![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 6gcd4e2 | Structured version Visualization version GIF version |
Description: The greatest common divisor of six and four is two. To calculate this gcd, a simple form of Euclid's algorithm is used: (6 gcd 4) = ((4 + 2) gcd 4) = (2 gcd 4) and (2 gcd 4) = (2 gcd (2 + 2)) = (2 gcd 2) = 2. (Contributed by AV, 27-Aug-2020.) |
Ref | Expression |
---|---|
6gcd4e2 | ⊢ (6 gcd 4) = 2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 6nn 12302 | . . . 4 ⊢ 6 ∈ ℕ | |
2 | 1 | nnzi 12587 | . . 3 ⊢ 6 ∈ ℤ |
3 | 4z 12597 | . . 3 ⊢ 4 ∈ ℤ | |
4 | gcdcom 16458 | . . 3 ⊢ ((6 ∈ ℤ ∧ 4 ∈ ℤ) → (6 gcd 4) = (4 gcd 6)) | |
5 | 2, 3, 4 | mp2an 689 | . 2 ⊢ (6 gcd 4) = (4 gcd 6) |
6 | 4cn 12298 | . . . 4 ⊢ 4 ∈ ℂ | |
7 | 2cn 12288 | . . . 4 ⊢ 2 ∈ ℂ | |
8 | 4p2e6 12366 | . . . 4 ⊢ (4 + 2) = 6 | |
9 | 6, 7, 8 | addcomli 11407 | . . 3 ⊢ (2 + 4) = 6 |
10 | 9 | oveq2i 7415 | . 2 ⊢ (4 gcd (2 + 4)) = (4 gcd 6) |
11 | 2z 12595 | . . . . 5 ⊢ 2 ∈ ℤ | |
12 | gcdadd 16471 | . . . . 5 ⊢ ((2 ∈ ℤ ∧ 2 ∈ ℤ) → (2 gcd 2) = (2 gcd (2 + 2))) | |
13 | 11, 11, 12 | mp2an 689 | . . . 4 ⊢ (2 gcd 2) = (2 gcd (2 + 2)) |
14 | 2p2e4 12348 | . . . . . 6 ⊢ (2 + 2) = 4 | |
15 | 14 | oveq2i 7415 | . . . . 5 ⊢ (2 gcd (2 + 2)) = (2 gcd 4) |
16 | gcdcom 16458 | . . . . . 6 ⊢ ((2 ∈ ℤ ∧ 4 ∈ ℤ) → (2 gcd 4) = (4 gcd 2)) | |
17 | 11, 3, 16 | mp2an 689 | . . . . 5 ⊢ (2 gcd 4) = (4 gcd 2) |
18 | 15, 17 | eqtri 2754 | . . . 4 ⊢ (2 gcd (2 + 2)) = (4 gcd 2) |
19 | 13, 18 | eqtri 2754 | . . 3 ⊢ (2 gcd 2) = (4 gcd 2) |
20 | gcdid 16472 | . . . . 5 ⊢ (2 ∈ ℤ → (2 gcd 2) = (abs‘2)) | |
21 | 11, 20 | ax-mp 5 | . . . 4 ⊢ (2 gcd 2) = (abs‘2) |
22 | 2re 12287 | . . . . 5 ⊢ 2 ∈ ℝ | |
23 | 0le2 12315 | . . . . 5 ⊢ 0 ≤ 2 | |
24 | absid 15246 | . . . . 5 ⊢ ((2 ∈ ℝ ∧ 0 ≤ 2) → (abs‘2) = 2) | |
25 | 22, 23, 24 | mp2an 689 | . . . 4 ⊢ (abs‘2) = 2 |
26 | 21, 25 | eqtri 2754 | . . 3 ⊢ (2 gcd 2) = 2 |
27 | gcdadd 16471 | . . . 4 ⊢ ((4 ∈ ℤ ∧ 2 ∈ ℤ) → (4 gcd 2) = (4 gcd (2 + 4))) | |
28 | 3, 11, 27 | mp2an 689 | . . 3 ⊢ (4 gcd 2) = (4 gcd (2 + 4)) |
29 | 19, 26, 28 | 3eqtr3ri 2763 | . 2 ⊢ (4 gcd (2 + 4)) = 2 |
30 | 5, 10, 29 | 3eqtr2i 2760 | 1 ⊢ (6 gcd 4) = 2 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1533 ∈ wcel 2098 class class class wbr 5141 ‘cfv 6536 (class class class)co 7404 ℝcr 11108 0cc0 11109 + caddc 11112 ≤ cle 11250 2c2 12268 4c4 12270 6c6 12272 ℤcz 12559 abscabs 15184 gcd cgcd 16439 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7721 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 ax-pre-sup 11187 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6293 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7360 df-ov 7407 df-oprab 7408 df-mpo 7409 df-om 7852 df-2nd 7972 df-frecs 8264 df-wrecs 8295 df-recs 8369 df-rdg 8408 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-sup 9436 df-inf 9437 df-pnf 11251 df-mnf 11252 df-xr 11253 df-ltxr 11254 df-le 11255 df-sub 11447 df-neg 11448 df-div 11873 df-nn 12214 df-2 12276 df-3 12277 df-4 12278 df-5 12279 df-6 12280 df-n0 12474 df-z 12560 df-uz 12824 df-rp 12978 df-seq 13970 df-exp 14030 df-cj 15049 df-re 15050 df-im 15051 df-sqrt 15185 df-abs 15186 df-dvds 16202 df-gcd 16440 |
This theorem is referenced by: 6lcm4e12 16557 |
Copyright terms: Public domain | W3C validator |