MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abv1z Structured version   Visualization version   GIF version

Theorem abv1z 20737
Description: The absolute value of one is one in a non-trivial ring. (Contributed by Mario Carneiro, 8-Sep-2014.)
Hypotheses
Ref Expression
abv0.a 𝐴 = (AbsVal‘𝑅)
abv1.p 1 = (1r𝑅)
abv1z.z 0 = (0g𝑅)
Assertion
Ref Expression
abv1z ((𝐹𝐴10 ) → (𝐹1 ) = 1)

Proof of Theorem abv1z
StepHypRef Expression
1 abv0.a . . . . . . . 8 𝐴 = (AbsVal‘𝑅)
21abvrcl 20726 . . . . . . 7 (𝐹𝐴𝑅 ∈ Ring)
3 eqid 2731 . . . . . . . 8 (Base‘𝑅) = (Base‘𝑅)
4 abv1.p . . . . . . . 8 1 = (1r𝑅)
53, 4ringidcl 20181 . . . . . . 7 (𝑅 ∈ Ring → 1 ∈ (Base‘𝑅))
62, 5syl 17 . . . . . 6 (𝐹𝐴1 ∈ (Base‘𝑅))
71, 3abvcl 20729 . . . . . 6 ((𝐹𝐴1 ∈ (Base‘𝑅)) → (𝐹1 ) ∈ ℝ)
86, 7mpdan 687 . . . . 5 (𝐹𝐴 → (𝐹1 ) ∈ ℝ)
98adantr 480 . . . 4 ((𝐹𝐴10 ) → (𝐹1 ) ∈ ℝ)
109recnd 11137 . . 3 ((𝐹𝐴10 ) → (𝐹1 ) ∈ ℂ)
11 simpl 482 . . . 4 ((𝐹𝐴10 ) → 𝐹𝐴)
126adantr 480 . . . 4 ((𝐹𝐴10 ) → 1 ∈ (Base‘𝑅))
13 simpr 484 . . . 4 ((𝐹𝐴10 ) → 10 )
14 abv1z.z . . . . 5 0 = (0g𝑅)
151, 3, 14abvne0 20732 . . . 4 ((𝐹𝐴1 ∈ (Base‘𝑅) ∧ 10 ) → (𝐹1 ) ≠ 0)
1611, 12, 13, 15syl3anc 1373 . . 3 ((𝐹𝐴10 ) → (𝐹1 ) ≠ 0)
1710, 10, 16divcan3d 11899 . 2 ((𝐹𝐴10 ) → (((𝐹1 ) · (𝐹1 )) / (𝐹1 )) = (𝐹1 ))
18 eqid 2731 . . . . . . . 8 (.r𝑅) = (.r𝑅)
193, 18, 4ringlidm 20185 . . . . . . 7 ((𝑅 ∈ Ring ∧ 1 ∈ (Base‘𝑅)) → ( 1 (.r𝑅) 1 ) = 1 )
202, 12, 19syl2an2r 685 . . . . . 6 ((𝐹𝐴10 ) → ( 1 (.r𝑅) 1 ) = 1 )
2120fveq2d 6826 . . . . 5 ((𝐹𝐴10 ) → (𝐹‘( 1 (.r𝑅) 1 )) = (𝐹1 ))
221, 3, 18abvmul 20734 . . . . . 6 ((𝐹𝐴1 ∈ (Base‘𝑅) ∧ 1 ∈ (Base‘𝑅)) → (𝐹‘( 1 (.r𝑅) 1 )) = ((𝐹1 ) · (𝐹1 )))
2311, 12, 12, 22syl3anc 1373 . . . . 5 ((𝐹𝐴10 ) → (𝐹‘( 1 (.r𝑅) 1 )) = ((𝐹1 ) · (𝐹1 )))
2421, 23eqtr3d 2768 . . . 4 ((𝐹𝐴10 ) → (𝐹1 ) = ((𝐹1 ) · (𝐹1 )))
2524oveq1d 7361 . . 3 ((𝐹𝐴10 ) → ((𝐹1 ) / (𝐹1 )) = (((𝐹1 ) · (𝐹1 )) / (𝐹1 )))
2610, 16dividd 11892 . . 3 ((𝐹𝐴10 ) → ((𝐹1 ) / (𝐹1 )) = 1)
2725, 26eqtr3d 2768 . 2 ((𝐹𝐴10 ) → (((𝐹1 ) · (𝐹1 )) / (𝐹1 )) = 1)
2817, 27eqtr3d 2768 1 ((𝐹𝐴10 ) → (𝐹1 ) = 1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wne 2928  cfv 6481  (class class class)co 7346  cr 11002  0cc0 11003  1c1 11004   · cmul 11008   / cdiv 11771  Basecbs 17117  .rcmulr 17159  0gc0g 17340  1rcur 20097  Ringcrg 20149  AbsValcabv 20721
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-div 11772  df-nn 12123  df-2 12185  df-ico 13248  df-sets 17072  df-slot 17090  df-ndx 17102  df-base 17118  df-plusg 17171  df-0g 17342  df-mgm 18545  df-sgrp 18624  df-mnd 18640  df-mgp 20057  df-ur 20098  df-ring 20151  df-abv 20722
This theorem is referenced by:  abv1  20738  abvneg  20739  nm1  24580  qabvle  27561  qabvexp  27562  ostthlem2  27564  ostth3  27574  ostth  27575  abvexp  42564  fiabv  42568
  Copyright terms: Public domain W3C validator