MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abvtri Structured version   Visualization version   GIF version

Theorem abvtri 20437
Description: An absolute value satisfies the triangle inequality. (Contributed by Mario Carneiro, 8-Sep-2014.)
Hypotheses
Ref Expression
abvf.a 𝐴 = (AbsValβ€˜π‘…)
abvf.b 𝐡 = (Baseβ€˜π‘…)
abvtri.p + = (+gβ€˜π‘…)
Assertion
Ref Expression
abvtri ((𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) β†’ (πΉβ€˜(𝑋 + π‘Œ)) ≀ ((πΉβ€˜π‘‹) + (πΉβ€˜π‘Œ)))

Proof of Theorem abvtri
Dummy variables π‘₯ 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 abvf.a . . . . . . 7 𝐴 = (AbsValβ€˜π‘…)
21abvrcl 20428 . . . . . 6 (𝐹 ∈ 𝐴 β†’ 𝑅 ∈ Ring)
3 abvf.b . . . . . . 7 𝐡 = (Baseβ€˜π‘…)
4 abvtri.p . . . . . . 7 + = (+gβ€˜π‘…)
5 eqid 2732 . . . . . . 7 (.rβ€˜π‘…) = (.rβ€˜π‘…)
6 eqid 2732 . . . . . . 7 (0gβ€˜π‘…) = (0gβ€˜π‘…)
71, 3, 4, 5, 6isabv 20426 . . . . . 6 (𝑅 ∈ Ring β†’ (𝐹 ∈ 𝐴 ↔ (𝐹:𝐡⟢(0[,)+∞) ∧ βˆ€π‘₯ ∈ 𝐡 (((πΉβ€˜π‘₯) = 0 ↔ π‘₯ = (0gβ€˜π‘…)) ∧ βˆ€π‘¦ ∈ 𝐡 ((πΉβ€˜(π‘₯(.rβ€˜π‘…)𝑦)) = ((πΉβ€˜π‘₯) Β· (πΉβ€˜π‘¦)) ∧ (πΉβ€˜(π‘₯ + 𝑦)) ≀ ((πΉβ€˜π‘₯) + (πΉβ€˜π‘¦)))))))
82, 7syl 17 . . . . 5 (𝐹 ∈ 𝐴 β†’ (𝐹 ∈ 𝐴 ↔ (𝐹:𝐡⟢(0[,)+∞) ∧ βˆ€π‘₯ ∈ 𝐡 (((πΉβ€˜π‘₯) = 0 ↔ π‘₯ = (0gβ€˜π‘…)) ∧ βˆ€π‘¦ ∈ 𝐡 ((πΉβ€˜(π‘₯(.rβ€˜π‘…)𝑦)) = ((πΉβ€˜π‘₯) Β· (πΉβ€˜π‘¦)) ∧ (πΉβ€˜(π‘₯ + 𝑦)) ≀ ((πΉβ€˜π‘₯) + (πΉβ€˜π‘¦)))))))
98ibi 266 . . . 4 (𝐹 ∈ 𝐴 β†’ (𝐹:𝐡⟢(0[,)+∞) ∧ βˆ€π‘₯ ∈ 𝐡 (((πΉβ€˜π‘₯) = 0 ↔ π‘₯ = (0gβ€˜π‘…)) ∧ βˆ€π‘¦ ∈ 𝐡 ((πΉβ€˜(π‘₯(.rβ€˜π‘…)𝑦)) = ((πΉβ€˜π‘₯) Β· (πΉβ€˜π‘¦)) ∧ (πΉβ€˜(π‘₯ + 𝑦)) ≀ ((πΉβ€˜π‘₯) + (πΉβ€˜π‘¦))))))
10 simpr 485 . . . . . . 7 (((πΉβ€˜(π‘₯(.rβ€˜π‘…)𝑦)) = ((πΉβ€˜π‘₯) Β· (πΉβ€˜π‘¦)) ∧ (πΉβ€˜(π‘₯ + 𝑦)) ≀ ((πΉβ€˜π‘₯) + (πΉβ€˜π‘¦))) β†’ (πΉβ€˜(π‘₯ + 𝑦)) ≀ ((πΉβ€˜π‘₯) + (πΉβ€˜π‘¦)))
1110ralimi 3083 . . . . . 6 (βˆ€π‘¦ ∈ 𝐡 ((πΉβ€˜(π‘₯(.rβ€˜π‘…)𝑦)) = ((πΉβ€˜π‘₯) Β· (πΉβ€˜π‘¦)) ∧ (πΉβ€˜(π‘₯ + 𝑦)) ≀ ((πΉβ€˜π‘₯) + (πΉβ€˜π‘¦))) β†’ βˆ€π‘¦ ∈ 𝐡 (πΉβ€˜(π‘₯ + 𝑦)) ≀ ((πΉβ€˜π‘₯) + (πΉβ€˜π‘¦)))
1211adantl 482 . . . . 5 ((((πΉβ€˜π‘₯) = 0 ↔ π‘₯ = (0gβ€˜π‘…)) ∧ βˆ€π‘¦ ∈ 𝐡 ((πΉβ€˜(π‘₯(.rβ€˜π‘…)𝑦)) = ((πΉβ€˜π‘₯) Β· (πΉβ€˜π‘¦)) ∧ (πΉβ€˜(π‘₯ + 𝑦)) ≀ ((πΉβ€˜π‘₯) + (πΉβ€˜π‘¦)))) β†’ βˆ€π‘¦ ∈ 𝐡 (πΉβ€˜(π‘₯ + 𝑦)) ≀ ((πΉβ€˜π‘₯) + (πΉβ€˜π‘¦)))
1312ralimi 3083 . . . 4 (βˆ€π‘₯ ∈ 𝐡 (((πΉβ€˜π‘₯) = 0 ↔ π‘₯ = (0gβ€˜π‘…)) ∧ βˆ€π‘¦ ∈ 𝐡 ((πΉβ€˜(π‘₯(.rβ€˜π‘…)𝑦)) = ((πΉβ€˜π‘₯) Β· (πΉβ€˜π‘¦)) ∧ (πΉβ€˜(π‘₯ + 𝑦)) ≀ ((πΉβ€˜π‘₯) + (πΉβ€˜π‘¦)))) β†’ βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐡 (πΉβ€˜(π‘₯ + 𝑦)) ≀ ((πΉβ€˜π‘₯) + (πΉβ€˜π‘¦)))
