑆 ∈ Cℋ | |
14 | 13 | cheli 31277 | . . . 4 ⊢ (𝑤 ∈ 𝑆 → 𝑤 ∈ ℋ) |
15 | 12, 14 | anim12i 613 | . . 3 ⊢ ((𝑧 ∈ 𝐶 ∧ 𝑤 ∈ 𝑆) → (𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ)) |
16 | 15 | adantr 480 | . 2 ⊢ (((𝑧 ∈ 𝐶 ∧ 𝑤 ∈ 𝑆) ∧ 𝑣 = (𝑧 +ℎ 𝑤)) → (𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ)) |
17 | 10, 16 | anim12i 613 | 1 ⊢ ((((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝑅) ∧ 𝑣 = (𝑥 +ℎ 𝑦)) ∧ ((𝑧 ∈ 𝐶 ∧ 𝑤 ∈ 𝑆) ∧ 𝑣 = (𝑧 +ℎ 𝑤))) → (((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ 𝑣 ∈ ℋ) ∧ (𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 (class class class)co 7438 ℋchba 30964 +ℎ cva 30965 Cℋ cch 30974 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5305 ax-nul 5315 ax-pr 5441 ax-hilex 31044 ax-hfvadd 31045 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3483 df-sbc 3795 df-csb 3912 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-iun 5001 df-br 5152 df-opab 5214 df-mpt 5235 df-id 5587 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-fv 6577 df-ov 7441 df-sh 31252 df-ch 31266 |
This theorem is referenced by: 3oalem2 31708 |
Copyright terms: Public domain | W3C validator |