![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > abvsubtri | Structured version Visualization version GIF version |
Description: An absolute value satisfies the triangle inequality. (Contributed by Mario Carneiro, 4-Oct-2015.) |
Ref | Expression |
---|---|
abv0.a | β’ π΄ = (AbsValβπ ) |
abvneg.b | β’ π΅ = (Baseβπ ) |
abvsubtri.p | β’ β = (-gβπ ) |
Ref | Expression |
---|---|
abvsubtri | β’ ((πΉ β π΄ β§ π β π΅ β§ π β π΅) β (πΉβ(π β π)) β€ ((πΉβπ) + (πΉβπ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abvneg.b | . . . . 5 β’ π΅ = (Baseβπ ) | |
2 | eqid 2731 | . . . . 5 β’ (+gβπ ) = (+gβπ ) | |
3 | eqid 2731 | . . . . 5 β’ (invgβπ ) = (invgβπ ) | |
4 | abvsubtri.p | . . . . 5 β’ β = (-gβπ ) | |
5 | 1, 2, 3, 4 | grpsubval 18907 | . . . 4 β’ ((π β π΅ β§ π β π΅) β (π β π) = (π(+gβπ )((invgβπ )βπ))) |
6 | 5 | 3adant1 1129 | . . 3 β’ ((πΉ β π΄ β§ π β π΅ β§ π β π΅) β (π β π) = (π(+gβπ )((invgβπ )βπ))) |
7 | 6 | fveq2d 6896 | . 2 β’ ((πΉ β π΄ β§ π β π΅ β§ π β π΅) β (πΉβ(π β π)) = (πΉβ(π(+gβπ )((invgβπ )βπ)))) |
8 | abv0.a | . . . . . . . 8 β’ π΄ = (AbsValβπ ) | |
9 | 8 | abvrcl 20573 | . . . . . . 7 β’ (πΉ β π΄ β π β Ring) |
10 | 9 | 3ad2ant1 1132 | . . . . . 6 β’ ((πΉ β π΄ β§ π β π΅ β§ π β π΅) β π β Ring) |
11 | ringgrp 20133 | . . . . . 6 β’ (π β Ring β π β Grp) | |
12 | 10, 11 | syl 17 | . . . . 5 β’ ((πΉ β π΄ β§ π β π΅ β§ π β π΅) β π β Grp) |
13 | simp3 1137 | . . . . 5 β’ ((πΉ β π΄ β§ π β π΅ β§ π β π΅) β π β π΅) | |
14 | 1, 3 | grpinvcl 18909 | . . . . 5 β’ ((π β Grp β§ π β π΅) β ((invgβπ )βπ) β π΅) |
15 | 12, 13, 14 | syl2anc 583 | . . . 4 β’ ((πΉ β π΄ β§ π β π΅ β§ π β π΅) β ((invgβπ )βπ) β π΅) |
16 | 8, 1, 2 | abvtri 20582 | . . . 4 β’ ((πΉ β π΄ β§ π β π΅ β§ ((invgβπ )βπ) β π΅) β (πΉβ(π(+gβπ )((invgβπ )βπ))) β€ ((πΉβπ) + (πΉβ((invgβπ )βπ)))) |
17 | 15, 16 | syld3an3 1408 | . . 3 β’ ((πΉ β π΄ β§ π β π΅ β§ π β π΅) β (πΉβ(π(+gβπ )((invgβπ )βπ))) β€ ((πΉβπ) + (πΉβ((invgβπ )βπ)))) |
18 | 8, 1, 3 | abvneg 20586 | . . . . 5 β’ ((πΉ β π΄ β§ π β π΅) β (πΉβ((invgβπ )βπ)) = (πΉβπ)) |
19 | 18 | 3adant2 1130 | . . . 4 β’ ((πΉ β π΄ β§ π β π΅ β§ π β π΅) β (πΉβ((invgβπ )βπ)) = (πΉβπ)) |
20 | 19 | oveq2d 7428 | . . 3 β’ ((πΉ β π΄ β§ π β π΅ β§ π β π΅) β ((πΉβπ) + (πΉβ((invgβπ )βπ))) = ((πΉβπ) + (πΉβπ))) |
21 | 17, 20 | breqtrd 5175 | . 2 β’ ((πΉ β π΄ β§ π β π΅ β§ π β π΅) β (πΉβ(π(+gβπ )((invgβπ )βπ))) β€ ((πΉβπ) + (πΉβπ))) |
22 | 7, 21 | eqbrtrd 5171 | 1 β’ ((πΉ β π΄ β§ π β π΅ β§ π β π΅) β (πΉβ(π β π)) β€ ((πΉβπ) + (πΉβπ))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ w3a 1086 = wceq 1540 β wcel 2105 class class class wbr 5149 βcfv 6544 (class class class)co 7412 + caddc 11116 β€ cle 11254 Basecbs 17149 +gcplusg 17202 Grpcgrp 18856 invgcminusg 18857 -gcsg 18858 Ringcrg 20128 AbsValcabv 20568 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7728 ax-cnex 11169 ax-resscn 11170 ax-1cn 11171 ax-icn 11172 ax-addcl 11173 ax-addrcl 11174 ax-mulcl 11175 ax-mulrcl 11176 ax-mulcom 11177 ax-addass 11178 ax-mulass 11179 ax-distr 11180 ax-i2m1 11181 ax-1ne0 11182 ax-1rid 11183 ax-rnegex 11184 ax-rrecex 11185 ax-cnre 11186 ax-pre-lttri 11187 ax-pre-lttrn 11188 ax-pre-ltadd 11189 ax-pre-mulgt0 11190 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7859 df-1st 7978 df-2nd 7979 df-frecs 8269 df-wrecs 8300 df-recs 8374 df-rdg 8413 df-er 8706 df-map 8825 df-en 8943 df-dom 8944 df-sdom 8945 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-sub 11451 df-neg 11452 df-div 11877 df-nn 12218 df-2 12280 df-n0 12478 df-z 12564 df-uz 12828 df-ico 13335 df-seq 13972 df-exp 14033 df-sets 17102 df-slot 17120 df-ndx 17132 df-base 17150 df-plusg 17215 df-0g 17392 df-mgm 18566 df-sgrp 18645 df-mnd 18661 df-grp 18859 df-minusg 18860 df-sbg 18861 df-cmn 19692 df-abl 19693 df-mgp 20030 df-rng 20048 df-ur 20077 df-ring 20130 df-abv 20569 |
This theorem is referenced by: abvmet 24305 |
Copyright terms: Public domain | W3C validator |