| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > abv0 | Structured version Visualization version GIF version | ||
| Description: The absolute value of zero is zero. (Contributed by Mario Carneiro, 8-Sep-2014.) |
| Ref | Expression |
|---|---|
| abv0.a | ⊢ 𝐴 = (AbsVal‘𝑅) |
| abv0.z | ⊢ 0 = (0g‘𝑅) |
| Ref | Expression |
|---|---|
| abv0 | ⊢ (𝐹 ∈ 𝐴 → (𝐹‘ 0 ) = 0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abv0.a | . . . 4 ⊢ 𝐴 = (AbsVal‘𝑅) | |
| 2 | 1 | abvrcl 20783 | . . 3 ⊢ (𝐹 ∈ 𝐴 → 𝑅 ∈ Ring) |
| 3 | eqid 2734 | . . . 4 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 4 | abv0.z | . . . 4 ⊢ 0 = (0g‘𝑅) | |
| 5 | 3, 4 | ring0cl 20233 | . . 3 ⊢ (𝑅 ∈ Ring → 0 ∈ (Base‘𝑅)) |
| 6 | 2, 5 | syl 17 | . 2 ⊢ (𝐹 ∈ 𝐴 → 0 ∈ (Base‘𝑅)) |
| 7 | eqid 2734 | . . 3 ⊢ 0 = 0 | |
| 8 | 1, 3, 4 | abveq0 20788 | . . 3 ⊢ ((𝐹 ∈ 𝐴 ∧ 0 ∈ (Base‘𝑅)) → ((𝐹‘ 0 ) = 0 ↔ 0 = 0 )) |
| 9 | 7, 8 | mpbiri 258 | . 2 ⊢ ((𝐹 ∈ 𝐴 ∧ 0 ∈ (Base‘𝑅)) → (𝐹‘ 0 ) = 0) |
| 10 | 6, 9 | mpdan 687 | 1 ⊢ (𝐹 ∈ 𝐴 → (𝐹‘ 0 ) = 0) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ‘cfv 6541 0cc0 11137 Basecbs 17230 0gc0g 17456 Ringcrg 20199 AbsValcabv 20778 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-fv 6549 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-map 8850 df-0g 17458 df-mgm 18623 df-sgrp 18702 df-mnd 18718 df-grp 18924 df-ring 20201 df-abv 20779 |
| This theorem is referenced by: abvdom 20800 abvres 20801 abvcxp 27596 qabvle 27606 ostthlem1 27608 ostth2lem2 27615 ostth3 27619 fiabv 42525 |
| Copyright terms: Public domain | W3C validator |