149, 13simpl2im 504 . . 3 (𝐹 ∈ 𝐴 β†’ βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐡 (πΉβ€˜(π‘₯ + 𝑦)) ≀ ((πΉβ€˜π‘₯) + (πΉβ€˜π‘¦)))
15 fvoveq1 7431 . . . . 5 (π‘₯ = 𝑋 β†’ (πΉβ€˜(π‘₯ + 𝑦)) = (πΉβ€˜(𝑋 + 𝑦)))
16 fveq2 6891 . . . . . 6 (π‘₯ = 𝑋 β†’ (πΉβ€˜π‘₯) = (πΉβ€˜π‘‹))
1716oveq1d 7423 . . . . 5 (π‘₯ = 𝑋 β†’ ((πΉβ€˜π‘₯) + (πΉβ€˜π‘¦)) = ((πΉβ€˜π‘‹) + (πΉβ€˜π‘¦)))
1815, 17breq12d 5161 . . . 4 (π‘₯ = 𝑋 β†’ ((πΉβ€˜(π‘₯ + 𝑦)) ≀ ((πΉβ€˜π‘₯) + (πΉβ€˜π‘¦)) ↔ (πΉβ€˜(𝑋 + 𝑦)) ≀ ((πΉβ€˜π‘‹) + (πΉβ€˜π‘¦))))
19 oveq2 7416 . . . . . 6 (𝑦 = π‘Œ β†’ (𝑋 + 𝑦) = (𝑋 + π‘Œ))
2019fveq2d 6895 . . . . 5 (𝑦 = π‘Œ β†’ (πΉβ€˜(𝑋 + 𝑦)) = (πΉβ€˜(𝑋 + π‘Œ)))
21 fveq2 6891 . . . . . 6 (𝑦 = π‘Œ β†’ (πΉβ€˜π‘¦) = (πΉβ€˜π‘Œ))
2221oveq2d 7424 . . . . 5 (𝑦 = π‘Œ β†’ ((πΉβ€˜π‘‹) + (πΉβ€˜π‘¦)) = ((πΉβ€˜π‘‹) + (πΉβ€˜π‘Œ)))
2320, 22breq12d 5161 . . . 4 (𝑦 = π‘Œ β†’ ((πΉβ€˜(𝑋 + 𝑦)) ≀ ((πΉβ€˜π‘‹) + (πΉβ€˜π‘¦)) ↔ (πΉβ€˜(𝑋 + π‘Œ)) ≀ ((πΉβ€˜π‘‹) + (πΉβ€˜π‘Œ))))
2418, 23rspc2v 3622 . . 3 ((𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) β†’ (βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐡 (πΉβ€˜(π‘₯ + 𝑦)) ≀ ((πΉβ€˜π‘₯) + (πΉβ€˜π‘¦)) β†’ (πΉβ€˜(𝑋 + π‘Œ)) ≀ ((πΉβ€˜π‘‹) + (πΉβ€˜π‘Œ))))
2514, 24syl5com 31 . 2 (𝐹 ∈ 𝐴 β†’ ((𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) β†’ (πΉβ€˜(𝑋 + π‘Œ)) ≀ ((πΉβ€˜π‘‹) + (πΉβ€˜π‘Œ))))
26253impib 1116 1 ((𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) β†’ (πΉβ€˜(𝑋 + π‘Œ)) ≀ ((πΉβ€˜π‘‹) + (πΉβ€˜π‘Œ)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 396   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106  βˆ€wral 3061   class class class wbr 5148  βŸΆwf 6539  β€˜cfv 6543  (class class class)co 7408  0cc0 11109   + caddc 11112   Β· cmul 11114  +∞cpnf 11244   ≀ cle 11248  [,)cico 13325  Basecbs 17143  +gcplusg 17196  .rcmulr 17197  0gc0g 17384  Ringcrg 20055  AbsValcabv 20423
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3778  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-fv 6551  df-ov 7411  df-oprab 7412  df-mpo 7413  df-map 8821  df-abv 20424
This theorem is referenced by:  abvsubtri  20442  abvres  20446  abvcxp  27115  qabvle  27125  ostth2lem2  27134  ostth3  27138
  Copyright terms: Public domain W3C validator