| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fmtno5faclem1 | Structured version Visualization version GIF version | ||
| Description: Lemma 1 for fmtno5fac 47613. (Contributed by AV, 22-Jul-2021.) |
| Ref | Expression |
|---|---|
| fmtno5faclem1 | ⊢ (;;;;;;6700417 · 4) = ;;;;;;;26801668 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 4nn0 12395 | . 2 ⊢ 4 ∈ ℕ0 | |
| 2 | 6nn0 12397 | . . . . . . 7 ⊢ 6 ∈ ℕ0 | |
| 3 | 7nn0 12398 | . . . . . . 7 ⊢ 7 ∈ ℕ0 | |
| 4 | 2, 3 | deccl 12598 | . . . . . 6 ⊢ ;67 ∈ ℕ0 |
| 5 | 0nn0 12391 | . . . . . 6 ⊢ 0 ∈ ℕ0 | |
| 6 | 4, 5 | deccl 12598 | . . . . 5 ⊢ ;;670 ∈ ℕ0 |
| 7 | 6, 5 | deccl 12598 | . . . 4 ⊢ ;;;6700 ∈ ℕ0 |
| 8 | 7, 1 | deccl 12598 | . . 3 ⊢ ;;;;67004 ∈ ℕ0 |
| 9 | 1nn0 12392 | . . 3 ⊢ 1 ∈ ℕ0 | |
| 10 | 8, 9 | deccl 12598 | . 2 ⊢ ;;;;;670041 ∈ ℕ0 |
| 11 | eqid 2731 | . 2 ⊢ ;;;;;;6700417 = ;;;;;;6700417 | |
| 12 | 8nn0 12399 | . 2 ⊢ 8 ∈ ℕ0 | |
| 13 | 2nn0 12393 | . 2 ⊢ 2 ∈ ℕ0 | |
| 14 | 13, 2 | deccl 12598 | . . . . . . 7 ⊢ ;26 ∈ ℕ0 |
| 15 | 14, 12 | deccl 12598 | . . . . . 6 ⊢ ;;268 ∈ ℕ0 |
| 16 | 15, 5 | deccl 12598 | . . . . 5 ⊢ ;;;2680 ∈ ℕ0 |
| 17 | 16, 9 | deccl 12598 | . . . 4 ⊢ ;;;;26801 ∈ ℕ0 |
| 18 | 17, 2 | deccl 12598 | . . 3 ⊢ ;;;;;268016 ∈ ℕ0 |
| 19 | eqid 2731 | . . . 4 ⊢ ;;;;;670041 = ;;;;;670041 | |
| 20 | eqid 2731 | . . . . 5 ⊢ ;;;;67004 = ;;;;67004 | |
| 21 | eqid 2731 | . . . . . . 7 ⊢ ;;;6700 = ;;;6700 | |
| 22 | eqid 2731 | . . . . . . . 8 ⊢ ;;670 = ;;670 | |
| 23 | eqid 2731 | . . . . . . . . 9 ⊢ ;67 = ;67 | |
| 24 | 6t4e24 12689 | . . . . . . . . . 10 ⊢ (6 · 4) = ;24 | |
| 25 | 4p2e6 12268 | . . . . . . . . . 10 ⊢ (4 + 2) = 6 | |
| 26 | 13, 1, 13, 24, 25 | decaddi 12643 | . . . . . . . . 9 ⊢ ((6 · 4) + 2) = ;26 |
| 27 | 7t4e28 12694 | . . . . . . . . 9 ⊢ (7 · 4) = ;28 | |
| 28 | 1, 2, 3, 23, 12, 13, 26, 27 | decmul1c 12648 | . . . . . . . 8 ⊢ (;67 · 4) = ;;268 |
| 29 | 4cn 12205 | . . . . . . . . 9 ⊢ 4 ∈ ℂ | |
| 30 | 29 | mul02i 11297 | . . . . . . . 8 ⊢ (0 · 4) = 0 |
| 31 | 1, 4, 5, 22, 28, 30 | decmul1 12647 | . . . . . . 7 ⊢ (;;670 · 4) = ;;;2680 |
| 32 | 1, 6, 5, 21, 31, 30 | decmul1 12647 | . . . . . 6 ⊢ (;;;6700 · 4) = ;;;;26800 |
| 33 | 0p1e1 12237 | . . . . . 6 ⊢ (0 + 1) = 1 | |
| 34 | 16, 5, 9, 32, 33 | decaddi 12643 | . . . . 5 ⊢ ((;;;6700 · 4) + 1) = ;;;;26801 |
| 35 | 4t4e16 12682 | . . . . 5 ⊢ (4 · 4) = ;16 | |
| 36 | 1, 7, 1, 20, 2, 9, 34, 35 | decmul1c 12648 | . . . 4 ⊢ (;;;;67004 · 4) = ;;;;;268016 |
| 37 | 29 | mullidi 11112 | . . . 4 ⊢ (1 · 4) = 4 |
| 38 | 1, 8, 9, 19, 36, 37 | decmul1 12647 | . . 3 ⊢ (;;;;;670041 · 4) = ;;;;;;2680164 |
| 39 | 18, 1, 13, 38, 25 | decaddi 12643 | . 2 ⊢ ((;;;;;670041 · 4) + 2) = ;;;;;;2680166 |
| 40 | 1, 10, 3, 11, 12, 13, 39, 27 | decmul1c 12648 | 1 ⊢ (;;;;;;6700417 · 4) = ;;;;;;;26801668 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 (class class class)co 7341 0cc0 11001 1c1 11002 · cmul 11006 2c2 12175 4c4 12177 6c6 12179 7c7 12180 8c8 12181 ;cdc 12583 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-pnf 11143 df-mnf 11144 df-ltxr 11146 df-sub 11341 df-nn 12121 df-2 12183 df-3 12184 df-4 12185 df-5 12186 df-6 12187 df-7 12188 df-8 12189 df-9 12190 df-n0 12377 df-dec 12584 |
| This theorem is referenced by: fmtno5fac 47613 |
| Copyright terms: Public domain | W3C validator |