![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 6gcd4e2 | Structured version Visualization version GIF version |
Description: The greatest common divisor of six and four is two. To calculate this gcd, a simple form of Euclid's algorithm is used: (6 gcd 4) = ((4 + 2) gcd 4) = (2 gcd 4) and (2 gcd 4) = (2 gcd (2 + 2)) = (2 gcd 2) = 2. (Contributed by AV, 27-Aug-2020.) |
Ref | Expression |
---|---|
6gcd4e2 | ⊢ (6 gcd 4) = 2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 6nn 12300 | . . . 4 ⊢ 6 ∈ ℕ | |
2 | 1 | nnzi 12585 | . . 3 ⊢ 6 ∈ ℤ |
3 | 4z 12595 | . . 3 ⊢ 4 ∈ ℤ | |
4 | gcdcom 16453 | . . 3 ⊢ ((6 ∈ ℤ ∧ 4 ∈ ℤ) → (6 gcd 4) = (4 gcd 6)) | |
5 | 2, 3, 4 | mp2an 690 | . 2 ⊢ (6 gcd 4) = (4 gcd 6) |
6 | 4cn 12296 | . . . 4 ⊢ 4 ∈ ℂ | |
7 | 2cn 12286 | . . . 4 ⊢ 2 ∈ ℂ | |
8 | 4p2e6 12364 | . . . 4 ⊢ (4 + 2) = 6 | |
9 | 6, 7, 8 | addcomli 11405 | . . 3 ⊢ (2 + 4) = 6 |
10 | 9 | oveq2i 7419 | . 2 ⊢ (4 gcd (2 + 4)) = (4 gcd 6) |
11 | 2z 12593 | . . . . 5 ⊢ 2 ∈ ℤ | |
12 | gcdadd 16466 | . . . . 5 ⊢ ((2 ∈ ℤ ∧ 2 ∈ ℤ) → (2 gcd 2) = (2 gcd (2 + 2))) | |
13 | 11, 11, 12 | mp2an 690 | . . . 4 ⊢ (2 gcd 2) = (2 gcd (2 + 2)) |
14 | 2p2e4 12346 | . . . . . 6 ⊢ (2 + 2) = 4 | |
15 | 14 | oveq2i 7419 | . . . . 5 ⊢ (2 gcd (2 + 2)) = (2 gcd 4) |
16 | gcdcom 16453 | . . . . . 6 ⊢ ((2 ∈ ℤ ∧ 4 ∈ ℤ) → (2 gcd 4) = (4 gcd 2)) | |
17 | 11, 3, 16 | mp2an 690 | . . . . 5 ⊢ (2 gcd 4) = (4 gcd 2) |
18 | 15, 17 | eqtri 2760 | . . . 4 ⊢ (2 gcd (2 + 2)) = (4 gcd 2) |
19 | 13, 18 | eqtri 2760 | . . 3 ⊢ (2 gcd 2) = (4 gcd 2) |
20 | gcdid 16467 | . . . . 5 ⊢ (2 ∈ ℤ → (2 gcd 2) = (abs‘2)) | |
21 | 11, 20 | ax-mp 5 | . . . 4 ⊢ (2 gcd 2) = (abs‘2) |
22 | 2re 12285 | . . . . 5 ⊢ 2 ∈ ℝ | |
23 | 0le2 12313 | . . . . 5 ⊢ 0 ≤ 2 | |
24 | absid 15242 | . . . . 5 ⊢ ((2 ∈ ℝ ∧ 0 ≤ 2) → (abs‘2) = 2) | |
25 | 22, 23, 24 | mp2an 690 | . . . 4 ⊢ (abs‘2) = 2 |
26 | 21, 25 | eqtri 2760 | . . 3 ⊢ (2 gcd 2) = 2 |
27 | gcdadd 16466 | . . . 4 ⊢ ((4 ∈ ℤ ∧ 2 ∈ ℤ) → (4 gcd 2) = (4 gcd (2 + 4))) | |
28 | 3, 11, 27 | mp2an 690 | . . 3 ⊢ (4 gcd 2) = (4 gcd (2 + 4)) |
29 | 19, 26, 28 | 3eqtr3ri 2769 | . 2 ⊢ (4 gcd (2 + 4)) = 2 |
30 | 5, 10, 29 | 3eqtr2i 2766 | 1 ⊢ (6 gcd 4) = 2 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1541 ∈ wcel 2106 class class class wbr 5148 ‘cfv 6543 (class class class)co 7408 ℝcr 11108 0cc0 11109 + caddc 11112 ≤ cle 11248 2c2 12266 4c4 12268 6c6 12270 ℤcz 12557 abscabs 15180 gcd cgcd 16434 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 ax-pre-sup 11187 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-om 7855 df-2nd 7975 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-sup 9436 df-inf 9437 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-div 11871 df-nn 12212 df-2 12274 df-3 12275 df-4 12276 df-5 12277 df-6 12278 df-n0 12472 df-z 12558 df-uz 12822 df-rp 12974 df-seq 13966 df-exp 14027 df-cj 15045 df-re 15046 df-im 15047 df-sqrt 15181 df-abs 15182 df-dvds 16197 df-gcd 16435 |
This theorem is referenced by: 6lcm4e12 16552 |
Copyright terms: Public domain | W3C validator |