Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > abv0 | Structured version Visualization version GIF version |
Description: The absolute value of zero is zero. (Contributed by Mario Carneiro, 8-Sep-2014.) |
Ref | Expression |
---|---|
abv0.a | ⊢ 𝐴 = (AbsVal‘𝑅) |
abv0.z | ⊢ 0 = (0g‘𝑅) |
Ref | Expression |
---|---|
abv0 | ⊢ (𝐹 ∈ 𝐴 → (𝐹‘ 0 ) = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abv0.a | . . . 4 ⊢ 𝐴 = (AbsVal‘𝑅) | |
2 | 1 | abvrcl 19996 | . . 3 ⊢ (𝐹 ∈ 𝐴 → 𝑅 ∈ Ring) |
3 | eqid 2738 | . . . 4 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
4 | abv0.z | . . . 4 ⊢ 0 = (0g‘𝑅) | |
5 | 3, 4 | ring0cl 19723 | . . 3 ⊢ (𝑅 ∈ Ring → 0 ∈ (Base‘𝑅)) |
6 | 2, 5 | syl 17 | . 2 ⊢ (𝐹 ∈ 𝐴 → 0 ∈ (Base‘𝑅)) |
7 | eqid 2738 | . . 3 ⊢ 0 = 0 | |
8 | 1, 3, 4 | abveq0 20001 | . . 3 ⊢ ((𝐹 ∈ 𝐴 ∧ 0 ∈ (Base‘𝑅)) → ((𝐹‘ 0 ) = 0 ↔ 0 = 0 )) |
9 | 7, 8 | mpbiri 257 | . 2 ⊢ ((𝐹 ∈ 𝐴 ∧ 0 ∈ (Base‘𝑅)) → (𝐹‘ 0 ) = 0) |
10 | 6, 9 | mpdan 683 | 1 ⊢ (𝐹 ∈ 𝐴 → (𝐹‘ 0 ) = 0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ‘cfv 6418 0cc0 10802 Basecbs 16840 0gc0g 17067 Ringcrg 19698 AbsValcabv 19991 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-map 8575 df-0g 17069 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-grp 18495 df-ring 19700 df-abv 19992 |
This theorem is referenced by: abvdom 20013 abvres 20014 abvcxp 26668 qabvle 26678 ostthlem1 26680 ostth2lem2 26687 ostth3 26691 |
Copyright terms: Public domain | W3C validator |