| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 6gcd4e2 | Structured version Visualization version GIF version | ||
| Description: The greatest common divisor of six and four is two. To calculate this gcd, a simple form of Euclid's algorithm is used: (6 gcd 4) = ((4 + 2) gcd 4) = (2 gcd 4) and (2 gcd 4) = (2 gcd (2 + 2)) = (2 gcd 2) = 2. (Contributed by AV, 27-Aug-2020.) |
| Ref | Expression |
|---|---|
| 6gcd4e2 | ⊢ (6 gcd 4) = 2 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 6nn 12275 | . . . 4 ⊢ 6 ∈ ℕ | |
| 2 | 1 | nnzi 12557 | . . 3 ⊢ 6 ∈ ℤ |
| 3 | 4z 12567 | . . 3 ⊢ 4 ∈ ℤ | |
| 4 | gcdcom 16483 | . . 3 ⊢ ((6 ∈ ℤ ∧ 4 ∈ ℤ) → (6 gcd 4) = (4 gcd 6)) | |
| 5 | 2, 3, 4 | mp2an 692 | . 2 ⊢ (6 gcd 4) = (4 gcd 6) |
| 6 | 4cn 12271 | . . . 4 ⊢ 4 ∈ ℂ | |
| 7 | 2cn 12261 | . . . 4 ⊢ 2 ∈ ℂ | |
| 8 | 4p2e6 12334 | . . . 4 ⊢ (4 + 2) = 6 | |
| 9 | 6, 7, 8 | addcomli 11366 | . . 3 ⊢ (2 + 4) = 6 |
| 10 | 9 | oveq2i 7398 | . 2 ⊢ (4 gcd (2 + 4)) = (4 gcd 6) |
| 11 | 2z 12565 | . . . . 5 ⊢ 2 ∈ ℤ | |
| 12 | gcdadd 16496 | . . . . 5 ⊢ ((2 ∈ ℤ ∧ 2 ∈ ℤ) → (2 gcd 2) = (2 gcd (2 + 2))) | |
| 13 | 11, 11, 12 | mp2an 692 | . . . 4 ⊢ (2 gcd 2) = (2 gcd (2 + 2)) |
| 14 | 2p2e4 12316 | . . . . . 6 ⊢ (2 + 2) = 4 | |
| 15 | 14 | oveq2i 7398 | . . . . 5 ⊢ (2 gcd (2 + 2)) = (2 gcd 4) |
| 16 | gcdcom 16483 | . . . . . 6 ⊢ ((2 ∈ ℤ ∧ 4 ∈ ℤ) → (2 gcd 4) = (4 gcd 2)) | |
| 17 | 11, 3, 16 | mp2an 692 | . . . . 5 ⊢ (2 gcd 4) = (4 gcd 2) |
| 18 | 15, 17 | eqtri 2752 | . . . 4 ⊢ (2 gcd (2 + 2)) = (4 gcd 2) |
| 19 | 13, 18 | eqtri 2752 | . . 3 ⊢ (2 gcd 2) = (4 gcd 2) |
| 20 | gcdid 16497 | . . . . 5 ⊢ (2 ∈ ℤ → (2 gcd 2) = (abs‘2)) | |
| 21 | 11, 20 | ax-mp 5 | . . . 4 ⊢ (2 gcd 2) = (abs‘2) |
| 22 | 2re 12260 | . . . . 5 ⊢ 2 ∈ ℝ | |
| 23 | 0le2 12288 | . . . . 5 ⊢ 0 ≤ 2 | |
| 24 | absid 15262 | . . . . 5 ⊢ ((2 ∈ ℝ ∧ 0 ≤ 2) → (abs‘2) = 2) | |
| 25 | 22, 23, 24 | mp2an 692 | . . . 4 ⊢ (abs‘2) = 2 |
| 26 | 21, 25 | eqtri 2752 | . . 3 ⊢ (2 gcd 2) = 2 |
| 27 | gcdadd 16496 | . . . 4 ⊢ ((4 ∈ ℤ ∧ 2 ∈ ℤ) → (4 gcd 2) = (4 gcd (2 + 4))) | |
| 28 | 3, 11, 27 | mp2an 692 | . . 3 ⊢ (4 gcd 2) = (4 gcd (2 + 4)) |
| 29 | 19, 26, 28 | 3eqtr3ri 2761 | . 2 ⊢ (4 gcd (2 + 4)) = 2 |
| 30 | 5, 10, 29 | 3eqtr2i 2758 | 1 ⊢ (6 gcd 4) = 2 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 class class class wbr 5107 ‘cfv 6511 (class class class)co 7387 ℝcr 11067 0cc0 11068 + caddc 11071 ≤ cle 11209 2c2 12241 4c4 12243 6c6 12245 ℤcz 12529 abscabs 15200 gcd cgcd 16464 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-sup 9393 df-inf 9394 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-n0 12443 df-z 12530 df-uz 12794 df-rp 12952 df-seq 13967 df-exp 14027 df-cj 15065 df-re 15066 df-im 15067 df-sqrt 15201 df-abs 15202 df-dvds 16223 df-gcd 16465 |
| This theorem is referenced by: 6lcm4e12 16586 |
| Copyright terms: Public domain | W3C validator |