| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > 3oalem1 | Structured version Visualization version GIF version | ||
| Description: Lemma for 3OA (weak) orthoarguesian law. (Contributed by NM, 19-Oct-1999.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| 3oalem1.1 | ⊢ 𝐵 ∈ Cℋ |
| 3oalem1.2 | ⊢ 𝐶 ∈ Cℋ |
| 3oalem1.3 | ⊢ 𝑅 ∈ Cℋ |
| 3oalem1.4 | ⊢ 𝑆 ∈ Cℋ |
| Ref | Expression |
|---|---|
| 3oalem1 | ⊢ ((((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝑅) ∧ 𝑣 = (𝑥 +ℎ 𝑦)) ∧ ((𝑧 ∈ 𝐶 ∧ 𝑤 ∈ 𝑆) ∧ 𝑣 = (𝑧 +ℎ 𝑤))) → (((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ 𝑣 ∈ ℋ) ∧ (𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3oalem1.1 | . . . . 5 ⊢ 𝐵 ∈ Cℋ | |
| 2 | 1 | cheli 31214 | . . . 4 ⊢ (𝑥 ∈ 𝐵 → 𝑥 ∈ ℋ) |
| 3 | 3oalem1.3 | . . . . 5 ⊢ 𝑅 ∈ Cℋ | |
| 4 | 3 | cheli 31214 | . . . 4 ⊢ (𝑦 ∈ 𝑅 → 𝑦 ∈ ℋ) |
| 5 | 2, 4 | anim12i 613 | . . 3 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝑅) → (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) |
| 6 | hvaddcl 30994 | . . . . 5 ⊢ ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑥 +ℎ 𝑦) ∈ ℋ) | |
| 7 | eleq1 2821 | . . . . 5 ⊢ (𝑣 = (𝑥 +ℎ 𝑦) → (𝑣 ∈ ℋ ↔ (𝑥 +ℎ 𝑦) ∈ ℋ)) | |
| 8 | 6, 7 | syl5ibrcom 247 | . . . 4 ⊢ ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑣 = (𝑥 +ℎ 𝑦) → 𝑣 ∈ ℋ)) |
| 9 | 8 | imdistani 568 | . . 3 ⊢ (((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ 𝑣 = (𝑥 +ℎ 𝑦)) → ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ 𝑣 ∈ ℋ)) |
| 10 | 5, 9 | sylan 580 | . 2 ⊢ (((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝑅) ∧ 𝑣 = (𝑥 +ℎ 𝑦)) → ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ 𝑣 ∈ ℋ)) |
| 11 | 3oalem1.2 | . . . . 5 ⊢ 𝐶 ∈ Cℋ | |
| 12 | 11 | cheli 31214 | . . . 4 ⊢ (𝑧 ∈ 𝐶 → 𝑧 ∈ ℋ) |
| 13 | 3oalem1.4 | . . . . 5 ⊢ 𝑆 ∈ Cℋ | |
| 14 | 13 | cheli 31214 | . . . 4 ⊢ (𝑤 ∈ 𝑆 → 𝑤 ∈ ℋ) |
| 15 | 12, 14 | anim12i 613 | . . 3 ⊢ ((𝑧 ∈ 𝐶 ∧ 𝑤 ∈ 𝑆) → (𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ)) |
| 16 | 15 | adantr 480 | . 2 ⊢ (((𝑧 ∈ 𝐶 ∧ 𝑤 ∈ 𝑆) ∧ 𝑣 = (𝑧 +ℎ 𝑤)) → (𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ)) |
| 17 | 10, 16 | anim12i 613 | 1 ⊢ ((((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝑅) ∧ 𝑣 = (𝑥 +ℎ 𝑦)) ∧ ((𝑧 ∈ 𝐶 ∧ 𝑤 ∈ 𝑆) ∧ 𝑣 = (𝑧 +ℎ 𝑤))) → (((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ 𝑣 ∈ ℋ) ∧ (𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 (class class class)co 7352 ℋchba 30901 +ℎ cva 30902 Cℋ cch 30911 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 ax-hilex 30981 ax-hfvadd 30982 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-fv 6494 df-ov 7355 df-sh 31189 df-ch 31203 |
| This theorem is referenced by: 3oalem2 31645 |
| Copyright terms: Public domain | W3C validator |