MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abvsubtri Structured version   Visualization version   GIF version

Theorem abvsubtri 20845
Description: An absolute value satisfies the triangle inequality. (Contributed by Mario Carneiro, 4-Oct-2015.)
Hypotheses
Ref Expression
abv0.a 𝐴 = (AbsVal‘𝑅)
abvneg.b 𝐵 = (Base‘𝑅)
abvsubtri.p = (-g𝑅)
Assertion
Ref Expression
abvsubtri ((𝐹𝐴𝑋𝐵𝑌𝐵) → (𝐹‘(𝑋 𝑌)) ≤ ((𝐹𝑋) + (𝐹𝑌)))

Proof of Theorem abvsubtri
StepHypRef Expression
1 abvneg.b . . . . 5 𝐵 = (Base‘𝑅)
2 eqid 2735 . . . . 5 (+g𝑅) = (+g𝑅)
3 eqid 2735 . . . . 5 (invg𝑅) = (invg𝑅)
4 abvsubtri.p . . . . 5 = (-g𝑅)
51, 2, 3, 4grpsubval 19016 . . . 4 ((𝑋𝐵𝑌𝐵) → (𝑋 𝑌) = (𝑋(+g𝑅)((invg𝑅)‘𝑌)))
653adant1 1129 . . 3 ((𝐹𝐴𝑋𝐵𝑌𝐵) → (𝑋 𝑌) = (𝑋(+g𝑅)((invg𝑅)‘𝑌)))
76fveq2d 6911 . 2 ((𝐹𝐴𝑋𝐵𝑌𝐵) → (𝐹‘(𝑋 𝑌)) = (𝐹‘(𝑋(+g𝑅)((invg𝑅)‘𝑌))))
8 abv0.a . . . . . . . 8 𝐴 = (AbsVal‘𝑅)
98abvrcl 20831 . . . . . . 7 (𝐹𝐴𝑅 ∈ Ring)
1093ad2ant1 1132 . . . . . 6 ((𝐹𝐴𝑋𝐵𝑌𝐵) → 𝑅 ∈ Ring)
11 ringgrp 20256 . . . . . 6 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
1210, 11syl 17 . . . . 5 ((𝐹𝐴𝑋𝐵𝑌𝐵) → 𝑅 ∈ Grp)
13 simp3 1137 . . . . 5 ((𝐹𝐴𝑋𝐵𝑌𝐵) → 𝑌𝐵)
141, 3grpinvcl 19018 . . . . 5 ((𝑅 ∈ Grp ∧ 𝑌𝐵) → ((invg𝑅)‘𝑌) ∈ 𝐵)
1512, 13, 14syl2anc 584 . . . 4 ((𝐹𝐴𝑋𝐵𝑌𝐵) → ((invg𝑅)‘𝑌) ∈ 𝐵)
168, 1, 2abvtri 20840 . . . 4 ((𝐹𝐴𝑋𝐵 ∧ ((invg𝑅)‘𝑌) ∈ 𝐵) → (𝐹‘(𝑋(+g𝑅)((invg𝑅)‘𝑌))) ≤ ((𝐹𝑋) + (𝐹‘((invg𝑅)‘𝑌))))
1715, 16syld3an3 1408 . . 3 ((𝐹𝐴𝑋𝐵𝑌𝐵) → (𝐹‘(𝑋(+g𝑅)((invg𝑅)‘𝑌))) ≤ ((𝐹𝑋) + (𝐹‘((invg𝑅)‘𝑌))))
188, 1, 3abvneg 20844 . . . . 5 ((𝐹𝐴𝑌𝐵) → (𝐹‘((invg𝑅)‘𝑌)) = (𝐹𝑌))
19183adant2 1130 . . . 4 ((𝐹𝐴𝑋𝐵𝑌𝐵) → (𝐹‘((invg𝑅)‘𝑌)) = (𝐹𝑌))
2019oveq2d 7447 . . 3 ((𝐹𝐴𝑋𝐵𝑌𝐵) → ((𝐹𝑋) + (𝐹‘((invg𝑅)‘𝑌))) = ((𝐹𝑋) + (𝐹𝑌)))
2117, 20breqtrd 5174 . 2 ((𝐹𝐴𝑋𝐵𝑌𝐵) → (𝐹‘(𝑋(+g𝑅)((invg𝑅)‘𝑌))) ≤ ((𝐹𝑋) + (𝐹𝑌)))
227, 21eqbrtrd 5170 1 ((𝐹𝐴𝑋𝐵𝑌𝐵) → (𝐹‘(𝑋 𝑌)) ≤ ((𝐹𝑋) + (𝐹𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1537  wcel 2106   class class class wbr 5148  cfv 6563  (class class class)co 7431   + caddc 11156  cle 11294  Basecbs 17245  +gcplusg 17298  Grpcgrp 18964  invgcminusg 18965  -gcsg 18966  Ringcrg 20251  AbsValcabv 20826
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-map 8867  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-n0 12525  df-z 12612  df-uz 12877  df-ico 13390  df-seq 14040  df-exp 14100  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-plusg 17311  df-0g 17488  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-grp 18967  df-minusg 18968  df-sbg 18969  df-cmn 19815  df-abl 19816  df-mgp 20153  df-rng 20171  df-ur 20200  df-ring 20253  df-abv 20827
This theorem is referenced by:  abvmet  24604
  Copyright terms: Public domain W3C validator