MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abvtri Structured version   Visualization version   GIF version

Theorem abvtri 19594
Description: An absolute value satisfies the triangle inequality. (Contributed by Mario Carneiro, 8-Sep-2014.)
Hypotheses
Ref Expression
abvf.a 𝐴 = (AbsVal‘𝑅)
abvf.b 𝐵 = (Base‘𝑅)
abvtri.p + = (+g𝑅)
Assertion
Ref Expression
abvtri ((𝐹𝐴𝑋𝐵𝑌𝐵) → (𝐹‘(𝑋 + 𝑌)) ≤ ((𝐹𝑋) + (𝐹𝑌)))

Proof of Theorem abvtri
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 abvf.a . . . . . . 7 𝐴 = (AbsVal‘𝑅)
21abvrcl 19585 . . . . . 6 (𝐹𝐴𝑅 ∈ Ring)
3 abvf.b . . . . . . 7 𝐵 = (Base‘𝑅)
4 abvtri.p . . . . . . 7 + = (+g𝑅)
5 eqid 2798 . . . . . . 7 (.r𝑅) = (.r𝑅)
6 eqid 2798 . . . . . . 7 (0g𝑅) = (0g𝑅)
71, 3, 4, 5, 6isabv 19583 . . . . . 6 (𝑅 ∈ Ring → (𝐹𝐴 ↔ (𝐹:𝐵⟶(0[,)+∞) ∧ ∀𝑥𝐵 (((𝐹𝑥) = 0 ↔ 𝑥 = (0g𝑅)) ∧ ∀𝑦𝐵 ((𝐹‘(𝑥(.r𝑅)𝑦)) = ((𝐹𝑥) · (𝐹𝑦)) ∧ (𝐹‘(𝑥 + 𝑦)) ≤ ((𝐹𝑥) + (𝐹𝑦)))))))
82, 7syl 17 . . . . 5 (𝐹𝐴 → (𝐹𝐴 ↔ (𝐹:𝐵⟶(0[,)+∞) ∧ ∀𝑥𝐵 (((𝐹𝑥) = 0 ↔ 𝑥 = (0g𝑅)) ∧ ∀𝑦𝐵 ((𝐹‘(𝑥(.r𝑅)𝑦)) = ((𝐹𝑥) · (𝐹𝑦)) ∧ (𝐹‘(𝑥 + 𝑦)) ≤ ((𝐹𝑥) + (𝐹𝑦)))))))
98ibi 270 . . . 4 (𝐹𝐴 → (𝐹:𝐵⟶(0[,)+∞) ∧ ∀𝑥𝐵 (((𝐹𝑥) = 0 ↔ 𝑥 = (0g𝑅)) ∧ ∀𝑦𝐵 ((𝐹‘(𝑥(.r𝑅)𝑦)) = ((𝐹𝑥) · (𝐹𝑦)) ∧ (𝐹‘(𝑥 + 𝑦)) ≤ ((𝐹𝑥) + (𝐹𝑦))))))
10 simpr 488 . . . . . . 7 (((𝐹‘(𝑥(.r𝑅)𝑦)) = ((𝐹𝑥) · (𝐹𝑦)) ∧ (𝐹‘(𝑥 + 𝑦)) ≤ ((𝐹𝑥) + (𝐹𝑦))) → (𝐹‘(𝑥 + 𝑦)) ≤ ((𝐹𝑥) + (𝐹𝑦)))
1110ralimi 3128 . . . . . 6 (∀𝑦𝐵 ((𝐹‘(𝑥(.r𝑅)𝑦)) = ((𝐹𝑥) · (𝐹𝑦)) ∧ (𝐹‘(𝑥 + 𝑦)) ≤ ((𝐹𝑥) + (𝐹𝑦))) → ∀𝑦𝐵 (𝐹‘(𝑥 + 𝑦)) ≤ ((𝐹𝑥) + (𝐹𝑦)))
1211adantl 485 . . . . 5 ((((𝐹𝑥) = 0 ↔ 𝑥 = (0g𝑅)) ∧ ∀𝑦𝐵 ((𝐹‘(𝑥(.r𝑅)𝑦)) = ((𝐹𝑥) · (𝐹𝑦)) ∧ (𝐹‘(𝑥 + 𝑦)) ≤ ((𝐹𝑥) + (𝐹𝑦)))) → ∀𝑦𝐵 (𝐹‘(𝑥 + 𝑦)) ≤ ((𝐹𝑥) + (𝐹𝑦)))
1312ralimi 3128 . . . 4 (∀𝑥𝐵 (((𝐹𝑥) = 0 ↔ 𝑥 = (0g𝑅)) ∧ ∀𝑦𝐵 ((𝐹‘(𝑥(.r𝑅)𝑦)) = ((𝐹𝑥) · (𝐹𝑦)) ∧ (𝐹‘(𝑥 + 𝑦)) ≤ ((𝐹𝑥) + (𝐹𝑦)))) → ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥 + 𝑦)) ≤ ((𝐹𝑥) + (𝐹𝑦)))
