| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fmtno5faclem1 | Structured version Visualization version GIF version | ||
| Description: Lemma 1 for fmtno5fac 47587. (Contributed by AV, 22-Jul-2021.) |
| Ref | Expression |
|---|---|
| fmtno5faclem1 | ⊢ (;;;;;;6700417 · 4) = ;;;;;;;26801668 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 4nn0 12468 | . 2 ⊢ 4 ∈ ℕ0 | |
| 2 | 6nn0 12470 | . . . . . . 7 ⊢ 6 ∈ ℕ0 | |
| 3 | 7nn0 12471 | . . . . . . 7 ⊢ 7 ∈ ℕ0 | |
| 4 | 2, 3 | deccl 12671 | . . . . . 6 ⊢ ;67 ∈ ℕ0 |
| 5 | 0nn0 12464 | . . . . . 6 ⊢ 0 ∈ ℕ0 | |
| 6 | 4, 5 | deccl 12671 | . . . . 5 ⊢ ;;670 ∈ ℕ0 |
| 7 | 6, 5 | deccl 12671 | . . . 4 ⊢ ;;;6700 ∈ ℕ0 |
| 8 | 7, 1 | deccl 12671 | . . 3 ⊢ ;;;;67004 ∈ ℕ0 |
| 9 | 1nn0 12465 | . . 3 ⊢ 1 ∈ ℕ0 | |
| 10 | 8, 9 | deccl 12671 | . 2 ⊢ ;;;;;670041 ∈ ℕ0 |
| 11 | eqid 2730 | . 2 ⊢ ;;;;;;6700417 = ;;;;;;6700417 | |
| 12 | 8nn0 12472 | . 2 ⊢ 8 ∈ ℕ0 | |
| 13 | 2nn0 12466 | . 2 ⊢ 2 ∈ ℕ0 | |
| 14 | 13, 2 | deccl 12671 | . . . . . . 7 ⊢ ;26 ∈ ℕ0 |
| 15 | 14, 12 | deccl 12671 | . . . . . 6 ⊢ ;;268 ∈ ℕ0 |
| 16 | 15, 5 | deccl 12671 | . . . . 5 ⊢ ;;;2680 ∈ ℕ0 |
| 17 | 16, 9 | deccl 12671 | . . . 4 ⊢ ;;;;26801 ∈ ℕ0 |
| 18 | 17, 2 | deccl 12671 | . . 3 ⊢ ;;;;;268016 ∈ ℕ0 |
| 19 | eqid 2730 | . . . 4 ⊢ ;;;;;670041 = ;;;;;670041 | |
| 20 | eqid 2730 | . . . . 5 ⊢ ;;;;67004 = ;;;;67004 | |
| 21 | eqid 2730 | . . . . . . 7 ⊢ ;;;6700 = ;;;6700 | |
| 22 | eqid 2730 | . . . . . . . 8 ⊢ ;;670 = ;;670 | |
| 23 | eqid 2730 | . . . . . . . . 9 ⊢ ;67 = ;67 | |
| 24 | 6t4e24 12762 | . . . . . . . . . 10 ⊢ (6 · 4) = ;24 | |
| 25 | 4p2e6 12341 | . . . . . . . . . 10 ⊢ (4 + 2) = 6 | |
| 26 | 13, 1, 13, 24, 25 | decaddi 12716 | . . . . . . . . 9 ⊢ ((6 · 4) + 2) = ;26 |
| 27 | 7t4e28 12767 | . . . . . . . . 9 ⊢ (7 · 4) = ;28 | |
| 28 | 1, 2, 3, 23, 12, 13, 26, 27 | decmul1c 12721 | . . . . . . . 8 ⊢ (;67 · 4) = ;;268 |
| 29 | 4cn 12278 | . . . . . . . . 9 ⊢ 4 ∈ ℂ | |
| 30 | 29 | mul02i 11370 | . . . . . . . 8 ⊢ (0 · 4) = 0 |
| 31 | 1, 4, 5, 22, 28, 30 | decmul1 12720 | . . . . . . 7 ⊢ (;;670 · 4) = ;;;2680 |
| 32 | 1, 6, 5, 21, 31, 30 | decmul1 12720 | . . . . . 6 ⊢ (;;;6700 · 4) = ;;;;26800 |
| 33 | 0p1e1 12310 | . . . . . 6 ⊢ (0 + 1) = 1 | |
| 34 | 16, 5, 9, 32, 33 | decaddi 12716 | . . . . 5 ⊢ ((;;;6700 · 4) + 1) = ;;;;26801 |
| 35 | 4t4e16 12755 | . . . . 5 ⊢ (4 · 4) = ;16 | |
| 36 | 1, 7, 1, 20, 2, 9, 34, 35 | decmul1c 12721 | . . . 4 ⊢ (;;;;67004 · 4) = ;;;;;268016 |
| 37 | 29 | mullidi 11186 | . . . 4 ⊢ (1 · 4) = 4 |
| 38 | 1, 8, 9, 19, 36, 37 | decmul1 12720 | . . 3 ⊢ (;;;;;670041 · 4) = ;;;;;;2680164 |
| 39 | 18, 1, 13, 38, 25 | decaddi 12716 | . 2 ⊢ ((;;;;;670041 · 4) + 2) = ;;;;;;2680166 |
| 40 | 1, 10, 3, 11, 12, 13, 39, 27 | decmul1c 12721 | 1 ⊢ (;;;;;;6700417 · 4) = ;;;;;;;26801668 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 (class class class)co 7390 0cc0 11075 1c1 11076 · cmul 11080 2c2 12248 4c4 12250 6c6 12252 7c7 12253 8c8 12254 ;cdc 12656 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-ltxr 11220 df-sub 11414 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-dec 12657 |
| This theorem is referenced by: fmtno5fac 47587 |
| Copyright terms: Public domain | W3C validator |