| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fmtno5faclem1 | Structured version Visualization version GIF version | ||
| Description: Lemma 1 for fmtno5fac 47596. (Contributed by AV, 22-Jul-2021.) |
| Ref | Expression |
|---|---|
| fmtno5faclem1 | ⊢ (;;;;;;6700417 · 4) = ;;;;;;;26801668 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 4nn0 12520 | . 2 ⊢ 4 ∈ ℕ0 | |
| 2 | 6nn0 12522 | . . . . . . 7 ⊢ 6 ∈ ℕ0 | |
| 3 | 7nn0 12523 | . . . . . . 7 ⊢ 7 ∈ ℕ0 | |
| 4 | 2, 3 | deccl 12723 | . . . . . 6 ⊢ ;67 ∈ ℕ0 |
| 5 | 0nn0 12516 | . . . . . 6 ⊢ 0 ∈ ℕ0 | |
| 6 | 4, 5 | deccl 12723 | . . . . 5 ⊢ ;;670 ∈ ℕ0 |
| 7 | 6, 5 | deccl 12723 | . . . 4 ⊢ ;;;6700 ∈ ℕ0 |
| 8 | 7, 1 | deccl 12723 | . . 3 ⊢ ;;;;67004 ∈ ℕ0 |
| 9 | 1nn0 12517 | . . 3 ⊢ 1 ∈ ℕ0 | |
| 10 | 8, 9 | deccl 12723 | . 2 ⊢ ;;;;;670041 ∈ ℕ0 |
| 11 | eqid 2735 | . 2 ⊢ ;;;;;;6700417 = ;;;;;;6700417 | |
| 12 | 8nn0 12524 | . 2 ⊢ 8 ∈ ℕ0 | |
| 13 | 2nn0 12518 | . 2 ⊢ 2 ∈ ℕ0 | |
| 14 | 13, 2 | deccl 12723 | . . . . . . 7 ⊢ ;26 ∈ ℕ0 |
| 15 | 14, 12 | deccl 12723 | . . . . . 6 ⊢ ;;268 ∈ ℕ0 |
| 16 | 15, 5 | deccl 12723 | . . . . 5 ⊢ ;;;2680 ∈ ℕ0 |
| 17 | 16, 9 | deccl 12723 | . . . 4 ⊢ ;;;;26801 ∈ ℕ0 |
| 18 | 17, 2 | deccl 12723 | . . 3 ⊢ ;;;;;268016 ∈ ℕ0 |
| 19 | eqid 2735 | . . . 4 ⊢ ;;;;;670041 = ;;;;;670041 | |
| 20 | eqid 2735 | . . . . 5 ⊢ ;;;;67004 = ;;;;67004 | |
| 21 | eqid 2735 | . . . . . . 7 ⊢ ;;;6700 = ;;;6700 | |
| 22 | eqid 2735 | . . . . . . . 8 ⊢ ;;670 = ;;670 | |
| 23 | eqid 2735 | . . . . . . . . 9 ⊢ ;67 = ;67 | |
| 24 | 6t4e24 12814 | . . . . . . . . . 10 ⊢ (6 · 4) = ;24 | |
| 25 | 4p2e6 12393 | . . . . . . . . . 10 ⊢ (4 + 2) = 6 | |
| 26 | 13, 1, 13, 24, 25 | decaddi 12768 | . . . . . . . . 9 ⊢ ((6 · 4) + 2) = ;26 |
| 27 | 7t4e28 12819 | . . . . . . . . 9 ⊢ (7 · 4) = ;28 | |
| 28 | 1, 2, 3, 23, 12, 13, 26, 27 | decmul1c 12773 | . . . . . . . 8 ⊢ (;67 · 4) = ;;268 |
| 29 | 4cn 12325 | . . . . . . . . 9 ⊢ 4 ∈ ℂ | |
| 30 | 29 | mul02i 11424 | . . . . . . . 8 ⊢ (0 · 4) = 0 |
| 31 | 1, 4, 5, 22, 28, 30 | decmul1 12772 | . . . . . . 7 ⊢ (;;670 · 4) = ;;;2680 |
| 32 | 1, 6, 5, 21, 31, 30 | decmul1 12772 | . . . . . 6 ⊢ (;;;6700 · 4) = ;;;;26800 |
| 33 | 0p1e1 12362 | . . . . . 6 ⊢ (0 + 1) = 1 | |
| 34 | 16, 5, 9, 32, 33 | decaddi 12768 | . . . . 5 ⊢ ((;;;6700 · 4) + 1) = ;;;;26801 |
| 35 | 4t4e16 12807 | . . . . 5 ⊢ (4 · 4) = ;16 | |
| 36 | 1, 7, 1, 20, 2, 9, 34, 35 | decmul1c 12773 | . . . 4 ⊢ (;;;;67004 · 4) = ;;;;;268016 |
| 37 | 29 | mullidi 11240 | . . . 4 ⊢ (1 · 4) = 4 |
| 38 | 1, 8, 9, 19, 36, 37 | decmul1 12772 | . . 3 ⊢ (;;;;;670041 · 4) = ;;;;;;2680164 |
| 39 | 18, 1, 13, 38, 25 | decaddi 12768 | . 2 ⊢ ((;;;;;670041 · 4) + 2) = ;;;;;;2680166 |
| 40 | 1, 10, 3, 11, 12, 13, 39, 27 | decmul1c 12773 | 1 ⊢ (;;;;;;6700417 · 4) = ;;;;;;;26801668 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 (class class class)co 7405 0cc0 11129 1c1 11130 · cmul 11134 2c2 12295 4c4 12297 6c6 12299 7c7 12300 8c8 12301 ;cdc 12708 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-pnf 11271 df-mnf 11272 df-ltxr 11274 df-sub 11468 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-7 12308 df-8 12309 df-9 12310 df-n0 12502 df-dec 12709 |
| This theorem is referenced by: fmtno5fac 47596 |
| Copyright terms: Public domain | W3C validator |