| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 6gcd4e2 | Structured version Visualization version GIF version | ||
| Description: The greatest common divisor of six and four is two. To calculate this gcd, a simple form of Euclid's algorithm is used: (6 gcd 4) = ((4 + 2) gcd 4) = (2 gcd 4) and (2 gcd 4) = (2 gcd (2 + 2)) = (2 gcd 2) = 2. (Contributed by AV, 27-Aug-2020.) |
| Ref | Expression |
|---|---|
| 6gcd4e2 | ⊢ (6 gcd 4) = 2 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 6nn 12327 | . . . 4 ⊢ 6 ∈ ℕ | |
| 2 | 1 | nnzi 12614 | . . 3 ⊢ 6 ∈ ℤ |
| 3 | 4z 12624 | . . 3 ⊢ 4 ∈ ℤ | |
| 4 | gcdcom 16530 | . . 3 ⊢ ((6 ∈ ℤ ∧ 4 ∈ ℤ) → (6 gcd 4) = (4 gcd 6)) | |
| 5 | 2, 3, 4 | mp2an 692 | . 2 ⊢ (6 gcd 4) = (4 gcd 6) |
| 6 | 4cn 12323 | . . . 4 ⊢ 4 ∈ ℂ | |
| 7 | 2cn 12313 | . . . 4 ⊢ 2 ∈ ℂ | |
| 8 | 4p2e6 12391 | . . . 4 ⊢ (4 + 2) = 6 | |
| 9 | 6, 7, 8 | addcomli 11425 | . . 3 ⊢ (2 + 4) = 6 |
| 10 | 9 | oveq2i 7414 | . 2 ⊢ (4 gcd (2 + 4)) = (4 gcd 6) |
| 11 | 2z 12622 | . . . . 5 ⊢ 2 ∈ ℤ | |
| 12 | gcdadd 16543 | . . . . 5 ⊢ ((2 ∈ ℤ ∧ 2 ∈ ℤ) → (2 gcd 2) = (2 gcd (2 + 2))) | |
| 13 | 11, 11, 12 | mp2an 692 | . . . 4 ⊢ (2 gcd 2) = (2 gcd (2 + 2)) |
| 14 | 2p2e4 12373 | . . . . . 6 ⊢ (2 + 2) = 4 | |
| 15 | 14 | oveq2i 7414 | . . . . 5 ⊢ (2 gcd (2 + 2)) = (2 gcd 4) |
| 16 | gcdcom 16530 | . . . . . 6 ⊢ ((2 ∈ ℤ ∧ 4 ∈ ℤ) → (2 gcd 4) = (4 gcd 2)) | |
| 17 | 11, 3, 16 | mp2an 692 | . . . . 5 ⊢ (2 gcd 4) = (4 gcd 2) |
| 18 | 15, 17 | eqtri 2758 | . . . 4 ⊢ (2 gcd (2 + 2)) = (4 gcd 2) |
| 19 | 13, 18 | eqtri 2758 | . . 3 ⊢ (2 gcd 2) = (4 gcd 2) |
| 20 | gcdid 16544 | . . . . 5 ⊢ (2 ∈ ℤ → (2 gcd 2) = (abs‘2)) | |
| 21 | 11, 20 | ax-mp 5 | . . . 4 ⊢ (2 gcd 2) = (abs‘2) |
| 22 | 2re 12312 | . . . . 5 ⊢ 2 ∈ ℝ | |
| 23 | 0le2 12340 | . . . . 5 ⊢ 0 ≤ 2 | |
| 24 | absid 15313 | . . . . 5 ⊢ ((2 ∈ ℝ ∧ 0 ≤ 2) → (abs‘2) = 2) | |
| 25 | 22, 23, 24 | mp2an 692 | . . . 4 ⊢ (abs‘2) = 2 |
| 26 | 21, 25 | eqtri 2758 | . . 3 ⊢ (2 gcd 2) = 2 |
| 27 | gcdadd 16543 | . . . 4 ⊢ ((4 ∈ ℤ ∧ 2 ∈ ℤ) → (4 gcd 2) = (4 gcd (2 + 4))) | |
| 28 | 3, 11, 27 | mp2an 692 | . . 3 ⊢ (4 gcd 2) = (4 gcd (2 + 4)) |
| 29 | 19, 26, 28 | 3eqtr3ri 2767 | . 2 ⊢ (4 gcd (2 + 4)) = 2 |
| 30 | 5, 10, 29 | 3eqtr2i 2764 | 1 ⊢ (6 gcd 4) = 2 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2108 class class class wbr 5119 ‘cfv 6530 (class class class)co 7403 ℝcr 11126 0cc0 11127 + caddc 11130 ≤ cle 11268 2c2 12293 4c4 12295 6c6 12297 ℤcz 12586 abscabs 15251 gcd cgcd 16511 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-cnex 11183 ax-resscn 11184 ax-1cn 11185 ax-icn 11186 ax-addcl 11187 ax-addrcl 11188 ax-mulcl 11189 ax-mulrcl 11190 ax-mulcom 11191 ax-addass 11192 ax-mulass 11193 ax-distr 11194 ax-i2m1 11195 ax-1ne0 11196 ax-1rid 11197 ax-rnegex 11198 ax-rrecex 11199 ax-cnre 11200 ax-pre-lttri 11201 ax-pre-lttrn 11202 ax-pre-ltadd 11203 ax-pre-mulgt0 11204 ax-pre-sup 11205 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-riota 7360 df-ov 7406 df-oprab 7407 df-mpo 7408 df-om 7860 df-2nd 7987 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-er 8717 df-en 8958 df-dom 8959 df-sdom 8960 df-sup 9452 df-inf 9453 df-pnf 11269 df-mnf 11270 df-xr 11271 df-ltxr 11272 df-le 11273 df-sub 11466 df-neg 11467 df-div 11893 df-nn 12239 df-2 12301 df-3 12302 df-4 12303 df-5 12304 df-6 12305 df-n0 12500 df-z 12587 df-uz 12851 df-rp 13007 df-seq 14018 df-exp 14078 df-cj 15116 df-re 15117 df-im 15118 df-sqrt 15252 df-abs 15253 df-dvds 16271 df-gcd 16512 |
| This theorem is referenced by: 6lcm4e12 16633 |
| Copyright terms: Public domain | W3C validator |