MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abvtri Structured version   Visualization version   GIF version

Theorem abvtri 20738
Description: An absolute value satisfies the triangle inequality. (Contributed by Mario Carneiro, 8-Sep-2014.)
Hypotheses
Ref Expression
abvf.a 𝐴 = (AbsVal‘𝑅)
abvf.b 𝐵 = (Base‘𝑅)
abvtri.p + = (+g𝑅)
Assertion
Ref Expression
abvtri ((𝐹𝐴𝑋𝐵𝑌𝐵) → (𝐹‘(𝑋 + 𝑌)) ≤ ((𝐹𝑋) + (𝐹𝑌)))

Proof of Theorem abvtri
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 abvf.a . . . . . . 7 𝐴 = (AbsVal‘𝑅)
21abvrcl 20729 . . . . . 6 (𝐹𝐴𝑅 ∈ Ring)
3 abvf.b . . . . . . 7 𝐵 = (Base‘𝑅)
4 abvtri.p . . . . . . 7 + = (+g𝑅)
5 eqid 2731 . . . . . . 7 (.r𝑅) = (.r𝑅)
6 eqid 2731 . . . . . . 7 (0g𝑅) = (0g𝑅)
71, 3, 4, 5, 6isabv 20727 . . . . . 6 (𝑅 ∈ Ring → (𝐹𝐴 ↔ (𝐹:𝐵⟶(0[,)+∞) ∧ ∀𝑥𝐵 (((𝐹𝑥) = 0 ↔ 𝑥 = (0g𝑅)) ∧ ∀𝑦𝐵 ((𝐹‘(𝑥(.r𝑅)𝑦)) = ((𝐹𝑥) · (𝐹𝑦)) ∧ (𝐹‘(𝑥 + 𝑦)) ≤ ((𝐹𝑥) + (𝐹𝑦)))))))
82, 7syl 17 . . . . 5 (𝐹𝐴 → (𝐹𝐴 ↔ (𝐹:𝐵⟶(0[,)+∞) ∧ ∀𝑥𝐵 (((𝐹𝑥) = 0 ↔ 𝑥 = (0g𝑅)) ∧ ∀𝑦𝐵 ((𝐹‘(𝑥(.r𝑅)𝑦)) = ((𝐹𝑥) · (𝐹𝑦)) ∧ (𝐹‘(𝑥 + 𝑦)) ≤ ((𝐹𝑥) + (𝐹𝑦)))))))
98ibi 267 . . . 4 (𝐹𝐴 → (𝐹:𝐵⟶(0[,)+∞) ∧ ∀𝑥𝐵 (((𝐹𝑥) = 0 ↔ 𝑥 = (0g𝑅)) ∧ ∀𝑦𝐵 ((𝐹‘(𝑥(.r𝑅)𝑦)) = ((𝐹𝑥) · (𝐹𝑦)) ∧ (𝐹‘(𝑥 + 𝑦)) ≤ ((𝐹𝑥) + (𝐹𝑦))))))
10 simpr 484 . . . . . . 7 (((𝐹‘(𝑥(.r𝑅)𝑦)) = ((𝐹𝑥) · (𝐹𝑦)) ∧ (𝐹‘(𝑥 + 𝑦)) ≤ ((𝐹𝑥) + (𝐹𝑦))) → (𝐹‘(𝑥 + 𝑦)) ≤ ((𝐹𝑥) + (𝐹𝑦)))
1110ralimi 3069 . . . . . 6 (∀𝑦𝐵 ((𝐹‘(𝑥(.r𝑅)𝑦)) = ((𝐹𝑥) · (𝐹𝑦)) ∧ (𝐹‘(𝑥 + 𝑦)) ≤ ((𝐹𝑥) + (𝐹𝑦))) → ∀𝑦𝐵 (𝐹‘(𝑥 + 𝑦)) ≤ ((𝐹𝑥) + (𝐹𝑦)))
1211adantl 481 . . . . 5 ((((𝐹𝑥) = 0 ↔ 𝑥 = (0g𝑅)) ∧ ∀𝑦𝐵 ((𝐹‘(𝑥(.r𝑅)𝑦)) = ((𝐹𝑥) · (𝐹𝑦)) ∧ (𝐹‘(𝑥 + 𝑦)) ≤ ((𝐹𝑥) + (𝐹𝑦)))) → ∀𝑦𝐵 (𝐹‘(𝑥 + 𝑦)) ≤ ((𝐹𝑥) + (𝐹𝑦)))
1312ralimi 3069 . . . 4 (∀𝑥𝐵 (((𝐹𝑥) = 0 ↔ 𝑥 = (0g𝑅)) ∧ ∀𝑦𝐵 ((𝐹‘(𝑥(.r𝑅)𝑦)) = ((𝐹𝑥) · (𝐹𝑦)) ∧ (𝐹‘(𝑥 + 𝑦)) ≤ ((𝐹𝑥) + (𝐹𝑦)))) → ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥 + 𝑦)) ≤ ((𝐹𝑥) + (𝐹𝑦)))
