Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > fmtno5faclem1 | Structured version Visualization version GIF version |
Description: Lemma 1 for fmtno5fac 44922. (Contributed by AV, 22-Jul-2021.) |
Ref | Expression |
---|---|
fmtno5faclem1 | ⊢ (;;;;;;6700417 · 4) = ;;;;;;;26801668 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 4nn0 12182 | . 2 ⊢ 4 ∈ ℕ0 | |
2 | 6nn0 12184 | . . . . . . 7 ⊢ 6 ∈ ℕ0 | |
3 | 7nn0 12185 | . . . . . . 7 ⊢ 7 ∈ ℕ0 | |
4 | 2, 3 | deccl 12381 | . . . . . 6 ⊢ ;67 ∈ ℕ0 |
5 | 0nn0 12178 | . . . . . 6 ⊢ 0 ∈ ℕ0 | |
6 | 4, 5 | deccl 12381 | . . . . 5 ⊢ ;;670 ∈ ℕ0 |
7 | 6, 5 | deccl 12381 | . . . 4 ⊢ ;;;6700 ∈ ℕ0 |
8 | 7, 1 | deccl 12381 | . . 3 ⊢ ;;;;67004 ∈ ℕ0 |
9 | 1nn0 12179 | . . 3 ⊢ 1 ∈ ℕ0 | |
10 | 8, 9 | deccl 12381 | . 2 ⊢ ;;;;;670041 ∈ ℕ0 |
11 | eqid 2738 | . 2 ⊢ ;;;;;;6700417 = ;;;;;;6700417 | |
12 | 8nn0 12186 | . 2 ⊢ 8 ∈ ℕ0 | |
13 | 2nn0 12180 | . 2 ⊢ 2 ∈ ℕ0 | |
14 | 13, 2 | deccl 12381 | . . . . . . 7 ⊢ ;26 ∈ ℕ0 |
15 | 14, 12 | deccl 12381 | . . . . . 6 ⊢ ;;268 ∈ ℕ0 |
16 | 15, 5 | deccl 12381 | . . . . 5 ⊢ ;;;2680 ∈ ℕ0 |
17 | 16, 9 | deccl 12381 | . . . 4 ⊢ ;;;;26801 ∈ ℕ0 |
18 | 17, 2 | deccl 12381 | . . 3 ⊢ ;;;;;268016 ∈ ℕ0 |
19 | eqid 2738 | . . . 4 ⊢ ;;;;;670041 = ;;;;;670041 | |
20 | eqid 2738 | . . . . 5 ⊢ ;;;;67004 = ;;;;67004 | |
21 | eqid 2738 | . . . . . . 7 ⊢ ;;;6700 = ;;;6700 | |
22 | eqid 2738 | . . . . . . . 8 ⊢ ;;670 = ;;670 | |
23 | eqid 2738 | . . . . . . . . 9 ⊢ ;67 = ;67 | |
24 | 6t4e24 12472 | . . . . . . . . . 10 ⊢ (6 · 4) = ;24 | |
25 | 4p2e6 12056 | . . . . . . . . . 10 ⊢ (4 + 2) = 6 | |
26 | 13, 1, 13, 24, 25 | decaddi 12426 | . . . . . . . . 9 ⊢ ((6 · 4) + 2) = ;26 |
27 | 7t4e28 12477 | . . . . . . . . 9 ⊢ (7 · 4) = ;28 | |
28 | 1, 2, 3, 23, 12, 13, 26, 27 | decmul1c 12431 | . . . . . . . 8 ⊢ (;67 · 4) = ;;268 |
29 | 4cn 11988 | . . . . . . . . 9 ⊢ 4 ∈ ℂ | |
30 | 29 | mul02i 11094 | . . . . . . . 8 ⊢ (0 · 4) = 0 |
31 | 1, 4, 5, 22, 28, 30 | decmul1 12430 | . . . . . . 7 ⊢ (;;670 · 4) = ;;;2680 |
32 | 1, 6, 5, 21, 31, 30 | decmul1 12430 | . . . . . 6 ⊢ (;;;6700 · 4) = ;;;;26800 |
33 | 0p1e1 12025 | . . . . . 6 ⊢ (0 + 1) = 1 | |
34 | 16, 5, 9, 32, 33 | decaddi 12426 | . . . . 5 ⊢ ((;;;6700 · 4) + 1) = ;;;;26801 |
35 | 4t4e16 12465 | . . . . 5 ⊢ (4 · 4) = ;16 | |
36 | 1, 7, 1, 20, 2, 9, 34, 35 | decmul1c 12431 | . . . 4 ⊢ (;;;;67004 · 4) = ;;;;;268016 |
37 | 29 | mulid2i 10911 | . . . 4 ⊢ (1 · 4) = 4 |
38 | 1, 8, 9, 19, 36, 37 | decmul1 12430 | . . 3 ⊢ (;;;;;670041 · 4) = ;;;;;;2680164 |
39 | 18, 1, 13, 38, 25 | decaddi 12426 | . 2 ⊢ ((;;;;;670041 · 4) + 2) = ;;;;;;2680166 |
40 | 1, 10, 3, 11, 12, 13, 39, 27 | decmul1c 12431 | 1 ⊢ (;;;;;;6700417 · 4) = ;;;;;;;26801668 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 (class class class)co 7255 0cc0 10802 1c1 10803 · cmul 10807 2c2 11958 4c4 11960 6c6 11962 7c7 11963 8c8 11964 ;cdc 12366 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-ltxr 10945 df-sub 11137 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-dec 12367 |
This theorem is referenced by: fmtno5fac 44922 |
Copyright terms: Public domain | W3C validator |