| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > abv1z | Structured version Visualization version GIF version | ||
| Description: The absolute value of one is one in a non-trivial ring. (Contributed by Mario Carneiro, 8-Sep-2014.) |
| Ref | Expression |
|---|---|
| abv0.a | ⊢ 𝐴 = (AbsVal‘𝑅) |
| abv1.p | ⊢ 1 = (1r‘𝑅) |
| abv1z.z | ⊢ 0 = (0g‘𝑅) |
| Ref | Expression |
|---|---|
| abv1z | ⊢ ((𝐹 ∈ 𝐴 ∧ 1 ≠ 0 ) → (𝐹‘ 1 ) = 1) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abv0.a | . . . . . . . 8 ⊢ 𝐴 = (AbsVal‘𝑅) | |
| 2 | 1 | abvrcl 20730 | . . . . . . 7 ⊢ (𝐹 ∈ 𝐴 → 𝑅 ∈ Ring) |
| 3 | eqid 2733 | . . . . . . . 8 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 4 | abv1.p | . . . . . . . 8 ⊢ 1 = (1r‘𝑅) | |
| 5 | 3, 4 | ringidcl 20185 | . . . . . . 7 ⊢ (𝑅 ∈ Ring → 1 ∈ (Base‘𝑅)) |
| 6 | 2, 5 | syl 17 | . . . . . 6 ⊢ (𝐹 ∈ 𝐴 → 1 ∈ (Base‘𝑅)) |
| 7 | 1, 3 | abvcl 20733 | . . . . . 6 ⊢ ((𝐹 ∈ 𝐴 ∧ 1 ∈ (Base‘𝑅)) → (𝐹‘ 1 ) ∈ ℝ) |
| 8 | 6, 7 | mpdan 687 | . . . . 5 ⊢ (𝐹 ∈ 𝐴 → (𝐹‘ 1 ) ∈ ℝ) |
| 9 | 8 | adantr 480 | . . . 4 ⊢ ((𝐹 ∈ 𝐴 ∧ 1 ≠ 0 ) → (𝐹‘ 1 ) ∈ ℝ) |
| 10 | 9 | recnd 11147 | . . 3 ⊢ ((𝐹 ∈ 𝐴 ∧ 1 ≠ 0 ) → (𝐹‘ 1 ) ∈ ℂ) |
| 11 | simpl 482 | . . . 4 ⊢ ((𝐹 ∈ 𝐴 ∧ 1 ≠ 0 ) → 𝐹 ∈ 𝐴) | |
| 12 | 6 | adantr 480 | . . . 4 ⊢ ((𝐹 ∈ 𝐴 ∧ 1 ≠ 0 ) → 1 ∈ (Base‘𝑅)) |
| 13 | simpr 484 | . . . 4 ⊢ ((𝐹 ∈ 𝐴 ∧ 1 ≠ 0 ) → 1 ≠ 0 ) | |
| 14 | abv1z.z | . . . . 5 ⊢ 0 = (0g‘𝑅) | |
| 15 | 1, 3, 14 | abvne0 20736 | . . . 4 ⊢ ((𝐹 ∈ 𝐴 ∧ 1 ∈ (Base‘𝑅) ∧ 1 ≠ 0 ) → (𝐹‘ 1 ) ≠ 0) |
| 16 | 11, 12, 13, 15 | syl3anc 1373 | . . 3 ⊢ ((𝐹 ∈ 𝐴 ∧ 1 ≠ 0 ) → (𝐹‘ 1 ) ≠ 0) |
| 17 | 10, 10, 16 | divcan3d 11909 | . 2 ⊢ ((𝐹 ∈ 𝐴 ∧ 1 ≠ 0 ) → (((𝐹‘ 1 ) · (𝐹‘ 1 )) / (𝐹‘ 1 )) = (𝐹‘ 1 )) |
| 18 | eqid 2733 | . . . . . . . 8 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 19 | 3, 18, 4 | ringlidm 20189 | . . . . . . 7 ⊢ ((𝑅 ∈ Ring ∧ 1 ∈ (Base‘𝑅)) → ( 1 (.r‘𝑅) 1 ) = 1 ) |