149, 13simpl2im 503 . . 3 (𝐹𝐴 → ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥 + 𝑦)) ≤ ((𝐹𝑥) + (𝐹𝑦)))
15 fvoveq1 7369 . . . . 5 (𝑥 = 𝑋 → (𝐹‘(𝑥 + 𝑦)) = (𝐹‘(𝑋 + 𝑦)))
16 fveq2 6822 . . . . . 6 (𝑥 = 𝑋 → (𝐹𝑥) = (𝐹𝑋))
1716oveq1d 7361 . . . . 5 (𝑥 = 𝑋 → ((𝐹𝑥) + (𝐹𝑦)) = ((𝐹𝑋) + (𝐹𝑦)))
1815, 17breq12d 5104 . . . 4 (𝑥 = 𝑋 → ((𝐹‘(𝑥 + 𝑦)) ≤ ((𝐹𝑥) + (𝐹𝑦)) ↔ (𝐹‘(𝑋 + 𝑦)) ≤ ((𝐹𝑋) + (𝐹𝑦))))
19 oveq2 7354 . . . . . 6 (𝑦 = 𝑌 → (𝑋 + 𝑦) = (𝑋 + 𝑌))
2019fveq2d 6826 . . . . 5 (𝑦 = 𝑌 → (𝐹‘(𝑋 + 𝑦)) = (𝐹‘(𝑋 + 𝑌)))
21 fveq2 6822 . . . . . 6 (𝑦 = 𝑌 → (𝐹𝑦) = (𝐹𝑌))
2221oveq2d 7362 . . . . 5 (𝑦 = 𝑌 → ((𝐹𝑋) + (𝐹𝑦)) = ((𝐹𝑋) + (𝐹𝑌)))
2320, 22breq12d 5104 . . . 4 (𝑦 = 𝑌 → ((𝐹‘(𝑋 + 𝑦)) ≤ ((𝐹𝑋) + (𝐹𝑦)) ↔ (𝐹‘(𝑋 + 𝑌)) ≤ ((𝐹𝑋) + (𝐹𝑌))))
2418, 23rspc2v 3588 . . 3 ((𝑋𝐵𝑌𝐵) → (∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥 + 𝑦)) ≤ ((𝐹𝑥) + (𝐹𝑦)) → (𝐹‘(𝑋 + 𝑌)) ≤ ((𝐹𝑋) + (𝐹𝑌))))
2514, 24syl5com 31 . 2 (𝐹𝐴 → ((𝑋𝐵𝑌𝐵) → (𝐹‘(𝑋 + 𝑌)) ≤ ((𝐹𝑋) + (𝐹𝑌))))
26253impib 1116 1 ((𝐹𝐴𝑋𝐵𝑌𝐵) → (𝐹‘(𝑋 + 𝑌)) ≤ ((𝐹𝑋) + (𝐹𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wral 3047   class class class wbr 5091  wf 6477  cfv 6481  (class class class)co 7346  0cc0 11006   + caddc 11009   · cmul 11011  +∞cpnf 11143  cle 11147  [,)cico 13247  Basecbs 17120  +gcplusg 17161  .rcmulr 17162  0gc0g 17343  Ringcrg 20152  AbsValcabv 20724
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3742  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-map 8752  df-abv 20725
This theorem is referenced by:  abvsubtri  20743  abvres  20747  abvcxp  27554  qabvle  27564  ostth2lem2  27573  ostth3  27577
  Copyright terms: Public domain W3C validator