HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  3oalem1 Structured version   Visualization version   GIF version

Theorem 3oalem1 31598
Description: Lemma for 3OA (weak) orthoarguesian law. (Contributed by NM, 19-Oct-1999.) (New usage is discouraged.)
Hypotheses
Ref Expression
3oalem1.1 𝐵C
3oalem1.2 𝐶C
3oalem1.3 𝑅C
3oalem1.4 𝑆C
Assertion
Ref Expression
3oalem1 ((((𝑥𝐵𝑦𝑅) ∧ 𝑣 = (𝑥 + 𝑦)) ∧ ((𝑧𝐶𝑤𝑆) ∧ 𝑣 = (𝑧 + 𝑤))) → (((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ 𝑣 ∈ ℋ) ∧ (𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ)))
Distinct variable groups:   𝑥,𝑦,𝑧,𝑤,𝑣,𝐵   𝑥,𝐶,𝑦,𝑧,𝑤,𝑣   𝑥,𝑅,𝑦,𝑧,𝑤,𝑣   𝑥,𝑆,𝑦,𝑧,𝑤,𝑣

Proof of Theorem 3oalem1
StepHypRef Expression
1 3oalem1.1 . . . . 5 𝐵C
21cheli 31168 . . . 4 (𝑥𝐵𝑥 ∈ ℋ)
3 3oalem1.3 . . . . 5 𝑅C
43cheli 31168 . . . 4 (𝑦𝑅𝑦 ∈ ℋ)
52, 4anim12i 613 . . 3 ((𝑥𝐵𝑦𝑅) → (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ))
6 hvaddcl 30948 . . . . 5 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑥 + 𝑦) ∈ ℋ)
7 eleq1 2817 . . . . 5 (𝑣 = (𝑥 + 𝑦) → (𝑣 ∈ ℋ ↔ (𝑥 + 𝑦) ∈ ℋ))
86, 7syl5ibrcom 247 . . . 4 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑣 = (𝑥 + 𝑦) → 𝑣 ∈ ℋ))
98imdistani 568 . . 3 (((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ 𝑣 = (𝑥 + 𝑦)) → ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ 𝑣 ∈ ℋ))
105, 9sylan 580 . 2 (((𝑥𝐵𝑦𝑅) ∧ 𝑣 = (𝑥 + 𝑦)) → ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ 𝑣 ∈ ℋ))
11 3oalem1.2 . . . . 5 𝐶C
1211cheli 31168 . . . 4 (𝑧𝐶𝑧 ∈ ℋ)
13 3oalem1.4 . . . . 5 𝑆C
1413cheli 31168 . . . 4 (𝑤𝑆𝑤 ∈ ℋ)
1512, 14anim12i 613 . . 3 ((𝑧𝐶𝑤𝑆) → (𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ))
1615adantr 480 . 2 (((𝑧𝐶𝑤𝑆) ∧ 𝑣 = (𝑧 + 𝑤)) → (𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ))
1710, 16anim12i 613 1 ((((𝑥𝐵𝑦𝑅) ∧ 𝑣 = (𝑥 + 𝑦)) ∧ ((𝑧𝐶𝑤𝑆) ∧ 𝑣 = (𝑧 + 𝑤))) → (((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ 𝑣 ∈ ℋ) ∧ (𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  (class class class)co 7390  chba 30855   + cva 30856   C cch 30865
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-hilex 30935  ax-hfvadd 30936
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-fv 6522  df-ov 7393  df-sh 31143  df-ch 31157
This theorem is referenced by:  3oalem2  31599
  Copyright terms: Public domain W3C validator