| 20 | 2, 12, 19 | syl2an2r 685 | . . . . . 6 ⊢ ((𝐹 ∈ 𝐴 ∧ 1 ≠ 0 ) → ( 1 (.r‘𝑅) 1 ) = 1 ) |
| 21 | 20 | fveq2d 6832 | . . . . 5 ⊢ ((𝐹 ∈ 𝐴 ∧ 1 ≠ 0 ) → (𝐹‘( 1 (.r‘𝑅) 1 )) = (𝐹‘ 1 )) |
| 22 | 1, 3, 18 | abvmul 20738 | . . . . . 6 ⊢ ((𝐹 ∈ 𝐴 ∧ 1 ∈ (Base‘𝑅) ∧ 1 ∈ (Base‘𝑅)) → (𝐹‘( 1 (.r‘𝑅) 1 )) = ((𝐹‘ 1 ) · (𝐹‘ 1 ))) |
| 23 | 11, 12, 12, 22 | syl3anc 1373 | . . . . 5 ⊢ ((𝐹 ∈ 𝐴 ∧ 1 ≠ 0 ) → (𝐹‘( 1 (.r‘𝑅) 1 )) = ((𝐹‘ 1 ) · (𝐹‘ 1 ))) |
| 24 | 21, 23 | eqtr3d 2770 | . . . 4 ⊢ ((𝐹 ∈ 𝐴 ∧ 1 ≠ 0 ) → (𝐹‘ 1 ) = ((𝐹‘ 1 ) · (𝐹‘ 1 ))) |
| 25 | 24 | oveq1d 7367 | . . 3 ⊢ ((𝐹 ∈ 𝐴 ∧ 1 ≠ 0 ) → ((𝐹‘ 1 ) / (𝐹‘ 1 )) = (((𝐹‘ 1 ) · (𝐹‘ 1 )) / (𝐹‘ 1 ))) |
| 26 | 10, 16 | dividd 11902 | . . 3 ⊢ ((𝐹 ∈ 𝐴 ∧ 1 ≠ 0 ) → ((𝐹‘ 1 ) / (𝐹‘ 1 )) = 1) |
| 27 | 25, 26 | eqtr3d 2770 | . 2 ⊢ ((𝐹 ∈ 𝐴 ∧ 1 ≠ 0 ) → (((𝐹‘ 1 ) · (𝐹‘ 1 )) / (𝐹‘ 1 )) = 1) |
| 28 | 17, 27 | eqtr3d 2770 | 1 ⊢ ((𝐹 ∈ 𝐴 ∧ 1 ≠ 0 ) → (𝐹‘ 1 ) = 1) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ≠ wne 2929 ‘cfv 6486 (class class class)co 7352 ℝcr 11012 0cc0 11013 1c1 11014 · cmul 11018 / cdiv 11781 Basecbs 17122 .rcmulr 17164 0gc0g 17345 1rcur 20101 Ringcrg 20153 AbsValcabv 20725 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-er 8628 df-map 8758 df-en 8876 df-dom 8877 df-sdom 8878 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-div 11782 df-nn 12133 df-2 12195 df-ico 13253 df-sets 17077 df-slot 17095 df-ndx 17107 df-base 17123 df-plusg 17176 df-0g 17347 df-mgm 18550 df-sgrp 18629 df-mnd 18645 df-mgp 20061 df-ur 20102 df-ring 20155 df-abv 20726 |
| This theorem is referenced by: abv1 20742 abvneg 20743 nm1 24583 qabvle 27564 qabvexp 27565 ostthlem2 27567 ostth3 27577 ostth 27578 abvexp 42650 fiabv 42654 |
| Copyright terms: Public domain | W3C validator |