Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > abv1z | Structured version Visualization version GIF version |
Description: The absolute value of one is one in a non-trivial ring. (Contributed by Mario Carneiro, 8-Sep-2014.) |
Ref | Expression |
---|---|
abv0.a | ⊢ 𝐴 = (AbsVal‘𝑅) |
abv1.p | ⊢ 1 = (1r‘𝑅) |
abv1z.z | ⊢ 0 = (0g‘𝑅) |
Ref | Expression |
---|---|
abv1z | ⊢ ((𝐹 ∈ 𝐴 ∧ 1 ≠ 0 ) → (𝐹‘ 1 ) = 1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abv0.a | . . . . . . . 8 ⊢ 𝐴 = (AbsVal‘𝑅) | |
2 | 1 | abvrcl 19675 | . . . . . . 7 ⊢ (𝐹 ∈ 𝐴 → 𝑅 ∈ Ring) |
3 | eqid 2759 | . . . . . . . 8 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
4 | abv1.p | . . . . . . . 8 ⊢ 1 = (1r‘𝑅) | |
5 | 3, 4 | ringidcl 19404 | . . . . . . 7 ⊢ (𝑅 ∈ Ring → 1 ∈ (Base‘𝑅)) |
6 | 2, 5 | syl 17 | . . . . . 6 ⊢ (𝐹 ∈ 𝐴 → 1 ∈ (Base‘𝑅)) |
7 | 1, 3 | abvcl 19678 | . . . . . 6 ⊢ ((𝐹 ∈ 𝐴 ∧ 1 ∈ (Base‘𝑅)) → (𝐹‘ 1 ) ∈ ℝ) |
8 | 6, 7 | mpdan 686 | . . . . 5 ⊢ (𝐹 ∈ 𝐴 → (𝐹‘ 1 ) ∈ ℝ) |
9 | 8 | adantr 484 | . . . 4 ⊢ ((𝐹 ∈ 𝐴 ∧ 1 ≠ 0 ) → (𝐹‘ 1 ) ∈ ℝ) |
10 | 9 | recnd 10721 | . . 3 ⊢ ((𝐹 ∈ 𝐴 ∧ 1 ≠ 0 ) → (𝐹‘ 1 ) ∈ ℂ) |
11 | simpl 486 | . . . 4 ⊢ ((𝐹 ∈ 𝐴 ∧ 1 ≠ 0 ) → 𝐹 ∈ 𝐴) | |
12 | 6 | adantr 484 | . . . 4 ⊢ ((𝐹 ∈ 𝐴 ∧ 1 ≠ 0 ) → 1 ∈ (Base‘𝑅)) |
13 | simpr 488 | . . . 4 ⊢ ((𝐹 ∈ 𝐴 ∧ 1 ≠ 0 ) → 1 ≠ 0 ) | |
14 | abv1z.z | . . . . 5 ⊢ 0 = (0g‘𝑅) | |
15 | 1, 3, 14 | abvne0 19681 | . . . 4 ⊢ ((𝐹 ∈ 𝐴 ∧ 1 ∈ (Base‘𝑅) ∧ 1 ≠ 0 ) → (𝐹‘ 1 ) ≠ 0) |
16 | 11, 12, 13, 15 | syl3anc 1369 | . . 3 ⊢ ((𝐹 ∈ 𝐴 ∧ 1 ≠ 0 ) → (𝐹‘ 1 ) ≠ 0) |
17 | 10, 10, 16 | divcan3d 11473 | . 2 ⊢ ((𝐹 ∈ 𝐴 ∧ 1 ≠ 0 ) → (((𝐹‘ 1 ) · (𝐹‘ 1 )) / (𝐹‘ 1 )) = (𝐹‘ 1 )) |
18 | eqid 2759 | . . . . . . . 8 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
19 | 3, 18, 4 | ringlidm 19407 | . . . . . . 7 ⊢ ((𝑅 ∈ Ring ∧ 1 ∈ (Base‘𝑅)) → ( 1 (.r‘𝑅) 1 ) = 1 ) |
20 | 2, 12, 19 | syl2an2r 684 | . . . . . 6 ⊢ ((𝐹 ∈ 𝐴 ∧ 1 ≠ 0 ) → ( 1 (.r‘𝑅) 1 ) = 1 ) |
21 | 20 | fveq2d 6668 | . . . . 5 ⊢ ((𝐹 ∈ 𝐴 ∧ 1 ≠ 0 ) → (𝐹‘( 1 (.r‘𝑅) 1 )) = (𝐹‘ 1 )) |
22 | 1, 3, 18 | abvmul 19683 | . . . . . 6 ⊢ ((𝐹 ∈ 𝐴 ∧ 1 ∈ (Base‘𝑅) ∧ 1 ∈ (Base‘𝑅)) → (𝐹‘( 1 (.r‘𝑅) 1 )) = ((𝐹‘ 1 ) · (𝐹‘ 1 ))) |
23 | 11, 12, 12, 22 | syl3anc 1369 | . . . . 5 ⊢ ((𝐹 ∈ 𝐴 ∧ 1 ≠ 0 ) → (𝐹‘( 1 (.r‘𝑅) 1 )) = ((𝐹‘ 1 ) · (𝐹‘ 1 ))) |
24 | 21, 23 | eqtr3d 2796 | . . . 4 ⊢ ((𝐹 ∈ 𝐴 ∧ 1 ≠ 0 ) → (𝐹‘ 1 ) = ((𝐹‘ 1 ) · (𝐹‘ 1 ))) |
