| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > abv0 | Structured version Visualization version GIF version | ||
| Description: The absolute value of zero is zero. (Contributed by Mario Carneiro, 8-Sep-2014.) |
| Ref | Expression |
|---|---|
| abv0.a | ⊢ 𝐴 = (AbsVal‘𝑅) |
| abv0.z | ⊢ 0 = (0g‘𝑅) |
| Ref | Expression |
|---|---|
| abv0 | ⊢ (𝐹 ∈ 𝐴 → (𝐹‘ 0 ) = 0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abv0.a | . . . 4 ⊢ 𝐴 = (AbsVal‘𝑅) | |
| 2 | 1 | abvrcl 20721 | . . 3 ⊢ (𝐹 ∈ 𝐴 → 𝑅 ∈ Ring) |
| 3 | eqid 2730 | . . . 4 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 4 | abv0.z | . . . 4 ⊢ 0 = (0g‘𝑅) | |
| 5 | 3, 4 | ring0cl 20178 | . . 3 ⊢ (𝑅 ∈ Ring → 0 ∈ (Base‘𝑅)) |
| 6 | 2, 5 | syl 17 | . 2 ⊢ (𝐹 ∈ 𝐴 → 0 ∈ (Base‘𝑅)) |
| 7 | eqid 2730 | . . 3 ⊢ 0 = 0 | |
| 8 | 1, 3, 4 | abveq0 20726 | . . 3 ⊢ ((𝐹 ∈ 𝐴 ∧ 0 ∈ (Base‘𝑅)) → ((𝐹‘ 0 ) = 0 ↔ 0 = 0 )) |
| 9 | 7, 8 | mpbiri 258 | . 2 ⊢ ((𝐹 ∈ 𝐴 ∧ 0 ∈ (Base‘𝑅)) → (𝐹‘ 0 ) = 0) |
| 10 | 6, 9 | mpdan 687 | 1 ⊢ (𝐹 ∈ 𝐴 → (𝐹‘ 0 ) = 0) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2110 ‘cfv 6477 0cc0 10998 Basecbs 17112 0gc0g 17335 Ringcrg 20144 AbsValcabv 20716 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3344 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-fv 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-map 8747 df-0g 17337 df-mgm 18540 df-sgrp 18619 df-mnd 18635 df-grp 18841 df-ring 20146 df-abv 20717 |
| This theorem is referenced by: abvdom 20738 abvres 20739 abvcxp 27546 qabvle 27556 ostthlem1 27558 ostth2lem2 27565 ostth3 27569 fiabv 42548 |
| Copyright terms: Public domain | W3C validator |