![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > abv1z | Structured version Visualization version GIF version |
Description: The absolute value of one is one in a non-trivial ring. (Contributed by Mario Carneiro, 8-Sep-2014.) |
Ref | Expression |
---|---|
abv0.a | ⊢ 𝐴 = (AbsVal‘𝑅) |
abv1.p | ⊢ 1 = (1r‘𝑅) |
abv1z.z | ⊢ 0 = (0g‘𝑅) |
Ref | Expression |
---|---|
abv1z | ⊢ ((𝐹 ∈ 𝐴 ∧ 1 ≠ 0 ) → (𝐹‘ 1 ) = 1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abv0.a | . . . . . . . 8 ⊢ 𝐴 = (AbsVal‘𝑅) | |
2 | 1 | abvrcl 20836 | . . . . . . 7 ⊢ (𝐹 ∈ 𝐴 → 𝑅 ∈ Ring) |
3 | eqid 2740 | . . . . . . . 8 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
4 | abv1.p | . . . . . . . 8 ⊢ 1 = (1r‘𝑅) | |
5 | 3, 4 | ringidcl 20289 | . . . . . . 7 ⊢ (𝑅 ∈ Ring → 1 ∈ (Base‘𝑅)) |
6 | 2, 5 | syl 17 | . . . . . 6 ⊢ (𝐹 ∈ 𝐴 → 1 ∈ (Base‘𝑅)) |
7 | 1, 3 | abvcl 20839 | . . . . . 6 ⊢ ((𝐹 ∈ 𝐴 ∧ 1 ∈ (Base‘𝑅)) → (𝐹‘ 1 ) ∈ ℝ) |
8 | 6, 7 | mpdan 686 | . . . . 5 ⊢ (𝐹 ∈ 𝐴 → (𝐹‘ 1 ) ∈ ℝ) |
9 | 8 | adantr 480 | . . . 4 ⊢ ((𝐹 ∈ 𝐴 ∧ 1 ≠ 0 ) → (𝐹‘ 1 ) ∈ ℝ) |
10 | 9 | recnd 11318 | . . 3 ⊢ ((𝐹 ∈ 𝐴 ∧ 1 ≠ 0 ) → (𝐹‘ 1 ) ∈ ℂ) |
11 | simpl 482 | . . . 4 ⊢ ((𝐹 ∈ 𝐴 ∧ 1 ≠ 0 ) → 𝐹 ∈ 𝐴) | |
12 | 6 | adantr 480 | . . . 4 ⊢ ((𝐹 ∈ 𝐴 ∧ 1 ≠ 0 ) → 1 ∈ (Base‘𝑅)) |
13 | simpr 484 | . . . 4 ⊢ ((𝐹 ∈ 𝐴 ∧ 1 ≠ 0 ) → 1 ≠ 0 ) | |
14 | abv1z.z | . . . . 5 ⊢ 0 = (0g‘𝑅) | |
15 | 1, 3, 14 | abvne0 20842 | . . . 4 ⊢ ((𝐹 ∈ 𝐴 ∧ 1 ∈ (Base‘𝑅) ∧ 1 ≠ 0 ) → (𝐹‘ 1 ) ≠ 0) |
16 | 11, 12, 13, 15 | syl3anc 1371 | . . 3 ⊢ ((𝐹 ∈ 𝐴 ∧ 1 ≠ 0 ) → (𝐹‘ 1 ) ≠ 0) |
17 | 10, 10, 16 | divcan3d 12075 | . 2 ⊢ ((𝐹 ∈ 𝐴 ∧ 1 ≠ 0 ) → (((𝐹‘ 1 ) · (𝐹‘ 1 )) / (𝐹‘ 1 )) = (𝐹‘ 1 )) |
18 | eqid 2740 | . . . . . . . 8 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
19 | 3, 18, 4 | ringlidm 20292 | . . . . . . 7 ⊢ ((𝑅 ∈ Ring ∧ 1 ∈ (Base‘𝑅)) → ( 1 (.r‘𝑅) 1 ) = 1 ) |
20 | 2, 12, 19 | syl2an2r 684 | . . . . . 6 ⊢ ((𝐹 ∈ 𝐴 ∧ 1 ≠ 0 ) → ( 1 (.r‘𝑅) 1 ) = 1 ) |
21 | 20 | fveq2d 6924 | . . . . 5 ⊢ ((𝐹 ∈ 𝐴 ∧ 1 ≠ 0 ) → (𝐹‘( 1 (.r‘𝑅) 1 )) = (𝐹‘ 1 )) |
22 | 1, 3, 18 | abvmul 20844 | . . . . . 6 ⊢ ((𝐹 ∈ 𝐴 ∧ 1 ∈ (Base‘𝑅) ∧ 1 ∈ (Base‘𝑅)) → (𝐹‘( 1 (.r‘𝑅) 1 )) = ((𝐹‘ 1 ) · (𝐹‘ 1 ))) |
23 | 11, 12, 12, 22 | syl3anc 1371 | . . . . 5 ⊢ ((𝐹 ∈ 𝐴 ∧ 1 ≠ 0 ) → (𝐹‘( 1 (.r‘𝑅) 1 )) = ((𝐹‘ 1 ) · (𝐹‘ 1 ))) |
24 | 21, 23 | eqtr3d 2782 | . . . 4 ⊢ ((𝐹 ∈ 𝐴 ∧ 1 ≠ 0 ) → (𝐹‘ 1 ) = ((𝐹‘ 1 ) · (𝐹‘ 1 ))) |
25 | 24 | oveq1d 7463 | . . 3 ⊢ ((𝐹 ∈ 𝐴 ∧ 1 ≠ 0 ) → ((𝐹‘ 1 ) / (𝐹‘ 1 )) = (((𝐹‘ 1 ) · (𝐹‘ 1 )) / (𝐹‘ 1 ))) |
26 | 10, 16 | dividd 12068 | . . 3 ⊢ ((𝐹 ∈ 𝐴 ∧ 1 ≠ 0 ) → ((𝐹‘ 1 ) / (𝐹‘ 1 )) = 1) |
27 | 25, 26 | eqtr3d 2782 | . 2 ⊢ ((𝐹 ∈ 𝐴 ∧ 1 ≠ 0 ) → (((𝐹‘ 1 ) · (𝐹‘ 1 )) / (𝐹‘ 1 )) = 1) |
28 | 17, 27 | eqtr3d 2782 | 1 ⊢ ((𝐹 ∈ 𝐴 ∧ 1 ≠ 0 ) → (𝐹‘ 1 ) = 1) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 ‘cfv 6573 (class class class)co 7448 ℝcr 11183 0cc0 11184 1c1 11185 · cmul 11189 / cdiv 11947 Basecbs 17258 .rcmulr 17312 0gc0g 17499 1rcur 20208 Ringcrg 20260 AbsValcabv 20831 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-er 8763 df-map 8886 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-ico 13413 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-plusg 17324 df-0g 17501 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-mgp 20162 df-ur 20209 df-ring 20262 df-abv 20832 |
This theorem is referenced by: abv1 20848 abvneg 20849 nm1 24709 qabvle 27687 qabvexp 27688 ostthlem2 27690 ostth3 27700 ostth 27701 abvexp 42487 fiabv 42491 |
Copyright terms: Public domain | W3C validator |