| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fmtno5faclem1 | Structured version Visualization version GIF version | ||
| Description: Lemma 1 for fmtno5fac 47570. (Contributed by AV, 22-Jul-2021.) |
| Ref | Expression |
|---|---|
| fmtno5faclem1 | ⊢ (;;;;;;6700417 · 4) = ;;;;;;;26801668 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 4nn0 12421 | . 2 ⊢ 4 ∈ ℕ0 | |
| 2 | 6nn0 12423 | . . . . . . 7 ⊢ 6 ∈ ℕ0 | |
| 3 | 7nn0 12424 | . . . . . . 7 ⊢ 7 ∈ ℕ0 | |
| 4 | 2, 3 | deccl 12624 | . . . . . 6 ⊢ ;67 ∈ ℕ0 |
| 5 | 0nn0 12417 | . . . . . 6 ⊢ 0 ∈ ℕ0 | |
| 6 | 4, 5 | deccl 12624 | . . . . 5 ⊢ ;;670 ∈ ℕ0 |
| 7 | 6, 5 | deccl 12624 | . . . 4 ⊢ ;;;6700 ∈ ℕ0 |
| 8 | 7, 1 | deccl 12624 | . . 3 ⊢ ;;;;67004 ∈ ℕ0 |
| 9 | 1nn0 12418 | . . 3 ⊢ 1 ∈ ℕ0 | |
| 10 | 8, 9 | deccl 12624 | . 2 ⊢ ;;;;;670041 ∈ ℕ0 |
| 11 | eqid 2729 | . 2 ⊢ ;;;;;;6700417 = ;;;;;;6700417 | |
| 12 | 8nn0 12425 | . 2 ⊢ 8 ∈ ℕ0 | |
| 13 | 2nn0 12419 | . 2 ⊢ 2 ∈ ℕ0 | |
| 14 | 13, 2 | deccl 12624 | . . . . . . 7 ⊢ ;26 ∈ ℕ0 |
| 15 | 14, 12 | deccl 12624 | . . . . . 6 ⊢ ;;268 ∈ ℕ0 |
| 16 | 15, 5 | deccl 12624 | . . . . 5 ⊢ ;;;2680 ∈ ℕ0 |
| 17 | 16, 9 | deccl 12624 | . . . 4 ⊢ ;;;;26801 ∈ ℕ0 |
| 18 | 17, 2 | deccl 12624 | . . 3 ⊢ ;;;;;268016 ∈ ℕ0 |
| 19 | eqid 2729 | . . . 4 ⊢ ;;;;;670041 = ;;;;;670041 | |
| 20 | eqid 2729 | . . . . 5 ⊢ ;;;;67004 = ;;;;67004 | |
| 21 | eqid 2729 | . . . . . . 7 ⊢ ;;;6700 = ;;;6700 | |
| 22 | eqid 2729 | . . . . . . . 8 ⊢ ;;670 = ;;670 | |
| 23 | eqid 2729 | . . . . . . . . 9 ⊢ ;67 = ;67 | |
| 24 | 6t4e24 12715 | . . . . . . . . . 10 ⊢ (6 · 4) = ;24 | |
| 25 | 4p2e6 12294 | . . . . . . . . . 10 ⊢ (4 + 2) = 6 | |
| 26 | 13, 1, 13, 24, 25 | decaddi 12669 | . . . . . . . . 9 ⊢ ((6 · 4) + 2) = ;26 |
| 27 | 7t4e28 12720 | . . . . . . . . 9 ⊢ (7 · 4) = ;28 | |
| 28 | 1, 2, 3, 23, 12, 13, 26, 27 | decmul1c 12674 | . . . . . . . 8 ⊢ (;67 · 4) = ;;268 |
| 29 | 4cn 12231 | . . . . . . . . 9 ⊢ 4 ∈ ℂ | |
| 30 | 29 | mul02i 11323 | . . . . . . . 8 ⊢ (0 · 4) = 0 |
| 31 | 1, 4, 5, 22, 28, 30 | decmul1 12673 | . . . . . . 7 ⊢ (;;670 · 4) = ;;;2680 |
| 32 | 1, 6, 5, 21, 31, 30 | decmul1 12673 | . . . . . 6 ⊢ (;;;6700 · 4) = ;;;;26800 |
| 33 | 0p1e1 12263 | . . . . . 6 ⊢ (0 + 1) = 1 | |
| 34 | 16, 5, 9, 32, 33 | decaddi 12669 | . . . . 5 ⊢ ((;;;6700 · 4) + 1) = ;;;;26801 |
| 35 | 4t4e16 12708 | . . . . 5 ⊢ (4 · 4) = ;16 | |
| 36 | 1, 7, 1, 20, 2, 9, 34, 35 | decmul1c 12674 | . . . 4 ⊢ (;;;;67004 · 4) = ;;;;;268016 |
| 37 | 29 | mullidi 11139 | . . . 4 ⊢ (1 · 4) = 4 |
| 38 | 1, 8, 9, 19, 36, 37 | decmul1 12673 | . . 3 ⊢ (;;;;;670041 · 4) = ;;;;;;2680164 |
| 39 | 18, 1, 13, 38, 25 | decaddi 12669 | . 2 ⊢ ((;;;;;670041 · 4) + 2) = ;;;;;;2680166 |
| 40 | 1, 10, 3, 11, 12, 13, 39, 27 | decmul1c 12674 | 1 ⊢ (;;;;;;6700417 · 4) = ;;;;;;;26801668 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 (class class class)co 7353 0cc0 11028 1c1 11029 · cmul 11033 2c2 12201 4c4 12203 6c6 12205 7c7 12206 8c8 12207 ;cdc 12609 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-ltxr 11173 df-sub 11367 df-nn 12147 df-2 12209 df-3 12210 df-4 12211 df-5 12212 df-6 12213 df-7 12214 df-8 12215 df-9 12216 df-n0 12403 df-dec 12610 |
| This theorem is referenced by: fmtno5fac 47570 |
| Copyright terms: Public domain | W3C validator |