Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > fmtno5faclem1 | Structured version Visualization version GIF version |
Description: Lemma 1 for fmtno5fac 45299. (Contributed by AV, 22-Jul-2021.) |
Ref | Expression |
---|---|
fmtno5faclem1 | ⊢ (;;;;;;6700417 · 4) = ;;;;;;;26801668 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 4nn0 12332 | . 2 ⊢ 4 ∈ ℕ0 | |
2 | 6nn0 12334 | . . . . . . 7 ⊢ 6 ∈ ℕ0 | |
3 | 7nn0 12335 | . . . . . . 7 ⊢ 7 ∈ ℕ0 | |
4 | 2, 3 | deccl 12532 | . . . . . 6 ⊢ ;67 ∈ ℕ0 |
5 | 0nn0 12328 | . . . . . 6 ⊢ 0 ∈ ℕ0 | |
6 | 4, 5 | deccl 12532 | . . . . 5 ⊢ ;;670 ∈ ℕ0 |
7 | 6, 5 | deccl 12532 | . . . 4 ⊢ ;;;6700 ∈ ℕ0 |
8 | 7, 1 | deccl 12532 | . . 3 ⊢ ;;;;67004 ∈ ℕ0 |
9 | 1nn0 12329 | . . 3 ⊢ 1 ∈ ℕ0 | |
10 | 8, 9 | deccl 12532 | . 2 ⊢ ;;;;;670041 ∈ ℕ0 |
11 | eqid 2737 | . 2 ⊢ ;;;;;;6700417 = ;;;;;;6700417 | |
12 | 8nn0 12336 | . 2 ⊢ 8 ∈ ℕ0 | |
13 | 2nn0 12330 | . 2 ⊢ 2 ∈ ℕ0 | |
14 | 13, 2 | deccl 12532 | . . . . . . 7 ⊢ ;26 ∈ ℕ0 |
15 | 14, 12 | deccl 12532 | . . . . . 6 ⊢ ;;268 ∈ ℕ0 |
16 | 15, 5 | deccl 12532 | . . . . 5 ⊢ ;;;2680 ∈ ℕ0 |
17 | 16, 9 | deccl 12532 | . . . 4 ⊢ ;;;;26801 ∈ ℕ0 |
18 | 17, 2 | deccl 12532 | . . 3 ⊢ ;;;;;268016 ∈ ℕ0 |
19 | eqid 2737 | . . . 4 ⊢ ;;;;;670041 = ;;;;;670041 | |
20 | eqid 2737 | . . . . 5 ⊢ ;;;;67004 = ;;;;67004 | |
21 | eqid 2737 | . . . . . . 7 ⊢ ;;;6700 = ;;;6700 | |
22 | eqid 2737 | . . . . . . . 8 ⊢ ;;670 = ;;670 | |
23 | eqid 2737 | . . . . . . . . 9 ⊢ ;67 = ;67 | |
24 | 6t4e24 12623 | . . . . . . . . . 10 ⊢ (6 · 4) = ;24 | |
25 | 4p2e6 12206 | . . . . . . . . . 10 ⊢ (4 + 2) = 6 | |
26 | 13, 1, 13, 24, 25 | decaddi 12577 | . . . . . . . . 9 ⊢ ((6 · 4) + 2) = ;26 |
27 | 7t4e28 12628 | . . . . . . . . 9 ⊢ (7 · 4) = ;28 | |
28 | 1, 2, 3, 23, 12, 13, 26, 27 | decmul1c 12582 | . . . . . . . 8 ⊢ (;67 · 4) = ;;268 |
29 | 4cn 12138 | . . . . . . . . 9 ⊢ 4 ∈ ℂ | |
30 | 29 | mul02i 11244 | . . . . . . . 8 ⊢ (0 · 4) = 0 |
31 | 1, 4, 5, 22, 28, 30 | decmul1 12581 | . . . . . . 7 ⊢ (;;670 · 4) = ;;;2680 |
32 | 1, 6, 5, 21, 31, 30 | decmul1 12581 | . . . . . 6 ⊢ (;;;6700 · 4) = ;;;;26800 |
33 | 0p1e1 12175 | . . . . . 6 ⊢ (0 + 1) = 1 | |
34 | 16, 5, 9, 32, 33 | decaddi 12577 | . . . . 5 ⊢ ((;;;6700 · 4) + 1) = ;;;;26801 |
35 | 4t4e16 12616 | . . . . 5 ⊢ (4 · 4) = ;16 | |
36 | 1, 7, 1, 20, 2, 9, 34, 35 | decmul1c 12582 | . . . 4 ⊢ (;;;;67004 · 4) = ;;;;;268016 |
37 | 29 | mulid2i 11060 | . . . 4 ⊢ (1 · 4) = 4 |
38 | 1, 8, 9, 19, 36, 37 | decmul1 12581 | . . 3 ⊢ (;;;;;670041 · 4) = ;;;;;;2680164 |
39 | 18, 1, 13, 38, 25 | decaddi 12577 | . 2 ⊢ ((;;;;;670041 · 4) + 2) = ;;;;;;2680166 |
40 | 1, 10, 3, 11, 12, 13, 39, 27 | decmul1c 12582 | 1 ⊢ (;;;;;;6700417 · 4) = ;;;;;;;26801668 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1540 (class class class)co 7317 0cc0 10951 1c1 10952 · cmul 10956 2c2 12108 4c4 12110 6c6 12112 7c7 12113 8c8 12114 ;cdc 12517 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-sep 5238 ax-nul 5245 ax-pow 5303 ax-pr 5367 ax-un 7630 ax-resscn 11008 ax-1cn 11009 ax-icn 11010 ax-addcl 11011 ax-addrcl 11012 ax-mulcl 11013 ax-mulrcl 11014 ax-mulcom 11015 ax-addass 11016 ax-mulass 11017 ax-distr 11018 ax-i2m1 11019 ax-1ne0 11020 ax-1rid 11021 ax-rnegex 11022 ax-rrecex 11023 ax-cnre 11024 ax-pre-lttri 11025 ax-pre-lttrn 11026 ax-pre-ltadd 11027 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3916 df-nul 4268 df-if 4472 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4851 df-iun 4939 df-br 5088 df-opab 5150 df-mpt 5171 df-tr 5205 df-id 5507 df-eprel 5513 df-po 5521 df-so 5522 df-fr 5563 df-we 5565 df-xp 5614 df-rel 5615 df-cnv 5616 df-co 5617 df-dm 5618 df-rn 5619 df-res 5620 df-ima 5621 df-pred 6225 df-ord 6292 df-on 6293 df-lim 6294 df-suc 6295 df-iota 6418 df-fun 6468 df-fn 6469 df-f 6470 df-f1 6471 df-fo 6472 df-f1o 6473 df-fv 6474 df-riota 7274 df-ov 7320 df-oprab 7321 df-mpo 7322 df-om 7760 df-2nd 7879 df-frecs 8146 df-wrecs 8177 df-recs 8251 df-rdg 8290 df-er 8548 df-en 8784 df-dom 8785 df-sdom 8786 df-pnf 11091 df-mnf 11092 df-ltxr 11094 df-sub 11287 df-nn 12054 df-2 12116 df-3 12117 df-4 12118 df-5 12119 df-6 12120 df-7 12121 df-8 12122 df-9 12123 df-n0 12314 df-dec 12518 |
This theorem is referenced by: fmtno5fac 45299 |
Copyright terms: Public domain | W3C validator |