|   | Mathbox for Alexander van der Vekens | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fmtno5faclem1 | Structured version Visualization version GIF version | ||
| Description: Lemma 1 for fmtno5fac 47569. (Contributed by AV, 22-Jul-2021.) | 
| Ref | Expression | 
|---|---|
| fmtno5faclem1 | ⊢ (;;;;;;6700417 · 4) = ;;;;;;;26801668 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 4nn0 12545 | . 2 ⊢ 4 ∈ ℕ0 | |
| 2 | 6nn0 12547 | . . . . . . 7 ⊢ 6 ∈ ℕ0 | |
| 3 | 7nn0 12548 | . . . . . . 7 ⊢ 7 ∈ ℕ0 | |
| 4 | 2, 3 | deccl 12748 | . . . . . 6 ⊢ ;67 ∈ ℕ0 | 
| 5 | 0nn0 12541 | . . . . . 6 ⊢ 0 ∈ ℕ0 | |
| 6 | 4, 5 | deccl 12748 | . . . . 5 ⊢ ;;670 ∈ ℕ0 | 
| 7 | 6, 5 | deccl 12748 | . . . 4 ⊢ ;;;6700 ∈ ℕ0 | 
| 8 | 7, 1 | deccl 12748 | . . 3 ⊢ ;;;;67004 ∈ ℕ0 | 
| 9 | 1nn0 12542 | . . 3 ⊢ 1 ∈ ℕ0 | |
| 10 | 8, 9 | deccl 12748 | . 2 ⊢ ;;;;;670041 ∈ ℕ0 | 
| 11 | eqid 2737 | . 2 ⊢ ;;;;;;6700417 = ;;;;;;6700417 | |
| 12 | 8nn0 12549 | . 2 ⊢ 8 ∈ ℕ0 | |
| 13 | 2nn0 12543 | . 2 ⊢ 2 ∈ ℕ0 | |
| 14 | 13, 2 | deccl 12748 | . . . . . . 7 ⊢ ;26 ∈ ℕ0 | 
| 15 | 14, 12 | deccl 12748 | . . . . . 6 ⊢ ;;268 ∈ ℕ0 | 
| 16 | 15, 5 | deccl 12748 | . . . . 5 ⊢ ;;;2680 ∈ ℕ0 | 
| 17 | 16, 9 | deccl 12748 | . . . 4 ⊢ ;;;;26801 ∈ ℕ0 | 
| 18 | 17, 2 | deccl 12748 | . . 3 ⊢ ;;;;;268016 ∈ ℕ0 | 
| 19 | eqid 2737 | . . . 4 ⊢ ;;;;;670041 = ;;;;;670041 | |
| 20 | eqid 2737 | . . . . 5 ⊢ ;;;;67004 = ;;;;67004 | |
| 21 | eqid 2737 | . . . . . . 7 ⊢ ;;;6700 = ;;;6700 | |
| 22 | eqid 2737 | . . . . . . . 8 ⊢ ;;670 = ;;670 | |
| 23 | eqid 2737 | . . . . . . . . 9 ⊢ ;67 = ;67 | |
| 24 | 6t4e24 12839 | . . . . . . . . . 10 ⊢ (6 · 4) = ;24 | |
| 25 | 4p2e6 12419 | . . . . . . . . . 10 ⊢ (4 + 2) = 6 | |
| 26 | 13, 1, 13, 24, 25 | decaddi 12793 | . . . . . . . . 9 ⊢ ((6 · 4) + 2) = ;26 | 
| 27 | 7t4e28 12844 | . . . . . . . . 9 ⊢ (7 · 4) = ;28 | |
| 28 | 1, 2, 3, 23, 12, 13, 26, 27 | decmul1c 12798 | . . . . . . . 8 ⊢ (;67 · 4) = ;;268 | 
| 29 | 4cn 12351 | . . . . . . . . 9 ⊢ 4 ∈ ℂ | |
| 30 | 29 | mul02i 11450 | . . . . . . . 8 ⊢ (0 · 4) = 0 | 
| 31 | 1, 4, 5, 22, 28, 30 | decmul1 12797 | . . . . . . 7 ⊢ (;;670 · 4) = ;;;2680 | 
| 32 | 1, 6, 5, 21, 31, 30 | decmul1 12797 | . . . . . 6 ⊢ (;;;6700 · 4) = ;;;;26800 | 
| 33 | 0p1e1 12388 | . . . . . 6 ⊢ (0 + 1) = 1 | |
| 34 | 16, 5, 9, 32, 33 | decaddi 12793 | . . . . 5 ⊢ ((;;;6700 · 4) + 1) = ;;;;26801 | 
| 35 | 4t4e16 12832 | . . . . 5 ⊢ (4 · 4) = ;16 | |
| 36 | 1, 7, 1, 20, 2, 9, 34, 35 | decmul1c 12798 | . . . 4 ⊢ (;;;;67004 · 4) = ;;;;;268016 | 
| 37 | 29 | mullidi 11266 | . . . 4 ⊢ (1 · 4) = 4 | 
| 38 | 1, 8, 9, 19, 36, 37 | decmul1 12797 | . . 3 ⊢ (;;;;;670041 · 4) = ;;;;;;2680164 | 
| 39 | 18, 1, 13, 38, 25 | decaddi 12793 | . 2 ⊢ ((;;;;;670041 · 4) + 2) = ;;;;;;2680166 | 
| 40 | 1, 10, 3, 11, 12, 13, 39, 27 | decmul1c 12798 | 1 ⊢ (;;;;;;6700417 · 4) = ;;;;;;;26801668 | 
| Colors of variables: wff setvar class | 
| Syntax hints: = wceq 1540 (class class class)co 7431 0cc0 11155 1c1 11156 · cmul 11160 2c2 12321 4c4 12323 6c6 12325 7c7 12326 8c8 12327 ;cdc 12733 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-pnf 11297 df-mnf 11298 df-ltxr 11300 df-sub 11494 df-nn 12267 df-2 12329 df-3 12330 df-4 12331 df-5 12332 df-6 12333 df-7 12334 df-8 12335 df-9 12336 df-n0 12527 df-dec 12734 | 
| This theorem is referenced by: fmtno5fac 47569 | 
| Copyright terms: Public domain | W3C validator |