Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > 3oalem1 | Structured version Visualization version GIF version |
Description: Lemma for 3OA (weak) orthoarguesian law. (Contributed by NM, 19-Oct-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
3oalem1.1 | ⊢ 𝐵 ∈ Cℋ |
3oalem1.2 | ⊢ 𝐶 ∈ Cℋ |
3oalem1.3 | ⊢ 𝑅 ∈ Cℋ |
3oalem1.4 | ⊢ 𝑆 ∈ Cℋ |
Ref | Expression |
---|---|
3oalem1 | ⊢ ((((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝑅) ∧ 𝑣 = (𝑥 +ℎ 𝑦)) ∧ ((𝑧 ∈ 𝐶 ∧ 𝑤 ∈ 𝑆) ∧ 𝑣 = (𝑧 +ℎ 𝑤))) → (((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ 𝑣 ∈ ℋ) ∧ (𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3oalem1.1 | . . . . 5 ⊢ 𝐵 ∈ Cℋ | |
2 | 1 | cheli 29594 | . . . 4 ⊢ (𝑥 ∈ 𝐵 → 𝑥 ∈ ℋ) |
3 | 3oalem1.3 | . . . . 5 ⊢ 𝑅 ∈ Cℋ | |
4 | 3 | cheli 29594 | . . . 4 ⊢ (𝑦 ∈ 𝑅 → 𝑦 ∈ ℋ) |
5 | 2, 4 | anim12i 613 | . . 3 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝑅) → (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) |
6 | hvaddcl 29374 | . . . . 5 ⊢ ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑥 +ℎ 𝑦) ∈ ℋ) | |
7 | eleq1 2826 | . . . . 5 ⊢ (𝑣 = (𝑥 +ℎ 𝑦) → (𝑣 ∈ ℋ ↔ (𝑥 +ℎ 𝑦) ∈ ℋ)) | |
8 | 6, 7 | syl5ibrcom 246 | . . . 4 ⊢ ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑣 = (𝑥 +ℎ 𝑦) → 𝑣 ∈ ℋ)) |
9 | 8 | imdistani 569 | . . 3 ⊢ (((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ 𝑣 = (𝑥 +ℎ 𝑦)) → ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ 𝑣 ∈ ℋ)) |
10 | 5, 9 | sylan 580 | . 2 ⊢ (((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝑅) ∧ 𝑣 = (𝑥 +ℎ 𝑦)) → ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ 𝑣 ∈ ℋ)) |
11 | 3oalem1.2 | . . . . 5 ⊢ 𝐶 ∈ Cℋ | |
12 | 11 | cheli 29594 | . . . 4 ⊢ (𝑧 ∈ 𝐶 → 𝑧 ∈ ℋ) |
13 | 3oalem1.4 | . . . . 5 ⊢ 𝑆 ∈ Cℋ | |
14 | 13 | cheli 29594 | . . . 4 ⊢ (𝑤 ∈ 𝑆 → 𝑤 ∈ ℋ) |
15 | 12, 14 | anim12i 613 | . . 3 ⊢ ((𝑧 ∈ 𝐶 ∧ 𝑤 ∈ 𝑆) → (𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ)) |
16 | 15 | adantr 481 | . 2 ⊢ (((𝑧 ∈ 𝐶 ∧ 𝑤 ∈ 𝑆) ∧ 𝑣 = (𝑧 +ℎ 𝑤)) → (𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ)) |
17 | 10, 16 | anim12i 613 | 1 ⊢ ((((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝑅) ∧ 𝑣 = (𝑥 +ℎ 𝑦)) ∧ ((𝑧 ∈ 𝐶 ∧ 𝑤 ∈ 𝑆) ∧ 𝑣 = (𝑧 +ℎ 𝑤))) → (((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ 𝑣 ∈ ℋ) ∧ (𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 (class class class)co 7275 ℋchba 29281 +ℎ cva 29282 Cℋ cch 29291 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-hilex 29361 ax-hfvadd 29362 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-fv 6441 df-ov 7278 df-sh 29569 df-ch 29583 |
This theorem is referenced by: 3oalem2 30025 |
Copyright terms: Public domain | W3C validator |