25 | 24 | oveq1d 7172 | . . 3 ⊢ ((𝐹 ∈ 𝐴 ∧ 1 ≠ 0 ) → ((𝐹‘ 1 ) / (𝐹‘ 1 )) = (((𝐹‘ 1 ) · (𝐹‘ 1 )) / (𝐹‘ 1 ))) |
26 | 10, 16 | dividd 11466 | . . 3 ⊢ ((𝐹 ∈ 𝐴 ∧ 1 ≠ 0 ) → ((𝐹‘ 1 ) / (𝐹‘ 1 )) = 1) |
27 | 25, 26 | eqtr3d 2796 | . 2 ⊢ ((𝐹 ∈ 𝐴 ∧ 1 ≠ 0 ) → (((𝐹‘ 1 ) · (𝐹‘ 1 )) / (𝐹‘ 1 )) = 1) |
28 | 17, 27 | eqtr3d 2796 | 1 ⊢ ((𝐹 ∈ 𝐴 ∧ 1 ≠ 0 ) → (𝐹‘ 1 ) = 1) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1539 ∈ wcel 2112 ≠ wne 2952 ‘cfv 6341 (class class class)co 7157 ℝcr 10588 0cc0 10589 1c1 10590 · cmul 10594 / cdiv 11349 Basecbs 16556 .rcmulr 16639 0gc0g 16786 1rcur 19334 Ringcrg 19380 AbsValcabv 19670 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-sep 5174 ax-nul 5181 ax-pow 5239 ax-pr 5303 ax-un 7466 ax-cnex 10645 ax-resscn 10646 ax-1cn 10647 ax-icn 10648 ax-addcl 10649 ax-addrcl 10650 ax-mulcl 10651 ax-mulrcl 10652 ax-mulcom 10653 ax-addass 10654 ax-mulass 10655 ax-distr 10656 ax-i2m1 10657 ax-1ne0 10658 ax-1rid 10659 ax-rnegex 10660 ax-rrecex 10661 ax-cnre 10662 ax-pre-lttri 10663 ax-pre-lttrn 10664 ax-pre-ltadd 10665 ax-pre-mulgt0 10666 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-nel 3057 df-ral 3076 df-rex 3077 df-reu 3078 df-rmo 3079 df-rab 3080 df-v 3412 df-sbc 3700 df-csb 3809 df-dif 3864 df-un 3866 df-in 3868 df-ss 3878 df-pss 3880 df-nul 4229 df-if 4425 df-pw 4500 df-sn 4527 df-pr 4529 df-tp 4531 df-op 4533 df-uni 4803 df-iun 4889 df-br 5038 df-opab 5100 df-mpt 5118 df-tr 5144 df-id 5435 df-eprel 5440 df-po 5448 df-so 5449 df-fr 5488 df-we 5490 df-xp 5535 df-rel 5536 df-cnv 5537 df-co 5538 df-dm 5539 df-rn 5540 df-res 5541 df-ima 5542 df-pred 6132 df-ord 6178 df-on 6179 df-lim 6180 df-suc 6181 df-iota 6300 df-fun 6343 df-fn 6344 df-f 6345 df-f1 6346 df-fo 6347 df-f1o 6348 df-fv 6349 df-riota 7115 df-ov 7160 df-oprab 7161 df-mpo 7162 df-om 7587 df-wrecs 7964 df-recs 8025 df-rdg 8063 df-er 8306 df-map 8425 df-en 8542 df-dom 8543 df-sdom 8544 df-pnf 10729 df-mnf 10730 df-xr 10731 df-ltxr 10732 df-le 10733 df-sub 10924 df-neg 10925 df-div 11350 df-nn 11689 df-2 11751 df-ico 12799 df-ndx 16559 df-slot 16560 df-base 16562 df-sets 16563 df-plusg 16651 df-0g 16788 df-mgm 17933 df-sgrp 17982 df-mnd 17993 df-mgp 19323 df-ur 19335 df-ring 19382 df-abv 19671 |
This theorem is referenced by: abv1 19687 abvneg 19688 nm1 23384 qabvle 26323 qabvexp 26324 ostthlem2 26326 ostth3 26336 ostth 26337 |
Copyright terms: Public domain | W3C validator |