![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fmtno5faclem1 | Structured version Visualization version GIF version |
Description: Lemma 1 for fmtno5fac 46549. (Contributed by AV, 22-Jul-2021.) |
Ref | Expression |
---|---|
fmtno5faclem1 | ⊢ (;;;;;;6700417 · 4) = ;;;;;;;26801668 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 4nn0 12496 | . 2 ⊢ 4 ∈ ℕ0 | |
2 | 6nn0 12498 | . . . . . . 7 ⊢ 6 ∈ ℕ0 | |
3 | 7nn0 12499 | . . . . . . 7 ⊢ 7 ∈ ℕ0 | |
4 | 2, 3 | deccl 12697 | . . . . . 6 ⊢ ;67 ∈ ℕ0 |
5 | 0nn0 12492 | . . . . . 6 ⊢ 0 ∈ ℕ0 | |
6 | 4, 5 | deccl 12697 | . . . . 5 ⊢ ;;670 ∈ ℕ0 |
7 | 6, 5 | deccl 12697 | . . . 4 ⊢ ;;;6700 ∈ ℕ0 |
8 | 7, 1 | deccl 12697 | . . 3 ⊢ ;;;;67004 ∈ ℕ0 |
9 | 1nn0 12493 | . . 3 ⊢ 1 ∈ ℕ0 | |
10 | 8, 9 | deccl 12697 | . 2 ⊢ ;;;;;670041 ∈ ℕ0 |
11 | eqid 2731 | . 2 ⊢ ;;;;;;6700417 = ;;;;;;6700417 | |
12 | 8nn0 12500 | . 2 ⊢ 8 ∈ ℕ0 | |
13 | 2nn0 12494 | . 2 ⊢ 2 ∈ ℕ0 | |
14 | 13, 2 | deccl 12697 | . . . . . . 7 ⊢ ;26 ∈ ℕ0 |
15 | 14, 12 | deccl 12697 | . . . . . 6 ⊢ ;;268 ∈ ℕ0 |
16 | 15, 5 | deccl 12697 | . . . . 5 ⊢ ;;;2680 ∈ ℕ0 |
17 | 16, 9 | deccl 12697 | . . . 4 ⊢ ;;;;26801 ∈ ℕ0 |
18 | 17, 2 | deccl 12697 | . . 3 ⊢ ;;;;;268016 ∈ ℕ0 |
19 | eqid 2731 | . . . 4 ⊢ ;;;;;670041 = ;;;;;670041 | |
20 | eqid 2731 | . . . . 5 ⊢ ;;;;67004 = ;;;;67004 | |
21 | eqid 2731 | . . . . . . 7 ⊢ ;;;6700 = ;;;6700 | |
22 | eqid 2731 | . . . . . . . 8 ⊢ ;;670 = ;;670 | |
23 | eqid 2731 | . . . . . . . . 9 ⊢ ;67 = ;67 | |
24 | 6t4e24 12788 | . . . . . . . . . 10 ⊢ (6 · 4) = ;24 | |
25 | 4p2e6 12370 | . . . . . . . . . 10 ⊢ (4 + 2) = 6 | |
26 | 13, 1, 13, 24, 25 | decaddi 12742 | . . . . . . . . 9 ⊢ ((6 · 4) + 2) = ;26 |
27 | 7t4e28 12793 | . . . . . . . . 9 ⊢ (7 · 4) = ;28 | |
28 | 1, 2, 3, 23, 12, 13, 26, 27 | decmul1c 12747 | . . . . . . . 8 ⊢ (;67 · 4) = ;;268 |
29 | 4cn 12302 | . . . . . . . . 9 ⊢ 4 ∈ ℂ | |
30 | 29 | mul02i 11408 | . . . . . . . 8 ⊢ (0 · 4) = 0 |
31 | 1, 4, 5, 22, 28, 30 | decmul1 12746 | . . . . . . 7 ⊢ (;;670 · 4) = ;;;2680 |
32 | 1, 6, 5, 21, 31, 30 | decmul1 12746 | . . . . . 6 ⊢ (;;;6700 · 4) = ;;;;26800 |
33 | 0p1e1 12339 | . . . . . 6 ⊢ (0 + 1) = 1 | |
34 | 16, 5, 9, 32, 33 | decaddi 12742 | . . . . 5 ⊢ ((;;;6700 · 4) + 1) = ;;;;26801 |
35 | 4t4e16 12781 | . . . . 5 ⊢ (4 · 4) = ;16 | |
36 | 1, 7, 1, 20, 2, 9, 34, 35 | decmul1c 12747 | . . . 4 ⊢ (;;;;67004 · 4) = ;;;;;268016 |
37 | 29 | mullidi 11224 | . . . 4 ⊢ (1 · 4) = 4 |
38 | 1, 8, 9, 19, 36, 37 | decmul1 12746 | . . 3 ⊢ (;;;;;670041 · 4) = ;;;;;;2680164 |
39 | 18, 1, 13, 38, 25 | decaddi 12742 | . 2 ⊢ ((;;;;;670041 · 4) + 2) = ;;;;;;2680166 |
40 | 1, 10, 3, 11, 12, 13, 39, 27 | decmul1c 12747 | 1 ⊢ (;;;;;;6700417 · 4) = ;;;;;;;26801668 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1540 (class class class)co 7412 0cc0 11114 1c1 11115 · cmul 11119 2c2 12272 4c4 12274 6c6 12276 7c7 12277 8c8 12278 ;cdc 12682 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-resscn 11171 ax-1cn 11172 ax-icn 11173 ax-addcl 11174 ax-addrcl 11175 ax-mulcl 11176 ax-mulrcl 11177 ax-mulcom 11178 ax-addass 11179 ax-mulass 11180 ax-distr 11181 ax-i2m1 11182 ax-1ne0 11183 ax-1rid 11184 ax-rnegex 11185 ax-rrecex 11186 ax-cnre 11187 ax-pre-lttri 11188 ax-pre-lttrn 11189 ax-pre-ltadd 11190 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7860 df-2nd 7980 df-frecs 8270 df-wrecs 8301 df-recs 8375 df-rdg 8414 df-er 8707 df-en 8944 df-dom 8945 df-sdom 8946 df-pnf 11255 df-mnf 11256 df-ltxr 11258 df-sub 11451 df-nn 12218 df-2 12280 df-3 12281 df-4 12282 df-5 12283 df-6 12284 df-7 12285 df-8 12286 df-9 12287 df-n0 12478 df-dec 12683 |
This theorem is referenced by: fmtno5fac 46549 |
Copyright terms: Public domain | W3C validator |