MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  6gcd4e2 Structured version   Visualization version   GIF version

Theorem 6gcd4e2 16444
Description: The greatest common divisor of six and four is two. To calculate this gcd, a simple form of Euclid's algorithm is used: (6 gcd 4) = ((4 + 2) gcd 4) = (2 gcd 4) and (2 gcd 4) = (2 gcd (2 + 2)) = (2 gcd 2) = 2. (Contributed by AV, 27-Aug-2020.)
Assertion
Ref Expression
6gcd4e2 (6 gcd 4) = 2

Proof of Theorem 6gcd4e2
StepHypRef Expression
1 6nn 12209 . . . 4 6 ∈ ℕ
21nnzi 12491 . . 3 6 ∈ ℤ
3 4z 12501 . . 3 4 ∈ ℤ
4 gcdcom 16419 . . 3 ((6 ∈ ℤ ∧ 4 ∈ ℤ) → (6 gcd 4) = (4 gcd 6))
52, 3, 4mp2an 692 . 2 (6 gcd 4) = (4 gcd 6)
6 4cn 12205 . . . 4 4 ∈ ℂ
7 2cn 12195 . . . 4 2 ∈ ℂ
8 4p2e6 12268 . . . 4 (4 + 2) = 6
96, 7, 8addcomli 11300 . . 3 (2 + 4) = 6
109oveq2i 7352 . 2 (4 gcd (2 + 4)) = (4 gcd 6)
11 2z 12499 . . . . 5 2 ∈ ℤ
12 gcdadd 16432 . . . . 5 ((2 ∈ ℤ ∧ 2 ∈ ℤ) → (2 gcd 2) = (2 gcd (2 + 2)))
1311, 11, 12mp2an 692 . . . 4 (2 gcd 2) = (2 gcd (2 + 2))
14 2p2e4 12250 . . . . . 6 (2 + 2) = 4
1514oveq2i 7352 . . . . 5 (2 gcd (2 + 2)) = (2 gcd 4)
16 gcdcom 16419 . . . . . 6 ((2 ∈ ℤ ∧ 4 ∈ ℤ) → (2 gcd 4) = (4 gcd 2))
1711, 3, 16mp2an 692 . . . . 5 (2 gcd 4) = (4 gcd 2)
1815, 17eqtri 2754 . . . 4 (2 gcd (2 + 2)) = (4 gcd 2)
1913, 18eqtri 2754 . . 3 (2 gcd 2) = (4 gcd 2)
20 gcdid 16433 . . . . 5 (2 ∈ ℤ → (2 gcd 2) = (abs‘2))
2111, 20ax-mp 5 . . . 4 (2 gcd 2) = (abs‘2)
22 2re 12194 . . . . 5 2 ∈ ℝ
23 0le2 12222 . . . . 5 0 ≤ 2
24 absid 15198 . . . . 5 ((2 ∈ ℝ ∧ 0 ≤ 2) → (abs‘2) = 2)
2522, 23, 24mp2an 692 . . . 4 (abs‘2) = 2
2621, 25eqtri 2754 . . 3 (2 gcd 2) = 2
27 gcdadd 16432 . . . 4 ((4 ∈ ℤ ∧ 2 ∈ ℤ) → (4 gcd 2) = (4 gcd (2 + 4)))
283, 11, 27mp2an 692 . . 3 (4 gcd 2) = (4 gcd (2 + 4))
2919, 26, 283eqtr3ri 2763 . 2 (4 gcd (2 + 4)) = 2
305, 10, 293eqtr2i 2760 1 (6 gcd 4) = 2
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wcel 2111   class class class wbr 5086  cfv 6476  (class class class)co 7341  cr 11000  0cc0 11001   + caddc 11004  cle 11142  2c2 12175  4c4 12177  6c6 12179  cz 12463  abscabs 15136   gcd cgcd 16400
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078  ax-pre-sup 11079
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-sup 9321  df-inf 9322  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-div 11770  df-nn 12121  df-2 12183  df-3 12184  df-4 12185  df-5 12186  df-6 12187  df-n0 12377  df-z 12464  df-uz 12728  df-rp 12886  df-seq 13904  df-exp 13964  df-cj 15001  df-re 15002  df-im 15003  df-sqrt 15137  df-abs 15138  df-dvds 16159  df-gcd 16401
This theorem is referenced by:  6lcm4e12  16522
  Copyright terms: Public domain W3C validator