149, 13simpl2im 507 . . 3 (𝐹𝐴 → ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥 + 𝑦)) ≤ ((𝐹𝑥) + (𝐹𝑦)))
15 fvoveq1 7158 . . . . 5 (𝑥 = 𝑋 → (𝐹‘(𝑥 + 𝑦)) = (𝐹‘(𝑋 + 𝑦)))
16 fveq2 6645 . . . . . 6 (𝑥 = 𝑋 → (𝐹𝑥) = (𝐹𝑋))
1716oveq1d 7150 . . . . 5 (𝑥 = 𝑋 → ((𝐹𝑥) + (𝐹𝑦)) = ((𝐹𝑋) + (𝐹𝑦)))
1815, 17breq12d 5043 . . . 4 (𝑥 = 𝑋 → ((𝐹‘(𝑥 + 𝑦)) ≤ ((𝐹𝑥) + (𝐹𝑦)) ↔ (𝐹‘(𝑋 + 𝑦)) ≤ ((𝐹𝑋) + (𝐹𝑦))))
19 oveq2 7143 . . . . . 6 (𝑦 = 𝑌 → (𝑋 + 𝑦) = (𝑋 + 𝑌))
2019fveq2d 6649 . . . . 5 (𝑦 = 𝑌 → (𝐹‘(𝑋 + 𝑦)) = (𝐹‘(𝑋 + 𝑌)))
21 fveq2 6645 . . . . . 6 (𝑦 = 𝑌 → (𝐹𝑦) = (𝐹𝑌))
2221oveq2d 7151 . . . . 5 (𝑦 = 𝑌 → ((𝐹𝑋) + (𝐹𝑦)) = ((𝐹𝑋) + (𝐹𝑌)))
2320, 22breq12d 5043 . . . 4 (𝑦 = 𝑌 → ((𝐹‘(𝑋 + 𝑦)) ≤ ((𝐹𝑋) + (𝐹𝑦)) ↔ (𝐹‘(𝑋 + 𝑌)) ≤ ((𝐹𝑋) + (𝐹𝑌))))
2418, 23rspc2v 3581 . . 3 ((𝑋𝐵𝑌𝐵) → (∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥 + 𝑦)) ≤ ((𝐹𝑥) + (𝐹𝑦)) → (𝐹‘(𝑋 + 𝑌)) ≤ ((𝐹𝑋) + (𝐹𝑌))))
2514, 24syl5com 31 . 2 (𝐹𝐴 → ((𝑋𝐵𝑌𝐵) → (𝐹‘(𝑋 + 𝑌)) ≤ ((𝐹𝑋) + (𝐹𝑌))))
26253impib 1113 1 ((𝐹𝐴𝑋𝐵𝑌𝐵) → (𝐹‘(𝑋 + 𝑌)) ≤ ((𝐹𝑋) + (𝐹𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wral 3106   class class class wbr 5030  wf 6320  cfv 6324  (class class class)co 7135  0cc0 10526   + caddc 10529   · cmul 10531  +∞cpnf 10661  cle 10665  [,)cico 12728  Basecbs 16475  +gcplusg 16557  .rcmulr 16558  0gc0g 16705  Ringcrg 19290  AbsValcabv 19580
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-fv 6332  df-ov 7138  df-oprab 7139  df-mpo 7140  df-map 8391  df-abv 19581
This theorem is referenced by:  abvsubtri  19599  abvres  19603  abvcxp  26199  qabvle  26209  ostth2lem2  26218  ostth3  26222
  Copyright terms: Public domain W3C validator