Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  abv1z Structured version   Visualization version   GIF version

Theorem abv1z 19686
 Description: The absolute value of one is one in a non-trivial ring. (Contributed by Mario Carneiro, 8-Sep-2014.)
Hypotheses
Ref Expression
abv0.a 𝐴 = (AbsVal‘𝑅)
abv1.p 1 = (1r𝑅)
abv1z.z 0 = (0g𝑅)
Assertion
Ref Expression
abv1z ((𝐹𝐴10 ) → (𝐹1 ) = 1)

Proof of Theorem abv1z
StepHypRef Expression
1 abv0.a . . . . . . . 8 𝐴 = (AbsVal‘𝑅)
21abvrcl 19675 . . . . . . 7 (𝐹𝐴𝑅 ∈ Ring)
3 eqid 2759 . . . . . . . 8 (Base‘𝑅) = (Base‘𝑅)
4 abv1.p . . . . . . . 8 1 = (1r𝑅)
53, 4ringidcl 19404 . . . . . . 7 (𝑅 ∈ Ring → 1 ∈ (Base‘𝑅))
62, 5syl 17 . . . . . 6 (𝐹𝐴1 ∈ (Base‘𝑅))
71, 3abvcl 19678 . . . . . 6 ((𝐹𝐴1 ∈ (Base‘𝑅)) → (𝐹1 ) ∈ ℝ)
86, 7mpdan 686 . . . . 5 (𝐹𝐴 → (𝐹1 ) ∈ ℝ)
98adantr 484 . . . 4 ((𝐹𝐴10 ) → (𝐹1 ) ∈ ℝ)
109recnd 10721 . . 3 ((𝐹𝐴10 ) → (𝐹1 ) ∈ ℂ)
11 simpl 486 . . . 4 ((𝐹𝐴10 ) → 𝐹𝐴)
126adantr 484 . . . 4 ((𝐹𝐴10 ) → 1 ∈ (Base‘𝑅))
13 simpr 488 . . . 4 ((𝐹𝐴10 ) → 10 )
14 abv1z.z . . . . 5 0 = (0g𝑅)
151, 3, 14abvne0 19681 . . . 4 ((𝐹𝐴1 ∈ (Base‘𝑅) ∧ 10 ) → (𝐹1 ) ≠ 0)
1611, 12, 13, 15syl3anc 1369 . . 3 ((𝐹𝐴10 ) → (𝐹1 ) ≠ 0)
1710, 10, 16divcan3d 11473 . 2 ((𝐹𝐴10 ) → (((𝐹1 ) · (𝐹1 )) / (𝐹1 )) = (𝐹1 ))
18 eqid 2759 . . . . . . . 8 (.r𝑅) = (.r𝑅)
193, 18, 4ringlidm 19407 . . . . . . 7 ((𝑅 ∈ Ring ∧ 1 ∈ (Base‘𝑅)) → ( 1 (.r𝑅) 1 ) = 1 )
202, 12, 19syl2an2r 684 . . . . . 6 ((𝐹𝐴10 ) → ( 1 (.r𝑅) 1 ) = 1 )
2120fveq2d 6668 . . . . 5 ((𝐹𝐴10 ) → (𝐹‘( 1 (.r𝑅) 1 )) = (𝐹1 ))
221, 3, 18abvmul 19683 . . . . . 6 ((𝐹𝐴1 ∈ (Base‘𝑅) ∧ 1 ∈ (Base‘𝑅)) → (𝐹‘( 1 (.r𝑅) 1 )) = ((𝐹1 ) · (𝐹1 )))
2311, 12, 12, 22syl3anc 1369 . . . . 5 ((𝐹𝐴10 ) → (𝐹‘( 1 (.r𝑅) 1 )) = ((𝐹1 ) · (𝐹1 )))
2421, 23eqtr3d 2796 . . . 4 ((𝐹𝐴10 ) → (𝐹1 ) = ((𝐹1 ) · (𝐹1 )))
2524oveq1d 7172 . . 3 ((𝐹𝐴10 ) → ((𝐹1 ) / (𝐹1 )) = (((𝐹1 ) · (𝐹1 )) / (𝐹1 )))
2610, 16dividd 11466 . . 3 ((𝐹𝐴10 ) → ((𝐹1 ) / (𝐹1 )) = 1)
2725, 26eqtr3d 2796 . 2 ((𝐹𝐴10 ) → (((𝐹1 ) · (𝐹1 )) / (𝐹1 )) = 1)
