![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > abvsubtri | Structured version Visualization version GIF version |
Description: An absolute value satisfies the triangle inequality. (Contributed by Mario Carneiro, 4-Oct-2015.) |
Ref | Expression |
---|---|
abv0.a | ⊢ 𝐴 = (AbsVal‘𝑅) |
abvneg.b | ⊢ 𝐵 = (Base‘𝑅) |
abvsubtri.p | ⊢ − = (-g‘𝑅) |
Ref | Expression |
---|---|
abvsubtri | ⊢ ((𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝐹‘(𝑋 − 𝑌)) ≤ ((𝐹‘𝑋) + (𝐹‘𝑌))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abvneg.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑅) | |
2 | eqid 2825 | . . . . 5 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
3 | eqid 2825 | . . . . 5 ⊢ (invg‘𝑅) = (invg‘𝑅) | |
4 | abvsubtri.p | . . . . 5 ⊢ − = (-g‘𝑅) | |
5 | 1, 2, 3, 4 | grpsubval 17819 | . . . 4 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 − 𝑌) = (𝑋(+g‘𝑅)((invg‘𝑅)‘𝑌))) |
6 | 5 | 3adant1 1164 | . . 3 ⊢ ((𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 − 𝑌) = (𝑋(+g‘𝑅)((invg‘𝑅)‘𝑌))) |
7 | 6 | fveq2d 6437 | . 2 ⊢ ((𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝐹‘(𝑋 − 𝑌)) = (𝐹‘(𝑋(+g‘𝑅)((invg‘𝑅)‘𝑌)))) |
8 | abv0.a | . . . . . . . 8 ⊢ 𝐴 = (AbsVal‘𝑅) | |
9 | 8 | abvrcl 19177 | . . . . . . 7 ⊢ (𝐹 ∈ 𝐴 → 𝑅 ∈ Ring) |
10 | 9 | 3ad2ant1 1167 | . . . . . 6 ⊢ ((𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑅 ∈ Ring) |
11 | ringgrp 18906 | . . . . . 6 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) | |
12 | 10, 11 | syl 17 | . . . . 5 ⊢ ((𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑅 ∈ Grp) |
13 | simp3 1172 | . . . . 5 ⊢ ((𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑌 ∈ 𝐵) | |
14 | 1, 3 | grpinvcl 17821 | . . . . 5 ⊢ ((𝑅 ∈ Grp ∧ 𝑌 ∈ 𝐵) → ((invg‘𝑅)‘𝑌) ∈ 𝐵) |
15 | 12, 13, 14 | syl2anc 579 | . . . 4 ⊢ ((𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((invg‘𝑅)‘𝑌) ∈ 𝐵) |
16 | 8, 1, 2 | abvtri 19186 | . . . 4 ⊢ ((𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ ((invg‘𝑅)‘𝑌) ∈ 𝐵) → (𝐹‘(𝑋(+g‘𝑅)((invg‘𝑅)‘𝑌))) ≤ ((𝐹‘𝑋) + (𝐹‘((invg‘𝑅)‘𝑌)))) |
17 | 15, 16 | syld3an3 1532 | . . 3 ⊢ ((𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝐹‘(𝑋(+g‘𝑅)((invg‘𝑅)‘𝑌))) ≤ ((𝐹‘𝑋) + (𝐹‘((invg‘𝑅)‘𝑌)))) |
18 | 8, 1, 3 | abvneg 19190 | . . . . 5 ⊢ ((𝐹 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) → (𝐹‘((invg‘𝑅)‘𝑌)) = (𝐹‘𝑌)) |
19 | 18 | 3adant2 1165 | . . . 4 ⊢ ((𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝐹‘((invg‘𝑅)‘𝑌)) = (𝐹‘𝑌)) |
20 | 19 | oveq2d 6921 | . . 3 ⊢ ((𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝐹‘𝑋) + (𝐹‘((invg‘𝑅)‘𝑌))) = ((𝐹‘𝑋) + (𝐹‘𝑌))) |
21 | 17, 20 | breqtrd 4899 | . 2 ⊢ ((𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝐹‘(𝑋(+g‘𝑅)((invg‘𝑅)‘𝑌))) ≤ ((𝐹‘𝑋) + (𝐹‘𝑌))) |
22 | 7, 21 | eqbrtrd 4895 | 1 ⊢ ((𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝐹‘(𝑋 − 𝑌)) ≤ ((𝐹‘𝑋) + (𝐹‘𝑌))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1111 = wceq 1656 ∈ wcel 2164 class class class wbr 4873 ‘cfv 6123 (class class class)co 6905 + caddc 10255 ≤ cle 10392 Basecbs 16222 +gcplusg 16305 Grpcgrp 17776 invgcminusg 17777 -gcsg 17778 Ringcrg 18901 AbsValcabv 19172 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-8 2166 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-rep 4994 ax-sep 5005 ax-nul 5013 ax-pow 5065 ax-pr 5127 ax-un 7209 ax-cnex 10308 ax-resscn 10309 ax-1cn 10310 ax-icn 10311 ax-addcl 10312 ax-addrcl 10313 ax-mulcl 10314 ax-mulrcl 10315 ax-mulcom 10316 ax-addass 10317 ax-mulass 10318 ax-distr 10319 ax-i2m1 10320 ax-1ne0 10321 ax-1rid 10322 ax-rnegex 10323 ax-rrecex 10324 ax-cnre 10325 ax-pre-lttri 10326 ax-pre-lttrn 10327 ax-pre-ltadd 10328 ax-pre-mulgt0 10329 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3or 1112 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-nel 3103 df-ral 3122 df-rex 3123 df-reu 3124 df-rmo 3125 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-pss 3814 df-nul 4145 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-tp 4402 df-op 4404 df-uni 4659 df-iun 4742 df-br 4874 df-opab 4936 df-mpt 4953 df-tr 4976 df-id 5250 df-eprel 5255 df-po 5263 df-so 5264 df-fr 5301 df-we 5303 df-xp 5348 df-rel 5349 df-cnv 5350 df-co 5351 df-dm 5352 df-rn 5353 df-res 5354 df-ima 5355 df-pred 5920 df-ord 5966 df-on 5967 df-lim 5968 df-suc 5969 df-iota 6086 df-fun 6125 df-fn 6126 df-f 6127 df-f1 6128 df-fo 6129 df-f1o 6130 df-fv 6131 df-riota 6866 df-ov 6908 df-oprab 6909 df-mpt2 6910 df-om 7327 df-1st 7428 df-2nd 7429 df-wrecs 7672 df-recs 7734 df-rdg 7772 df-er 8009 df-map 8124 df-en 8223 df-dom 8224 df-sdom 8225 df-pnf 10393 df-mnf 10394 df-xr 10395 df-ltxr 10396 df-le 10397 df-sub 10587 df-neg 10588 df-div 11010 df-nn 11351 df-2 11414 df-n0 11619 df-z 11705 df-uz 11969 df-ico 12469 df-seq 13096 df-exp 13155 df-ndx 16225 df-slot 16226 df-base 16228 df-sets 16229 df-plusg 16318 df-0g 16455 df-mgm 17595 df-sgrp 17637 df-mnd 17648 df-grp 17779 df-minusg 17780 df-sbg 17781 df-mgp 18844 df-ur 18856 df-ring 18903 df-abv 19173 |
This theorem is referenced by: abvmet 22750 |
Copyright terms: Public domain | W3C validator |