MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  6gcd4e2 Structured version   Visualization version   GIF version

Theorem 6gcd4e2 16562
Description: The greatest common divisor of six and four is two. To calculate this gcd, a simple form of Euclid's algorithm is used: (6 gcd 4) = ((4 + 2) gcd 4) = (2 gcd 4) and (2 gcd 4) = (2 gcd (2 + 2)) = (2 gcd 2) = 2. (Contributed by AV, 27-Aug-2020.)
Assertion
Ref Expression
6gcd4e2 (6 gcd 4) = 2

Proof of Theorem 6gcd4e2
StepHypRef Expression
1 6nn 12334 . . . 4 6 ∈ ℕ
21nnzi 12621 . . 3 6 ∈ ℤ
3 4z 12631 . . 3 4 ∈ ℤ
4 gcdcom 16537 . . 3 ((6 ∈ ℤ ∧ 4 ∈ ℤ) → (6 gcd 4) = (4 gcd 6))
52, 3, 4mp2an 692 . 2 (6 gcd 4) = (4 gcd 6)
6 4cn 12330 . . . 4 4 ∈ ℂ
7 2cn 12320 . . . 4 2 ∈ ℂ
8 4p2e6 12398 . . . 4 (4 + 2) = 6
96, 7, 8addcomli 11432 . . 3 (2 + 4) = 6
109oveq2i 7421 . 2 (4 gcd (2 + 4)) = (4 gcd 6)
11 2z 12629 . . . . 5 2 ∈ ℤ
12 gcdadd 16550 . . . . 5 ((2 ∈ ℤ ∧ 2 ∈ ℤ) → (2 gcd 2) = (2 gcd (2 + 2)))
1311, 11, 12mp2an 692 . . . 4 (2 gcd 2) = (2 gcd (2 + 2))
14 2p2e4 12380 . . . . . 6 (2 + 2) = 4
1514oveq2i 7421 . . . . 5 (2 gcd (2 + 2)) = (2 gcd 4)
16 gcdcom 16537 . . . . . 6 ((2 ∈ ℤ ∧ 4 ∈ ℤ) → (2 gcd 4) = (4 gcd 2))
1711, 3, 16mp2an 692 . . . . 5 (2 gcd 4) = (4 gcd 2)
1815, 17eqtri 2759 . . . 4 (2 gcd (2 + 2)) = (4 gcd 2)
1913, 18eqtri 2759 . . 3 (2 gcd 2) = (4 gcd 2)
20 gcdid 16551 . . . . 5 (2 ∈ ℤ → (2 gcd 2) = (abs‘2))
2111, 20ax-mp 5 . . . 4 (2 gcd 2) = (abs‘2)
22 2re 12319 . . . . 5 2 ∈ ℝ
23 0le2 12347 . . . . 5 0 ≤ 2
24 absid 15320 . . . . 5 ((2 ∈ ℝ ∧ 0 ≤ 2) → (abs‘2) = 2)
2522, 23, 24mp2an 692 . . . 4 (abs‘2) = 2
2621, 25eqtri 2759 . . 3 (2 gcd 2) = 2
27 gcdadd 16550 . . . 4 ((4 ∈ ℤ ∧ 2 ∈ ℤ) → (4 gcd 2) = (4 gcd (2 + 4)))
283, 11, 27mp2an 692 . . 3 (4 gcd 2) = (4 gcd (2 + 4))
2919, 26, 283eqtr3ri 2768 . 2 (4 gcd (2 + 4)) = 2
305, 10, 293eqtr2i 2765 1 (6 gcd 4) = 2
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109   class class class wbr 5124  cfv 6536  (class class class)co 7410  cr 11133  0cc0 11134   + caddc 11137  cle 11275  2c2 12300  4c4 12302  6c6 12304  cz 12593  abscabs 15258   gcd cgcd 16518
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-sup 9459  df-inf 9460  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-n0 12507  df-z 12594  df-uz 12858  df-rp 13014  df-seq 14025  df-exp 14085  df-cj 15123  df-re 15124  df-im 15125  df-sqrt 15259  df-abs 15260  df-dvds 16278  df-gcd 16519
This theorem is referenced by:  6lcm4e12  16640
  Copyright terms: Public domain W3C validator