MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abv1z Structured version   Visualization version   GIF version

Theorem abv1z 20784
Description: The absolute value of one is one in a non-trivial ring. (Contributed by Mario Carneiro, 8-Sep-2014.)
Hypotheses
Ref Expression
abv0.a 𝐴 = (AbsVal‘𝑅)
abv1.p 1 = (1r𝑅)
abv1z.z 0 = (0g𝑅)
Assertion
Ref Expression
abv1z ((𝐹𝐴10 ) → (𝐹1 ) = 1)

Proof of Theorem abv1z
StepHypRef Expression
1 abv0.a . . . . . . . 8 𝐴 = (AbsVal‘𝑅)
21abvrcl 20773 . . . . . . 7 (𝐹𝐴𝑅 ∈ Ring)
3 eqid 2735 . . . . . . . 8 (Base‘𝑅) = (Base‘𝑅)
4 abv1.p . . . . . . . 8 1 = (1r𝑅)
53, 4ringidcl 20225 . . . . . . 7 (𝑅 ∈ Ring → 1 ∈ (Base‘𝑅))
62, 5syl 17 . . . . . 6 (𝐹𝐴1 ∈ (Base‘𝑅))
71, 3abvcl 20776 . . . . . 6 ((𝐹𝐴1 ∈ (Base‘𝑅)) → (𝐹1 ) ∈ ℝ)
86, 7mpdan 687 . . . . 5 (𝐹𝐴 → (𝐹1 ) ∈ ℝ)
98adantr 480 . . . 4 ((𝐹𝐴10 ) → (𝐹1 ) ∈ ℝ)
109recnd 11263 . . 3 ((𝐹𝐴10 ) → (𝐹1 ) ∈ ℂ)
11 simpl 482 . . . 4 ((𝐹𝐴10 ) → 𝐹𝐴)
126adantr 480 . . . 4 ((𝐹𝐴10 ) → 1 ∈ (Base‘𝑅))
13 simpr 484 . . . 4 ((𝐹𝐴10 ) → 10 )
14 abv1z.z . . . . 5 0 = (0g𝑅)
151, 3, 14abvne0 20779 . . . 4 ((𝐹𝐴1 ∈ (Base‘𝑅) ∧ 10 ) → (𝐹1 ) ≠ 0)
1611, 12, 13, 15syl3anc 1373 . . 3 ((𝐹𝐴10 ) → (𝐹1 ) ≠ 0)
1710, 10, 16divcan3d 12022 . 2 ((𝐹𝐴10 ) → (((𝐹1 ) · (𝐹1 )) / (𝐹1 )) = (𝐹1 ))
18 eqid 2735 . . . . . . . 8 (.r𝑅) = (.r𝑅)
193, 18, 4ringlidm 20229 . . . . . . 7 ((𝑅 ∈ Ring ∧ 1 ∈ (Base‘𝑅)) → ( 1 (.r𝑅) 1 ) = 1 )
202, 12, 19syl2an2r 685 . . . . . 6 ((𝐹𝐴10 ) → ( 1 (.r𝑅) 1 ) = 1 )
2120fveq2d 6880 . . . . 5 ((𝐹𝐴10 ) → (𝐹‘( 1 (.r𝑅) 1 )) = (𝐹1 ))
221, 3, 18abvmul 20781 . . . . . 6 ((𝐹𝐴1 ∈ (Base‘𝑅) ∧ 1 ∈ (Base‘𝑅)) → (𝐹‘( 1 (.r𝑅) 1 )) = ((𝐹1 ) · (𝐹1 )))
2311, 12, 12, 22syl3anc 1373 . . . . 5 ((𝐹𝐴10 ) → (𝐹‘( 1 (.r𝑅) 1 )) = ((𝐹1 ) · (𝐹1 )))
2421, 23eqtr3d 2772 . . . 4 ((𝐹𝐴10 ) → (𝐹1 ) = ((𝐹1 ) · (𝐹1 )))
2524oveq1d 7420 . . 3 ((𝐹𝐴10 ) → ((𝐹1 ) / (𝐹1 )) = (((𝐹1 ) · (𝐹1 )) / (𝐹1 )))
2610, 16dividd 12015 . . 3 ((𝐹𝐴10 ) → ((𝐹1 ) / (𝐹1 )) = 1)
2725, 26eqtr3d 2772 . 2 ((𝐹𝐴10 ) → (((𝐹1 ) · (𝐹1 )) / (𝐹1 )) = 1)
2817, 27eqtr3d 2772 1 ((𝐹𝐴10 ) → (𝐹1 ) = 1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wne 2932  cfv 6531  (class class class)co 7405  cr 11128  0cc0 11129  1c1 11130   · cmul 11134   / cdiv 11894  Basecbs 17228  .rcmulr 17272  0gc0g 17453  1rcur 20141  Ringcrg 20193  AbsValcabv 20768
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8719  df-map 8842  df-en 8960  df-dom 8961  df-sdom 8962  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-ico 13368  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-plusg 17284  df-0g 17455  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-mgp 20101  df-ur 20142  df-ring 20195  df-abv 20769
This theorem is referenced by:  abv1  20785  abvneg  20786  nm1  24606  qabvle  27588  qabvexp  27589  ostthlem2  27591  ostth3  27601  ostth  27602  abvexp  42555  fiabv  42559
  Copyright terms: Public domain W3C validator