| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > abv1z | Structured version Visualization version GIF version | ||
| Description: The absolute value of one is one in a non-trivial ring. (Contributed by Mario Carneiro, 8-Sep-2014.) |
| Ref | Expression |
|---|---|
| abv0.a | ⊢ 𝐴 = (AbsVal‘𝑅) |
| abv1.p | ⊢ 1 = (1r‘𝑅) |
| abv1z.z | ⊢ 0 = (0g‘𝑅) |
| Ref | Expression |
|---|---|
| abv1z | ⊢ ((𝐹 ∈ 𝐴 ∧ 1 ≠ 0 ) → (𝐹‘ 1 ) = 1) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abv0.a | . . . . . . . 8 ⊢ 𝐴 = (AbsVal‘𝑅) | |
| 2 | 1 | abvrcl 20716 | . . . . . . 7 ⊢ (𝐹 ∈ 𝐴 → 𝑅 ∈ Ring) |
| 3 | eqid 2729 | . . . . . . . 8 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 4 | abv1.p | . . . . . . . 8 ⊢ 1 = (1r‘𝑅) | |
| 5 | 3, 4 | ringidcl 20168 | . . . . . . 7 ⊢ (𝑅 ∈ Ring → 1 ∈ (Base‘𝑅)) |
| 6 | 2, 5 | syl 17 | . . . . . 6 ⊢ (𝐹 ∈ 𝐴 → 1 ∈ (Base‘𝑅)) |
| 7 | 1, 3 | abvcl 20719 | . . . . . 6 ⊢ ((𝐹 ∈ 𝐴 ∧ 1 ∈ (Base‘𝑅)) → (𝐹‘ 1 ) ∈ ℝ) |
| 8 | 6, 7 | mpdan 687 | . . . . 5 ⊢ (𝐹 ∈ 𝐴 → (𝐹‘ 1 ) ∈ ℝ) |
| 9 | 8 | adantr 480 | . . . 4 ⊢ ((𝐹 ∈ 𝐴 ∧ 1 ≠ 0 ) → (𝐹‘ 1 ) ∈ ℝ) |
| 10 | 9 | recnd 11162 | . . 3 ⊢ ((𝐹 ∈ 𝐴 ∧ 1 ≠ 0 ) → (𝐹‘ 1 ) ∈ ℂ) |
| 11 | simpl 482 | . . . 4 ⊢ ((𝐹 ∈ 𝐴 ∧ 1 ≠ 0 ) → 𝐹 ∈ 𝐴) | |
| 12 | 6 | adantr 480 | . . . 4 ⊢ ((𝐹 ∈ 𝐴 ∧ 1 ≠ 0 ) → 1 ∈ (Base‘𝑅)) |
| 13 | simpr 484 | . . . 4 ⊢ ((𝐹 ∈ 𝐴 ∧ 1 ≠ 0 ) → 1 ≠ 0 ) | |
| 14 | abv1z.z | . . . . 5 ⊢ 0 = (0g‘𝑅) | |
| 15 | 1, 3, 14 | abvne0 20722 | . . . 4 ⊢ ((𝐹 ∈ 𝐴 ∧ 1 ∈ (Base‘𝑅) ∧ 1 ≠ 0 ) → (𝐹‘ 1 ) ≠ 0) |
| 16 | 11, 12, 13, 15 | syl3anc 1373 | . . 3 ⊢ ((𝐹 ∈ 𝐴 ∧ 1 ≠ 0 ) → (𝐹‘ 1 ) ≠ 0) |
| 17 | 10, 10, 16 | divcan3d 11923 | . 2 ⊢ ((𝐹 ∈ 𝐴 ∧ 1 ≠ 0 ) → (((𝐹‘ 1 ) · (𝐹‘ 1 )) / (𝐹‘ 1 )) = (𝐹‘ 1 )) |
| 18 | eqid 2729 | . . . . . . . 8 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 19 | 3, 18, 4 | ringlidm 20172 | . . . . . . 7 ⊢ ((𝑅 ∈ Ring ∧ 1 ∈ (Base‘𝑅)) → ( 1 (.r‘𝑅) 1 ) = 1 ) |
| 20 | 2, 12, 19 | syl2an2r 685 | . . . . . 6 ⊢ ((𝐹 ∈ 𝐴 ∧ 1 ≠ 0 ) → ( 1 (.r‘𝑅) 1 ) = 1 ) |
| 21 | 20 | fveq2d 6830 | . . . . 5 ⊢ ((𝐹 ∈ 𝐴 ∧ 1 ≠ 0 ) → (𝐹‘( 1 (.r‘𝑅) 1 )) = (𝐹‘ 1 )) |
| 22 | 1, 3, 18 | abvmul 20724 | . . . . . 6 ⊢ ((𝐹 ∈ 𝐴 ∧ 1 ∈ (Base‘𝑅) ∧ 1 ∈ (Base‘𝑅)) → (𝐹‘( 1 (.r‘𝑅) 1 )) = ((𝐹‘ 1 ) · (𝐹‘ 1 ))) |
| 23 | 11, 12, 12, 22 | syl3anc 1373 | . . . . 5 ⊢ ((𝐹 ∈ 𝐴 ∧ 1 ≠ 0 ) → (𝐹‘( 1 (.r‘𝑅) 1 )) = ((𝐹‘ 1 ) · (𝐹‘ 1 ))) |
| 24 | 21, 23 | eqtr3d 2766 | . . . 4 ⊢ ((𝐹 ∈ 𝐴 ∧ 1 ≠ 0 ) → (𝐹‘ 1 ) = ((𝐹‘ 1 ) · (𝐹‘ 1 ))) |
| 25 | 24 | oveq1d 7368 | . . 3 ⊢ ((𝐹 ∈ 𝐴 ∧ 1 ≠ 0 ) → ((𝐹‘ 1 ) / (𝐹‘ 1 )) = (((𝐹‘ 1 ) · (𝐹‘ 1 )) / (𝐹‘ 1 ))) |
| 26 | 10, 16 | dividd 11916 | . . 3 ⊢ ((𝐹 ∈ 𝐴 ∧ 1 ≠ 0 ) → ((𝐹‘ 1 ) / (𝐹‘ 1 )) = 1) |
| 27 | 25, 26 | eqtr3d 2766 | . 2 ⊢ ((𝐹 ∈ 𝐴 ∧ 1 ≠ 0 ) → (((𝐹‘ 1 ) · (𝐹‘ 1 )) / (𝐹‘ 1 )) = 1) |
| 28 | 17, 27 | eqtr3d 2766 | 1 ⊢ ((𝐹 ∈ 𝐴 ∧ 1 ≠ 0 ) → (𝐹‘ 1 ) = 1) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ‘cfv 6486 (class class class)co 7353 ℝcr 11027 0cc0 11028 1c1 11029 · cmul 11033 / cdiv 11795 Basecbs 17138 .rcmulr 17180 0gc0g 17361 1rcur 20084 Ringcrg 20136 AbsValcabv 20711 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-er 8632 df-map 8762 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-div 11796 df-nn 12147 df-2 12209 df-ico 13272 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17139 df-plusg 17192 df-0g 17363 df-mgm 18532 df-sgrp 18611 df-mnd 18627 df-mgp 20044 df-ur 20085 df-ring 20138 df-abv 20712 |
| This theorem is referenced by: abv1 20728 abvneg 20729 nm1 24571 qabvle 27552 qabvexp 27553 ostthlem2 27555 ostth3 27565 ostth 27566 abvexp 42505 fiabv 42509 |
| Copyright terms: Public domain | W3C validator |