MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abv1z Structured version   Visualization version   GIF version

Theorem abv1z 19605
Description: The absolute value of one is one in a non-trivial ring. (Contributed by Mario Carneiro, 8-Sep-2014.)
Hypotheses
Ref Expression
abv0.a 𝐴 = (AbsVal‘𝑅)
abv1.p 1 = (1r𝑅)
abv1z.z 0 = (0g𝑅)
Assertion
Ref Expression
abv1z ((𝐹𝐴10 ) → (𝐹1 ) = 1)

Proof of Theorem abv1z
StepHypRef Expression
1 abv0.a . . . . . . . 8 𝐴 = (AbsVal‘𝑅)
21abvrcl 19594 . . . . . . 7 (𝐹𝐴𝑅 ∈ Ring)
3 eqid 2823 . . . . . . . 8 (Base‘𝑅) = (Base‘𝑅)
4 abv1.p . . . . . . . 8 1 = (1r𝑅)
53, 4ringidcl 19320 . . . . . . 7 (𝑅 ∈ Ring → 1 ∈ (Base‘𝑅))
62, 5syl 17 . . . . . 6 (𝐹𝐴1 ∈ (Base‘𝑅))
71, 3abvcl 19597 . . . . . 6 ((𝐹𝐴1 ∈ (Base‘𝑅)) → (𝐹1 ) ∈ ℝ)
86, 7mpdan 685 . . . . 5 (𝐹𝐴 → (𝐹1 ) ∈ ℝ)
98adantr 483 . . . 4 ((𝐹𝐴10 ) → (𝐹1 ) ∈ ℝ)
109recnd 10671 . . 3 ((𝐹𝐴10 ) → (𝐹1 ) ∈ ℂ)
11 simpl 485 . . . 4 ((𝐹𝐴10 ) → 𝐹𝐴)
126adantr 483 . . . 4 ((𝐹𝐴10 ) → 1 ∈ (Base‘𝑅))
13 simpr 487 . . . 4 ((𝐹𝐴10 ) → 10 )
14 abv1z.z . . . . 5 0 = (0g𝑅)
151, 3, 14abvne0 19600 . . . 4 ((𝐹𝐴1 ∈ (Base‘𝑅) ∧ 10 ) → (𝐹1 ) ≠ 0)
1611, 12, 13, 15syl3anc 1367 . . 3 ((𝐹𝐴10 ) → (𝐹1 ) ≠ 0)
1710, 10, 16divcan3d 11423 . 2 ((𝐹𝐴10 ) → (((𝐹1 ) · (𝐹1 )) / (𝐹1 )) = (𝐹1 ))
18 eqid 2823 . . . . . . . 8 (.r𝑅) = (.r𝑅)
193, 18, 4ringlidm 19323 . . . . . . 7 ((𝑅 ∈ Ring ∧ 1 ∈ (Base‘𝑅)) → ( 1 (.r𝑅) 1 ) = 1 )
202, 12, 19syl2an2r 683 . . . . . 6 ((𝐹𝐴10 ) → ( 1 (.r𝑅) 1 ) = 1 )
2120fveq2d 6676 . . . . 5 ((𝐹𝐴10 ) → (𝐹‘( 1 (.r𝑅) 1 )) = (𝐹1 ))
221, 3, 18abvmul 19602 . . . . . 6 ((𝐹𝐴1 ∈ (Base‘𝑅) ∧ 1 ∈ (Base‘𝑅)) → (𝐹‘( 1 (.r𝑅) 1 )) = ((𝐹1 ) · (𝐹1 )))
2311, 12, 12, 22syl3anc 1367 . . . . 5 ((𝐹𝐴10 ) → (𝐹‘( 1 (.r𝑅) 1 )) = ((𝐹1 ) · (𝐹1 )))
2421, 23eqtr3d 2860 . . . 4 ((𝐹𝐴10 ) → (𝐹1 ) = ((𝐹1 ) · (𝐹1 )))
2524oveq1d 7173 . . 3 ((𝐹𝐴10 ) → ((𝐹1 ) / (𝐹1 )) = (((𝐹1 ) · (𝐹1 )) / (𝐹1 )))
2610, 16dividd 11416 . . 3 ((𝐹𝐴10 ) → ((𝐹1 ) / (𝐹1 )) = 1)
2725, 26eqtr3d 2860 . 2 ((𝐹𝐴10 ) → (((𝐹1 ) · (𝐹1 )) / (𝐹1 )) = 1)
2817, 27eqtr3d 2860 1 ((𝐹𝐴10 ) → (𝐹1 ) = 1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  wne 3018  cfv 6357  (class class class)co 7158  cr 10538  0cc0 10539  1c1 10540   · cmul 10544   / cdiv 11299  Basecbs 16485  .rcmulr 16568  0gc0g 16715  1rcur 19253  Ringcrg 19299  AbsValcabv 19589
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-er 8291  df-map 8410  df-en 8512  df-dom 8513  df-sdom 8514  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-ico 12747  df-ndx 16488  df-slot 16489  df-base 16491  df-sets 16492  df-plusg 16580  df-0g 16717  df-mgm 17854  df-sgrp 17903  df-mnd 17914  df-mgp 19242  df-ur 19254  df-ring 19301  df-abv 19590
This theorem is referenced by:  abv1  19606  abvneg  19607  nm1  23278  qabvle  26203  qabvexp  26204  ostthlem2  26206  ostth3  26216  ostth  26217
  Copyright terms: Public domain W3C validator