2817, 27eqtr3d 2796 1 ((𝐹𝐴10 ) → (𝐹1 ) = 1)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   = wceq 1539   ∈ wcel 2112   ≠ wne 2952  ‘cfv 6341  (class class class)co 7157  ℝcr 10588  0cc0 10589  1c1 10590   · cmul 10594   / cdiv 11349  Basecbs 16556  .rcmulr 16639  0gc0g 16786  1rcur 19334  Ringcrg 19380  AbsValcabv 19670 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-sep 5174  ax-nul 5181  ax-pow 5239  ax-pr 5303  ax-un 7466  ax-cnex 10645  ax-resscn 10646  ax-1cn 10647  ax-icn 10648  ax-addcl 10649  ax-addrcl 10650  ax-mulcl 10651  ax-mulrcl 10652  ax-mulcom 10653  ax-addass 10654  ax-mulass 10655  ax-distr 10656  ax-i2m1 10657  ax-1ne0 10658  ax-1rid 10659  ax-rnegex 10660  ax-rrecex 10661  ax-cnre 10662  ax-pre-lttri 10663  ax-pre-lttrn 10664  ax-pre-ltadd 10665  ax-pre-mulgt0 10666 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ne 2953  df-nel 3057  df-ral 3076  df-rex 3077  df-reu 3078  df-rmo 3079  df-rab 3080  df-v 3412  df-sbc 3700  df-csb 3809  df-dif 3864  df-un 3866  df-in 3868  df-ss 3878  df-pss 3880  df-nul 4229  df-if 4425  df-pw 4500  df-sn 4527  df-pr 4529  df-tp 4531  df-op 4533  df-uni 4803  df-iun 4889  df-br 5038  df-opab 5100  df-mpt 5118  df-tr 5144  df-id 5435  df-eprel 5440  df-po 5448  df-so 5449  df-fr 5488  df-we 5490  df-xp 5535  df-rel 5536  df-cnv 5537  df-co 5538  df-dm 5539  df-rn 5540  df-res 5541  df-ima 5542  df-pred 6132  df-ord 6178  df-on 6179  df-lim 6180  df-suc 6181  df-iota 6300  df-fun 6343  df-fn 6344  df-f 6345  df-f1 6346  df-fo 6347  df-f1o 6348  df-fv 6349  df-riota 7115  df-ov 7160  df-oprab 7161  df-mpo 7162  df-om 7587  df-wrecs 7964  df-recs 8025  df-rdg 8063  df-er 8306  df-map 8425  df-en 8542  df-dom 8543  df-sdom 8544  df-pnf 10729  df-mnf 10730  df-xr 10731  df-ltxr 10732  df-le 10733  df-sub 10924  df-neg 10925  df-div 11350  df-nn 11689  df-2 11751  df-ico 12799  df-ndx 16559  df-slot 16560  df-base 16562  df-sets 16563  df-plusg 16651  df-0g 16788  df-mgm 17933  df-sgrp 17982  df-mnd 17993  df-mgp 19323  df-ur 19335  df-ring 19382  df-abv 19671 This theorem is referenced by:  abv1  19687  abvneg  19688  nm1  23384  qabvle  26323  qabvexp  26324  ostthlem2  26326  ostth3  26336  ostth  26337
 Copyright terms: Public domain W3C validator