| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 6gcd4e2 | Structured version Visualization version GIF version | ||
| Description: The greatest common divisor of six and four is two. To calculate this gcd, a simple form of Euclid's algorithm is used: (6 gcd 4) = ((4 + 2) gcd 4) = (2 gcd 4) and (2 gcd 4) = (2 gcd (2 + 2)) = (2 gcd 2) = 2. (Contributed by AV, 27-Aug-2020.) |
| Ref | Expression |
|---|---|
| 6gcd4e2 | ⊢ (6 gcd 4) = 2 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 6nn 12209 | . . . 4 ⊢ 6 ∈ ℕ | |
| 2 | 1 | nnzi 12491 | . . 3 ⊢ 6 ∈ ℤ |
| 3 | 4z 12501 | . . 3 ⊢ 4 ∈ ℤ | |
| 4 | gcdcom 16419 | . . 3 ⊢ ((6 ∈ ℤ ∧ 4 ∈ ℤ) → (6 gcd 4) = (4 gcd 6)) | |
| 5 | 2, 3, 4 | mp2an 692 | . 2 ⊢ (6 gcd 4) = (4 gcd 6) |
| 6 | 4cn 12205 | . . . 4 ⊢ 4 ∈ ℂ | |
| 7 | 2cn 12195 | . . . 4 ⊢ 2 ∈ ℂ | |
| 8 | 4p2e6 12268 | . . . 4 ⊢ (4 + 2) = 6 | |
| 9 | 6, 7, 8 | addcomli 11300 | . . 3 ⊢ (2 + 4) = 6 |
| 10 | 9 | oveq2i 7352 | . 2 ⊢ (4 gcd (2 + 4)) = (4 gcd 6) |
| 11 | 2z 12499 | . . . . 5 ⊢ 2 ∈ ℤ | |
| 12 | gcdadd 16432 | . . . . 5 ⊢ ((2 ∈ ℤ ∧ 2 ∈ ℤ) → (2 gcd 2) = (2 gcd (2 + 2))) | |
| 13 | 11, 11, 12 | mp2an 692 | . . . 4 ⊢ (2 gcd 2) = (2 gcd (2 + 2)) |
| 14 | 2p2e4 12250 | . . . . . 6 ⊢ (2 + 2) = 4 | |
| 15 | 14 | oveq2i 7352 | . . . . 5 ⊢ (2 gcd (2 + 2)) = (2 gcd 4) |
| 16 | gcdcom 16419 | . . . . . 6 ⊢ ((2 ∈ ℤ ∧ 4 ∈ ℤ) → (2 gcd 4) = (4 gcd 2)) | |
| 17 | 11, 3, 16 | mp2an 692 | . . . . 5 ⊢ (2 gcd 4) = (4 gcd 2) |
| 18 | 15, 17 | eqtri 2754 | . . . 4 ⊢ (2 gcd (2 + 2)) = (4 gcd 2) |
| 19 | 13, 18 | eqtri 2754 | . . 3 ⊢ (2 gcd 2) = (4 gcd 2) |
| 20 | gcdid 16433 | . . . . 5 ⊢ (2 ∈ ℤ → (2 gcd 2) = (abs‘2)) | |
| 21 | 11, 20 | ax-mp 5 | . . . 4 ⊢ (2 gcd 2) = (abs‘2) |
| 22 | 2re 12194 | . . . . 5 ⊢ 2 ∈ ℝ | |
| 23 | 0le2 12222 | . . . . 5 ⊢ 0 ≤ 2 | |
| 24 | absid 15198 | . . . . 5 ⊢ ((2 ∈ ℝ ∧ 0 ≤ 2) → (abs‘2) = 2) | |
| 25 | 22, 23, 24 | mp2an 692 | . . . 4 ⊢ (abs‘2) = 2 |
| 26 | 21, 25 | eqtri 2754 | . . 3 ⊢ (2 gcd 2) = 2 |
| 27 | gcdadd 16432 | . . . 4 ⊢ ((4 ∈ ℤ ∧ 2 ∈ ℤ) → (4 gcd 2) = (4 gcd (2 + 4))) | |
| 28 | 3, 11, 27 | mp2an 692 | . . 3 ⊢ (4 gcd 2) = (4 gcd (2 + 4)) |
| 29 | 19, 26, 28 | 3eqtr3ri 2763 | . 2 ⊢ (4 gcd (2 + 4)) = 2 |
| 30 | 5, 10, 29 | 3eqtr2i 2760 | 1 ⊢ (6 gcd 4) = 2 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2111 class class class wbr 5086 ‘cfv 6476 (class class class)co 7341 ℝcr 11000 0cc0 11001 + caddc 11004 ≤ cle 11142 2c2 12175 4c4 12177 6c6 12179 ℤcz 12463 abscabs 15136 gcd cgcd 16400 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 ax-pre-sup 11079 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-sup 9321 df-inf 9322 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-div 11770 df-nn 12121 df-2 12183 df-3 12184 df-4 12185 df-5 12186 df-6 12187 df-n0 12377 df-z 12464 df-uz 12728 df-rp 12886 df-seq 13904 df-exp 13964 df-cj 15001 df-re 15002 df-im 15003 df-sqrt 15137 df-abs 15138 df-dvds 16159 df-gcd 16401 |
| This theorem is referenced by: 6lcm4e12 16522 |
| Copyright terms: Public domain | W3C validator |