| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > abv0 | Structured version Visualization version GIF version | ||
| Description: The absolute value of zero is zero. (Contributed by Mario Carneiro, 8-Sep-2014.) |
| Ref | Expression |
|---|---|
| abv0.a | ⊢ 𝐴 = (AbsVal‘𝑅) |
| abv0.z | ⊢ 0 = (0g‘𝑅) |
| Ref | Expression |
|---|---|
| abv0 | ⊢ (𝐹 ∈ 𝐴 → (𝐹‘ 0 ) = 0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abv0.a | . . . 4 ⊢ 𝐴 = (AbsVal‘𝑅) | |
| 2 | 1 | abvrcl 20773 | . . 3 ⊢ (𝐹 ∈ 𝐴 → 𝑅 ∈ Ring) |
| 3 | eqid 2735 | . . . 4 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 4 | abv0.z | . . . 4 ⊢ 0 = (0g‘𝑅) | |
| 5 | 3, 4 | ring0cl 20227 | . . 3 ⊢ (𝑅 ∈ Ring → 0 ∈ (Base‘𝑅)) |
| 6 | 2, 5 | syl 17 | . 2 ⊢ (𝐹 ∈ 𝐴 → 0 ∈ (Base‘𝑅)) |
| 7 | eqid 2735 | . . 3 ⊢ 0 = 0 | |
| 8 | 1, 3, 4 | abveq0 20778 | . . 3 ⊢ ((𝐹 ∈ 𝐴 ∧ 0 ∈ (Base‘𝑅)) → ((𝐹‘ 0 ) = 0 ↔ 0 = 0 )) |
| 9 | 7, 8 | mpbiri 258 | . 2 ⊢ ((𝐹 ∈ 𝐴 ∧ 0 ∈ (Base‘𝑅)) → (𝐹‘ 0 ) = 0) |
| 10 | 6, 9 | mpdan 687 | 1 ⊢ (𝐹 ∈ 𝐴 → (𝐹‘ 0 ) = 0) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ‘cfv 6531 0cc0 11129 Basecbs 17228 0gc0g 17453 Ringcrg 20193 AbsValcabv 20768 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-map 8842 df-0g 17455 df-mgm 18618 df-sgrp 18697 df-mnd 18713 df-grp 18919 df-ring 20195 df-abv 20769 |
| This theorem is referenced by: abvdom 20790 abvres 20791 abvcxp 27578 qabvle 27588 ostthlem1 27590 ostth2lem2 27597 ostth3 27601 fiabv 42559 |
| Copyright terms: Public domain | W3C validator |