HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  3oalem1 Structured version   Visualization version   GIF version

Theorem 3oalem1 29441
Description: Lemma for 3OA (weak) orthoarguesian law. (Contributed by NM, 19-Oct-1999.) (New usage is discouraged.)
Hypotheses
Ref Expression
3oalem1.1 𝐵C
3oalem1.2 𝐶C
3oalem1.3 𝑅C
3oalem1.4 𝑆C
Assertion
Ref Expression
3oalem1 ((((𝑥𝐵𝑦𝑅) ∧ 𝑣 = (𝑥 + 𝑦)) ∧ ((𝑧𝐶𝑤𝑆) ∧ 𝑣 = (𝑧 + 𝑤))) → (((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ 𝑣 ∈ ℋ) ∧ (𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ)))
Distinct variable groups:   𝑥,𝑦,𝑧,𝑤,𝑣,𝐵   𝑥,𝐶,𝑦,𝑧,𝑤,𝑣   𝑥,𝑅,𝑦,𝑧,𝑤,𝑣   𝑥,𝑆,𝑦,𝑧,𝑤,𝑣

Proof of Theorem 3oalem1
StepHypRef Expression
1 3oalem1.1 . . . . 5 𝐵C
21cheli 29011 . . . 4 (𝑥𝐵𝑥 ∈ ℋ)
3 3oalem1.3 . . . . 5 𝑅C
43cheli 29011 . . . 4 (𝑦𝑅𝑦 ∈ ℋ)
52, 4anim12i 614 . . 3 ((𝑥𝐵𝑦𝑅) → (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ))
6 hvaddcl 28791 . . . . 5 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑥 + 𝑦) ∈ ℋ)
7 eleq1 2902 . . . . 5 (𝑣 = (𝑥 + 𝑦) → (𝑣 ∈ ℋ ↔ (𝑥 + 𝑦) ∈ ℋ))
86, 7syl5ibrcom 249 . . . 4 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑣 = (𝑥 + 𝑦) → 𝑣 ∈ ℋ))
98imdistani 571 . . 3 (((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ 𝑣 = (𝑥 + 𝑦)) → ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ 𝑣 ∈ ℋ))
105, 9sylan 582 . 2 (((𝑥𝐵𝑦𝑅) ∧ 𝑣 = (𝑥 + 𝑦)) → ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ 𝑣 ∈ ℋ))
11 3oalem1.2 . . . . 5 𝐶C
1211cheli 29011 . . . 4 (𝑧𝐶𝑧 ∈ ℋ)
13 3oalem1.4 . . . . 5 𝑆C
1413cheli 29011 . . . 4 (𝑤𝑆𝑤 ∈ ℋ)
1512, 14anim12i 614 . . 3 ((𝑧𝐶𝑤𝑆) → (𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ))
1615adantr 483 . 2 (((𝑧𝐶𝑤𝑆) ∧ 𝑣 = (𝑧 + 𝑤)) → (𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ))
1710, 16anim12i 614 1 ((((𝑥𝐵𝑦𝑅) ∧ 𝑣 = (𝑥 + 𝑦)) ∧ ((𝑧𝐶𝑤𝑆) ∧ 𝑣 = (𝑧 + 𝑤))) → (((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ 𝑣 ∈ ℋ) ∧ (𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  (class class class)co 7158  chba 28698   + cva 28699   C cch 28708
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pr 5332  ax-hilex 28778  ax-hfvadd 28779
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ral 3145  df-rex 3146  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-fv 6365  df-ov 7161  df-sh 28986  df-ch 29000
This theorem is referenced by:  3oalem2  29442
  Copyright terms: Public domain W3C validator