Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > abvsubtri | Structured version Visualization version GIF version |
Description: An absolute value satisfies the triangle inequality. (Contributed by Mario Carneiro, 4-Oct-2015.) |
Ref | Expression |
---|---|
abv0.a | ⊢ 𝐴 = (AbsVal‘𝑅) |
abvneg.b | ⊢ 𝐵 = (Base‘𝑅) |
abvsubtri.p | ⊢ − = (-g‘𝑅) |
Ref | Expression |
---|---|
abvsubtri | ⊢ ((𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝐹‘(𝑋 − 𝑌)) ≤ ((𝐹‘𝑋) + (𝐹‘𝑌))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abvneg.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑅) | |
2 | eqid 2738 | . . . . 5 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
3 | eqid 2738 | . . . . 5 ⊢ (invg‘𝑅) = (invg‘𝑅) | |
4 | abvsubtri.p | . . . . 5 ⊢ − = (-g‘𝑅) | |
5 | 1, 2, 3, 4 | grpsubval 18267 | . . . 4 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 − 𝑌) = (𝑋(+g‘𝑅)((invg‘𝑅)‘𝑌))) |
6 | 5 | 3adant1 1131 | . . 3 ⊢ ((𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 − 𝑌) = (𝑋(+g‘𝑅)((invg‘𝑅)‘𝑌))) |
7 | 6 | fveq2d 6678 | . 2 ⊢ ((𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝐹‘(𝑋 − 𝑌)) = (𝐹‘(𝑋(+g‘𝑅)((invg‘𝑅)‘𝑌)))) |
8 | abv0.a | . . . . . . . 8 ⊢ 𝐴 = (AbsVal‘𝑅) | |
9 | 8 | abvrcl 19711 | . . . . . . 7 ⊢ (𝐹 ∈ 𝐴 → 𝑅 ∈ Ring) |
10 | 9 | 3ad2ant1 1134 | . . . . . 6 ⊢ ((𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑅 ∈ Ring) |
11 | ringgrp 19421 | . . . . . 6 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) | |
12 | 10, 11 | syl 17 | . . . . 5 ⊢ ((𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑅 ∈ Grp) |
13 | simp3 1139 | . . . . 5 ⊢ ((𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑌 ∈ 𝐵) | |
14 | 1, 3 | grpinvcl 18269 | . . . . 5 ⊢ ((𝑅 ∈ Grp ∧ 𝑌 ∈ 𝐵) → ((invg‘𝑅)‘𝑌) ∈ 𝐵) |
15 | 12, 13, 14 | syl2anc 587 | . . . 4 ⊢ ((𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((invg‘𝑅)‘𝑌) ∈ 𝐵) |
16 | 8, 1, 2 | abvtri 19720 | . . . 4 ⊢ ((𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ ((invg‘𝑅)‘𝑌) ∈ 𝐵) → (𝐹‘(𝑋(+g‘𝑅)((invg‘𝑅)‘𝑌))) ≤ ((𝐹‘𝑋) + (𝐹‘((invg‘𝑅)‘𝑌)))) |
17 | 15, 16 | syld3an3 1410 | . . 3 ⊢ ((𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝐹‘(𝑋(+g‘𝑅)((invg‘𝑅)‘𝑌))) ≤ ((𝐹‘𝑋) + (𝐹‘((invg‘𝑅)‘𝑌)))) |
18 | 8, 1, 3 | abvneg 19724 | . . . . 5 ⊢ ((𝐹 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) → (𝐹‘((invg‘𝑅)‘𝑌)) = (𝐹‘𝑌)) |
19 | 18 | 3adant2 1132 | . . . 4 ⊢ ((𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝐹‘((invg‘𝑅)‘𝑌)) = (𝐹‘𝑌)) |
20 | 19 | oveq2d 7186 | . . 3 ⊢ ((𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝐹‘𝑋) + (𝐹‘((invg‘𝑅)‘𝑌))) = ((𝐹‘𝑋) + (𝐹‘𝑌))) |
21 | 17, 20 | breqtrd 5056 | . 2 ⊢ ((𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝐹‘(𝑋(+g‘𝑅)((invg‘𝑅)‘𝑌))) ≤ ((𝐹‘𝑋) + (𝐹‘𝑌))) |
22 | 7, 21 | eqbrtrd 5052 | 1 ⊢ ((𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝐹‘(𝑋 − 𝑌)) ≤ ((𝐹‘𝑋) + (𝐹‘𝑌))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1088 = wceq 1542 ∈ wcel 2114 class class class wbr 5030 ‘cfv 6339 (class class class)co 7170 + caddc 10618 ≤ cle 10754 Basecbs 16586 +gcplusg 16668 Grpcgrp 18219 invgcminusg 18220 -gcsg 18221 Ringcrg 19416 AbsValcabv 19706 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2710 ax-sep 5167 ax-nul 5174 ax-pow 5232 ax-pr 5296 ax-un 7479 ax-cnex 10671 ax-resscn 10672 ax-1cn 10673 ax-icn 10674 ax-addcl 10675 ax-addrcl 10676 ax-mulcl 10677 ax-mulrcl 10678 ax-mulcom 10679 ax-addass 10680 ax-mulass 10681 ax-distr 10682 ax-i2m1 10683 ax-1ne0 10684 ax-1rid 10685 ax-rnegex 10686 ax-rrecex 10687 ax-cnre 10688 ax-pre-lttri 10689 ax-pre-lttrn 10690 ax-pre-ltadd 10691 ax-pre-mulgt0 10692 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-nel 3039 df-ral 3058 df-rex 3059 df-reu 3060 df-rmo 3061 df-rab 3062 df-v 3400 df-sbc 3681 df-csb 3791 df-dif 3846 df-un 3848 df-in 3850 df-ss 3860 df-pss 3862 df-nul 4212 df-if 4415 df-pw 4490 df-sn 4517 df-pr 4519 df-tp 4521 df-op 4523 df-uni 4797 df-iun 4883 df-br 5031 df-opab 5093 df-mpt 5111 df-tr 5137 df-id 5429 df-eprel 5434 df-po 5442 df-so 5443 df-fr 5483 df-we 5485 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-pred 6129 df-ord 6175 df-on 6176 df-lim 6177 df-suc 6178 df-iota 6297 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-riota 7127 df-ov 7173 df-oprab 7174 df-mpo 7175 df-om 7600 df-1st 7714 df-2nd 7715 df-wrecs 7976 df-recs 8037 df-rdg 8075 df-er 8320 df-map 8439 df-en 8556 df-dom 8557 df-sdom 8558 df-pnf 10755 df-mnf 10756 df-xr 10757 df-ltxr 10758 df-le 10759 df-sub 10950 df-neg 10951 df-div 11376 df-nn 11717 df-2 11779 df-n0 11977 df-z 12063 df-uz 12325 df-ico 12827 df-seq 13461 df-exp 13522 df-ndx 16589 df-slot 16590 df-base 16592 df-sets 16593 df-plusg 16681 df-0g 16818 df-mgm 17968 df-sgrp 18017 df-mnd 18028 df-grp 18222 df-minusg 18223 df-sbg 18224 df-mgp 19359 df-ur 19371 df-ring 19418 df-abv 19707 |
This theorem is referenced by: abvmet 23328 |
Copyright terms: Public domain | W3C validator |