MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abv0 Structured version   Visualization version   GIF version

Theorem abv0 20731
Description: The absolute value of zero is zero. (Contributed by Mario Carneiro, 8-Sep-2014.)
Hypotheses
Ref Expression
abv0.a 𝐴 = (AbsVal‘𝑅)
abv0.z 0 = (0g𝑅)
Assertion
Ref Expression
abv0 (𝐹𝐴 → (𝐹0 ) = 0)

Proof of Theorem abv0
StepHypRef Expression
1 abv0.a . . . 4 𝐴 = (AbsVal‘𝑅)
21abvrcl 20721 . . 3 (𝐹𝐴𝑅 ∈ Ring)
3 eqid 2730 . . . 4 (Base‘𝑅) = (Base‘𝑅)
4 abv0.z . . . 4 0 = (0g𝑅)
53, 4ring0cl 20178 . . 3 (𝑅 ∈ Ring → 0 ∈ (Base‘𝑅))
62, 5syl 17 . 2 (𝐹𝐴0 ∈ (Base‘𝑅))
7 eqid 2730 . . 3 0 = 0
81, 3, 4abveq0 20726 . . 3 ((𝐹𝐴0 ∈ (Base‘𝑅)) → ((𝐹0 ) = 0 ↔ 0 = 0 ))
97, 8mpbiri 258 . 2 ((𝐹𝐴0 ∈ (Base‘𝑅)) → (𝐹0 ) = 0)
106, 9mpdan 687 1 (𝐹𝐴 → (𝐹0 ) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2110  cfv 6477  0cc0 10998  Basecbs 17112  0gc0g 17335  Ringcrg 20144  AbsValcabv 20716
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3344  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-fv 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-map 8747  df-0g 17337  df-mgm 18540  df-sgrp 18619  df-mnd 18635  df-grp 18841  df-ring 20146  df-abv 20717
This theorem is referenced by:  abvdom  20738  abvres  20739  abvcxp  27546  qabvle  27556  ostthlem1  27558  ostth2lem2  27565  ostth3  27569  fiabv  42548
  Copyright terms: Public domain W3C validator