HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  3oalem1 Structured version   Visualization version   GIF version

Theorem 3oalem1 31637
Description: Lemma for 3OA (weak) orthoarguesian law. (Contributed by NM, 19-Oct-1999.) (New usage is discouraged.)
Hypotheses
Ref Expression
3oalem1.1 𝐵C
3oalem1.2 𝐶C
3oalem1.3 𝑅C
3oalem1.4 𝑆C
Assertion
Ref Expression
3oalem1 ((((𝑥𝐵𝑦𝑅) ∧ 𝑣 = (𝑥 + 𝑦)) ∧ ((𝑧𝐶𝑤𝑆) ∧ 𝑣 = (𝑧 + 𝑤))) → (((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ 𝑣 ∈ ℋ) ∧ (𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ)))
Distinct variable groups:   𝑥,𝑦,𝑧,𝑤,𝑣,𝐵   𝑥,𝐶,𝑦,𝑧,𝑤,𝑣   𝑥,𝑅,𝑦,𝑧,𝑤,𝑣   𝑥,𝑆,𝑦,𝑧,𝑤,𝑣

Proof of Theorem 3oalem1
StepHypRef Expression
1 3oalem1.1 . . . . 5 𝐵C
21cheli 31207 . . . 4 (𝑥𝐵𝑥 ∈ ℋ)
3 3oalem1.3 . . . . 5 𝑅C
43cheli 31207 . . . 4 (𝑦𝑅𝑦 ∈ ℋ)
52, 4anim12i 613 . . 3 ((𝑥𝐵𝑦𝑅) → (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ))
6 hvaddcl 30987 . . . . 5 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑥 + 𝑦) ∈ ℋ)
7 eleq1 2819 . . . . 5 (𝑣 = (𝑥 + 𝑦) → (𝑣 ∈ ℋ ↔ (𝑥 + 𝑦) ∈ ℋ))
86, 7syl5ibrcom 247 . . . 4 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑣 = (𝑥 + 𝑦) → 𝑣 ∈ ℋ))
98imdistani 568 . . 3 (((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ 𝑣 = (𝑥 + 𝑦)) → ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ 𝑣 ∈ ℋ))
105, 9sylan 580 . 2 (((𝑥𝐵𝑦𝑅) ∧ 𝑣 = (𝑥 + 𝑦)) → ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ 𝑣 ∈ ℋ))
11 3oalem1.2 . . . . 5 𝐶C
1211cheli 31207 . . . 4 (𝑧𝐶𝑧 ∈ ℋ)
13 3oalem1.4 . . . . 5 𝑆C
1413cheli 31207 . . . 4 (𝑤𝑆𝑤 ∈ ℋ)
1512, 14anim12i 613 . . 3 ((𝑧𝐶𝑤𝑆) → (𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ))
1615adantr 480 . 2 (((𝑧𝐶𝑤𝑆) ∧ 𝑣 = (𝑧 + 𝑤)) → (𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ))
1710, 16anim12i 613 1 ((((𝑥𝐵𝑦𝑅) ∧ 𝑣 = (𝑥 + 𝑦)) ∧ ((𝑧𝐶𝑤𝑆) ∧ 𝑣 = (𝑧 + 𝑤))) → (((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ 𝑣 ∈ ℋ) ∧ (𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  (class class class)co 7346  chba 30894   + cva 30895   C cch 30904
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370  ax-hilex 30974  ax-hfvadd 30975
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-fv 6489  df-ov 7349  df-sh 31182  df-ch 31196
This theorem is referenced by:  3oalem2  31638
  Copyright terms: Public domain W3C validator