HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  3oalem1 Structured version   Visualization version   GIF version

Theorem 3oalem1 29925
Description: Lemma for 3OA (weak) orthoarguesian law. (Contributed by NM, 19-Oct-1999.) (New usage is discouraged.)
Hypotheses
Ref Expression
3oalem1.1 𝐵C
3oalem1.2 𝐶C
3oalem1.3 𝑅C
3oalem1.4 𝑆C
Assertion
Ref Expression
3oalem1 ((((𝑥𝐵𝑦𝑅) ∧ 𝑣 = (𝑥 + 𝑦)) ∧ ((𝑧𝐶𝑤𝑆) ∧ 𝑣 = (𝑧 + 𝑤))) → (((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ 𝑣 ∈ ℋ) ∧ (𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ)))
Distinct variable groups:   𝑥,𝑦,𝑧,𝑤,𝑣,𝐵   𝑥,𝐶,𝑦,𝑧,𝑤,𝑣   𝑥,𝑅,𝑦,𝑧,𝑤,𝑣   𝑥,𝑆,𝑦,𝑧,𝑤,𝑣

Proof of Theorem 3oalem1
StepHypRef Expression
1 3oalem1.1 . . . . 5 𝐵C
21cheli 29495 . . . 4 (𝑥𝐵𝑥 ∈ ℋ)
3 3oalem1.3 . . . . 5 𝑅C
43cheli 29495 . . . 4 (𝑦𝑅𝑦 ∈ ℋ)
52, 4anim12i 612 . . 3 ((𝑥𝐵𝑦𝑅) → (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ))
6 hvaddcl 29275 . . . . 5 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑥 + 𝑦) ∈ ℋ)
7 eleq1 2826 . . . . 5 (𝑣 = (𝑥 + 𝑦) → (𝑣 ∈ ℋ ↔ (𝑥 + 𝑦) ∈ ℋ))
86, 7syl5ibrcom 246 . . . 4 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑣 = (𝑥 + 𝑦) → 𝑣 ∈ ℋ))
98imdistani 568 . . 3 (((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ 𝑣 = (𝑥 + 𝑦)) → ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ 𝑣 ∈ ℋ))
105, 9sylan 579 . 2 (((𝑥𝐵𝑦𝑅) ∧ 𝑣 = (𝑥 + 𝑦)) → ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ 𝑣 ∈ ℋ))
11 3oalem1.2 . . . . 5 𝐶C
1211cheli 29495 . . . 4 (𝑧𝐶𝑧 ∈ ℋ)
13 3oalem1.4 . . . . 5 𝑆C
1413cheli 29495 . . . 4 (𝑤𝑆𝑤 ∈ ℋ)
1512, 14anim12i 612 . . 3 ((𝑧𝐶𝑤𝑆) → (𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ))
1615adantr 480 . 2 (((𝑧𝐶𝑤𝑆) ∧ 𝑣 = (𝑧 + 𝑤)) → (𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ))
1710, 16anim12i 612 1 ((((𝑥𝐵𝑦𝑅) ∧ 𝑣 = (𝑥 + 𝑦)) ∧ ((𝑧𝐶𝑤𝑆) ∧ 𝑣 = (𝑧 + 𝑤))) → (((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ 𝑣 ∈ ℋ) ∧ (𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  (class class class)co 7255  chba 29182   + cva 29183   C cch 29192
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-hilex 29262  ax-hfvadd 29263
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-fv 6426  df-ov 7258  df-sh 29470  df-ch 29484
This theorem is referenced by:  3oalem2  29926
  Copyright terms: Public domain W3C validator