| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fmtno5faclem1 | Structured version Visualization version GIF version | ||
| Description: Lemma 1 for fmtno5fac 47583. (Contributed by AV, 22-Jul-2021.) |
| Ref | Expression |
|---|---|
| fmtno5faclem1 | ⊢ (;;;;;;6700417 · 4) = ;;;;;;;26801668 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 4nn0 12461 | . 2 ⊢ 4 ∈ ℕ0 | |
| 2 | 6nn0 12463 | . . . . . . 7 ⊢ 6 ∈ ℕ0 | |
| 3 | 7nn0 12464 | . . . . . . 7 ⊢ 7 ∈ ℕ0 | |
| 4 | 2, 3 | deccl 12664 | . . . . . 6 ⊢ ;67 ∈ ℕ0 |
| 5 | 0nn0 12457 | . . . . . 6 ⊢ 0 ∈ ℕ0 | |
| 6 | 4, 5 | deccl 12664 | . . . . 5 ⊢ ;;670 ∈ ℕ0 |
| 7 | 6, 5 | deccl 12664 | . . . 4 ⊢ ;;;6700 ∈ ℕ0 |
| 8 | 7, 1 | deccl 12664 | . . 3 ⊢ ;;;;67004 ∈ ℕ0 |
| 9 | 1nn0 12458 | . . 3 ⊢ 1 ∈ ℕ0 | |
| 10 | 8, 9 | deccl 12664 | . 2 ⊢ ;;;;;670041 ∈ ℕ0 |
| 11 | eqid 2729 | . 2 ⊢ ;;;;;;6700417 = ;;;;;;6700417 | |
| 12 | 8nn0 12465 | . 2 ⊢ 8 ∈ ℕ0 | |
| 13 | 2nn0 12459 | . 2 ⊢ 2 ∈ ℕ0 | |
| 14 | 13, 2 | deccl 12664 | . . . . . . 7 ⊢ ;26 ∈ ℕ0 |
| 15 | 14, 12 | deccl 12664 | . . . . . 6 ⊢ ;;268 ∈ ℕ0 |
| 16 | 15, 5 | deccl 12664 | . . . . 5 ⊢ ;;;2680 ∈ ℕ0 |
| 17 | 16, 9 | deccl 12664 | . . . 4 ⊢ ;;;;26801 ∈ ℕ0 |
| 18 | 17, 2 | deccl 12664 | . . 3 ⊢ ;;;;;268016 ∈ ℕ0 |
| 19 | eqid 2729 | . . . 4 ⊢ ;;;;;670041 = ;;;;;670041 | |
| 20 | eqid 2729 | . . . . 5 ⊢ ;;;;67004 = ;;;;67004 | |
| 21 | eqid 2729 | . . . . . . 7 ⊢ ;;;6700 = ;;;6700 | |
| 22 | eqid 2729 | . . . . . . . 8 ⊢ ;;670 = ;;670 | |
| 23 | eqid 2729 | . . . . . . . . 9 ⊢ ;67 = ;67 | |
| 24 | 6t4e24 12755 | . . . . . . . . . 10 ⊢ (6 · 4) = ;24 | |
| 25 | 4p2e6 12334 | . . . . . . . . . 10 ⊢ (4 + 2) = 6 | |
| 26 | 13, 1, 13, 24, 25 | decaddi 12709 | . . . . . . . . 9 ⊢ ((6 · 4) + 2) = ;26 |
| 27 | 7t4e28 12760 | . . . . . . . . 9 ⊢ (7 · 4) = ;28 | |
| 28 | 1, 2, 3, 23, 12, 13, 26, 27 | decmul1c 12714 | . . . . . . . 8 ⊢ (;67 · 4) = ;;268 |
| 29 | 4cn 12271 | . . . . . . . . 9 ⊢ 4 ∈ ℂ | |
| 30 | 29 | mul02i 11363 | . . . . . . . 8 ⊢ (0 · 4) = 0 |
| 31 | 1, 4, 5, 22, 28, 30 | decmul1 12713 | . . . . . . 7 ⊢ (;;670 · 4) = ;;;2680 |
| 32 | 1, 6, 5, 21, 31, 30 | decmul1 12713 | . . . . . 6 ⊢ (;;;6700 · 4) = ;;;;26800 |
| 33 | 0p1e1 12303 | . . . . . 6 ⊢ (0 + 1) = 1 | |
| 34 | 16, 5, 9, 32, 33 | decaddi 12709 | . . . . 5 ⊢ ((;;;6700 · 4) + 1) = ;;;;26801 |
| 35 | 4t4e16 12748 | . . . . 5 ⊢ (4 · 4) = ;16 | |
| 36 | 1, 7, 1, 20, 2, 9, 34, 35 | decmul1c 12714 | . . . 4 ⊢ (;;;;67004 · 4) = ;;;;;268016 |
| 37 | 29 | mullidi 11179 | . . . 4 ⊢ (1 · 4) = 4 |
| 38 | 1, 8, 9, 19, 36, 37 | decmul1 12713 | . . 3 ⊢ (;;;;;670041 · 4) = ;;;;;;2680164 |
| 39 | 18, 1, 13, 38, 25 | decaddi 12709 | . 2 ⊢ ((;;;;;670041 · 4) + 2) = ;;;;;;2680166 |
| 40 | 1, 10, 3, 11, 12, 13, 39, 27 | decmul1c 12714 | 1 ⊢ (;;;;;;6700417 · 4) = ;;;;;;;26801668 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 (class class class)co 7387 0cc0 11068 1c1 11069 · cmul 11073 2c2 12241 4c4 12243 6c6 12245 7c7 12246 8c8 12247 ;cdc 12649 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-ltxr 11213 df-sub 11407 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-dec 12650 |
| This theorem is referenced by: fmtno5fac 47583 |
| Copyright terms: Public domain | W3C validator |