Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 4t4e16 | Structured version Visualization version GIF version |
Description: 4 times 4 equals 16. (Contributed by Mario Carneiro, 19-Apr-2015.) |
Ref | Expression |
---|---|
4t4e16 | ⊢ (4 · 4) = ;16 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 4nn0 11966 | . 2 ⊢ 4 ∈ ℕ0 | |
2 | 3nn0 11965 | . 2 ⊢ 3 ∈ ℕ0 | |
3 | df-4 11752 | . 2 ⊢ 4 = (3 + 1) | |
4 | 4t3e12 12248 | . 2 ⊢ (4 · 3) = ;12 | |
5 | 1nn0 11963 | . . 3 ⊢ 1 ∈ ℕ0 | |
6 | 2nn0 11964 | . . 3 ⊢ 2 ∈ ℕ0 | |
7 | eqid 2758 | . . 3 ⊢ ;12 = ;12 | |
8 | 4cn 11772 | . . . 4 ⊢ 4 ∈ ℂ | |
9 | 2cn 11762 | . . . 4 ⊢ 2 ∈ ℂ | |
10 | 4p2e6 11840 | . . . 4 ⊢ (4 + 2) = 6 | |
11 | 8, 9, 10 | addcomli 10883 | . . 3 ⊢ (2 + 4) = 6 |
12 | 5, 6, 1, 7, 11 | decaddi 12210 | . 2 ⊢ (;12 + 4) = ;16 |
13 | 1, 2, 3, 4, 12 | 4t3lem 12247 | 1 ⊢ (4 · 4) = ;16 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1538 (class class class)co 7156 1c1 10589 · cmul 10593 2c2 11742 3c3 11743 4c4 11744 6c6 11746 ;cdc 12150 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5173 ax-nul 5180 ax-pow 5238 ax-pr 5302 ax-un 7465 ax-resscn 10645 ax-1cn 10646 ax-icn 10647 ax-addcl 10648 ax-addrcl 10649 ax-mulcl 10650 ax-mulrcl 10651 ax-mulcom 10652 ax-addass 10653 ax-mulass 10654 ax-distr 10655 ax-i2m1 10656 ax-1ne0 10657 ax-1rid 10658 ax-rnegex 10659 ax-rrecex 10660 ax-cnre 10661 ax-pre-lttri 10662 ax-pre-lttrn 10663 ax-pre-ltadd 10664 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-pss 3879 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-tp 4530 df-op 4532 df-uni 4802 df-iun 4888 df-br 5037 df-opab 5099 df-mpt 5117 df-tr 5143 df-id 5434 df-eprel 5439 df-po 5447 df-so 5448 df-fr 5487 df-we 5489 df-xp 5534 df-rel 5535 df-cnv 5536 df-co 5537 df-dm 5538 df-rn 5539 df-res 5540 df-ima 5541 df-pred 6131 df-ord 6177 df-on 6178 df-lim 6179 df-suc 6180 df-iota 6299 df-fun 6342 df-fn 6343 df-f 6344 df-f1 6345 df-fo 6346 df-f1o 6347 df-fv 6348 df-ov 7159 df-om 7586 df-wrecs 7963 df-recs 8024 df-rdg 8062 df-er 8305 df-en 8541 df-dom 8542 df-sdom 8543 df-pnf 10728 df-mnf 10729 df-ltxr 10731 df-nn 11688 df-2 11750 df-3 11751 df-4 11752 df-5 11753 df-6 11754 df-7 11755 df-8 11756 df-9 11757 df-n0 11948 df-dec 12151 |
This theorem is referenced by: 2exp4 16490 2503lem2 16543 4001lem1 16546 4001lem2 16547 quart1lem 25554 quart1 25555 hgt750lem2 32164 3lexlogpow5ineq1 39656 aks4d1p1p7 39675 resqrtvalex 40763 wallispi2lem1 43124 fmtno4prmfac 44516 fmtno5faclem1 44523 2exp340mod341 44677 |
Copyright terms: Public domain | W3C validator |