Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > abv0 | Structured version Visualization version GIF version |
Description: The absolute value of zero is zero. (Contributed by Mario Carneiro, 8-Sep-2014.) |
Ref | Expression |
---|---|
abv0.a | ⊢ 𝐴 = (AbsVal‘𝑅) |
abv0.z | ⊢ 0 = (0g‘𝑅) |
Ref | Expression |
---|---|
abv0 | ⊢ (𝐹 ∈ 𝐴 → (𝐹‘ 0 ) = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abv0.a | . . . 4 ⊢ 𝐴 = (AbsVal‘𝑅) | |
2 | 1 | abvrcl 19675 | . . 3 ⊢ (𝐹 ∈ 𝐴 → 𝑅 ∈ Ring) |
3 | eqid 2759 | . . . 4 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
4 | abv0.z | . . . 4 ⊢ 0 = (0g‘𝑅) | |
5 | 3, 4 | ring0cl 19405 | . . 3 ⊢ (𝑅 ∈ Ring → 0 ∈ (Base‘𝑅)) |
6 | 2, 5 | syl 17 | . 2 ⊢ (𝐹 ∈ 𝐴 → 0 ∈ (Base‘𝑅)) |
7 | eqid 2759 | . . 3 ⊢ 0 = 0 | |
8 | 1, 3, 4 | abveq0 19680 | . . 3 ⊢ ((𝐹 ∈ 𝐴 ∧ 0 ∈ (Base‘𝑅)) → ((𝐹‘ 0 ) = 0 ↔ 0 = 0 )) |
9 | 7, 8 | mpbiri 261 | . 2 ⊢ ((𝐹 ∈ 𝐴 ∧ 0 ∈ (Base‘𝑅)) → (𝐹‘ 0 ) = 0) |
10 | 6, 9 | mpdan 686 | 1 ⊢ (𝐹 ∈ 𝐴 → (𝐹‘ 0 ) = 0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1539 ∈ wcel 2112 ‘cfv 6341 0cc0 10589 Basecbs 16556 0gc0g 16786 Ringcrg 19380 AbsValcabv 19670 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-sep 5174 ax-nul 5181 ax-pow 5239 ax-pr 5303 ax-un 7466 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-ral 3076 df-rex 3077 df-reu 3078 df-rmo 3079 df-rab 3080 df-v 3412 df-sbc 3700 df-dif 3864 df-un 3866 df-in 3868 df-ss 3878 df-nul 4229 df-if 4425 df-pw 4500 df-sn 4527 df-pr 4529 df-op 4533 df-uni 4803 df-br 5038 df-opab 5100 df-mpt 5118 df-id 5435 df-xp 5535 df-rel 5536 df-cnv 5537 df-co 5538 df-dm 5539 df-rn 5540 df-res 5541 df-ima 5542 df-iota 6300 df-fun 6343 df-fn 6344 df-f 6345 df-fv 6349 df-riota 7115 df-ov 7160 df-oprab 7161 df-mpo 7162 df-map 8425 df-0g 16788 df-mgm 17933 df-sgrp 17982 df-mnd 17993 df-grp 18187 df-ring 19382 df-abv 19671 |
This theorem is referenced by: abvdom 19692 abvres 19693 abvcxp 26313 qabvle 26323 ostthlem1 26325 ostth2lem2 26332 ostth3 26336 |
Copyright terms: Public domain | W3C validator |