|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > 6gcd4e2 | Structured version Visualization version GIF version | ||
| Description: The greatest common divisor of six and four is two. To calculate this gcd, a simple form of Euclid's algorithm is used: (6 gcd 4) = ((4 + 2) gcd 4) = (2 gcd 4) and (2 gcd 4) = (2 gcd (2 + 2)) = (2 gcd 2) = 2. (Contributed by AV, 27-Aug-2020.) | 
| Ref | Expression | 
|---|---|
| 6gcd4e2 | ⊢ (6 gcd 4) = 2 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 6nn 12355 | . . . 4 ⊢ 6 ∈ ℕ | |
| 2 | 1 | nnzi 12641 | . . 3 ⊢ 6 ∈ ℤ | 
| 3 | 4z 12651 | . . 3 ⊢ 4 ∈ ℤ | |
| 4 | gcdcom 16550 | . . 3 ⊢ ((6 ∈ ℤ ∧ 4 ∈ ℤ) → (6 gcd 4) = (4 gcd 6)) | |
| 5 | 2, 3, 4 | mp2an 692 | . 2 ⊢ (6 gcd 4) = (4 gcd 6) | 
| 6 | 4cn 12351 | . . . 4 ⊢ 4 ∈ ℂ | |
| 7 | 2cn 12341 | . . . 4 ⊢ 2 ∈ ℂ | |
| 8 | 4p2e6 12419 | . . . 4 ⊢ (4 + 2) = 6 | |
| 9 | 6, 7, 8 | addcomli 11453 | . . 3 ⊢ (2 + 4) = 6 | 
| 10 | 9 | oveq2i 7442 | . 2 ⊢ (4 gcd (2 + 4)) = (4 gcd 6) | 
| 11 | 2z 12649 | . . . . 5 ⊢ 2 ∈ ℤ | |
| 12 | gcdadd 16563 | . . . . 5 ⊢ ((2 ∈ ℤ ∧ 2 ∈ ℤ) → (2 gcd 2) = (2 gcd (2 + 2))) | |
| 13 | 11, 11, 12 | mp2an 692 | . . . 4 ⊢ (2 gcd 2) = (2 gcd (2 + 2)) | 
| 14 | 2p2e4 12401 | . . . . . 6 ⊢ (2 + 2) = 4 | |
| 15 | 14 | oveq2i 7442 | . . . . 5 ⊢ (2 gcd (2 + 2)) = (2 gcd 4) | 
| 16 | gcdcom 16550 | . . . . . 6 ⊢ ((2 ∈ ℤ ∧ 4 ∈ ℤ) → (2 gcd 4) = (4 gcd 2)) | |
| 17 | 11, 3, 16 | mp2an 692 | . . . . 5 ⊢ (2 gcd 4) = (4 gcd 2) | 
| 18 | 15, 17 | eqtri 2765 | . . . 4 ⊢ (2 gcd (2 + 2)) = (4 gcd 2) | 
| 19 | 13, 18 | eqtri 2765 | . . 3 ⊢ (2 gcd 2) = (4 gcd 2) | 
| 20 | gcdid 16564 | . . . . 5 ⊢ (2 ∈ ℤ → (2 gcd 2) = (abs‘2)) | |
| 21 | 11, 20 | ax-mp 5 | . . . 4 ⊢ (2 gcd 2) = (abs‘2) | 
| 22 | 2re 12340 | . . . . 5 ⊢ 2 ∈ ℝ | |
| 23 | 0le2 12368 | . . . . 5 ⊢ 0 ≤ 2 | |
| 24 | absid 15335 | . . . . 5 ⊢ ((2 ∈ ℝ ∧ 0 ≤ 2) → (abs‘2) = 2) | |
| 25 | 22, 23, 24 | mp2an 692 | . . . 4 ⊢ (abs‘2) = 2 | 
| 26 | 21, 25 | eqtri 2765 | . . 3 ⊢ (2 gcd 2) = 2 | 
| 27 | gcdadd 16563 | . . . 4 ⊢ ((4 ∈ ℤ ∧ 2 ∈ ℤ) → (4 gcd 2) = (4 gcd (2 + 4))) | |
| 28 | 3, 11, 27 | mp2an 692 | . . 3 ⊢ (4 gcd 2) = (4 gcd (2 + 4)) | 
| 29 | 19, 26, 28 | 3eqtr3ri 2774 | . 2 ⊢ (4 gcd (2 + 4)) = 2 | 
| 30 | 5, 10, 29 | 3eqtr2i 2771 | 1 ⊢ (6 gcd 4) = 2 | 
| Colors of variables: wff setvar class | 
| Syntax hints: = wceq 1540 ∈ wcel 2108 class class class wbr 5143 ‘cfv 6561 (class class class)co 7431 ℝcr 11154 0cc0 11155 + caddc 11158 ≤ cle 11296 2c2 12321 4c4 12323 6c6 12325 ℤcz 12613 abscabs 15273 gcd cgcd 16531 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 ax-pre-sup 11233 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-sup 9482 df-inf 9483 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-div 11921 df-nn 12267 df-2 12329 df-3 12330 df-4 12331 df-5 12332 df-6 12333 df-n0 12527 df-z 12614 df-uz 12879 df-rp 13035 df-seq 14043 df-exp 14103 df-cj 15138 df-re 15139 df-im 15140 df-sqrt 15274 df-abs 15275 df-dvds 16291 df-gcd 16532 | 
| This theorem is referenced by: 6lcm4e12 16653 | 
| Copyright terms: Public domain | W3C validator |