| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > abvsubtri | Structured version Visualization version GIF version | ||
| Description: An absolute value satisfies the triangle inequality. (Contributed by Mario Carneiro, 4-Oct-2015.) |
| Ref | Expression |
|---|---|
| abv0.a | ⊢ 𝐴 = (AbsVal‘𝑅) |
| abvneg.b | ⊢ 𝐵 = (Base‘𝑅) |
| abvsubtri.p | ⊢ − = (-g‘𝑅) |
| Ref | Expression |
|---|---|
| abvsubtri | ⊢ ((𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝐹‘(𝑋 − 𝑌)) ≤ ((𝐹‘𝑋) + (𝐹‘𝑌))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abvneg.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑅) | |
| 2 | eqid 2729 | . . . . 5 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
| 3 | eqid 2729 | . . . . 5 ⊢ (invg‘𝑅) = (invg‘𝑅) | |
| 4 | abvsubtri.p | . . . . 5 ⊢ − = (-g‘𝑅) | |
| 5 | 1, 2, 3, 4 | grpsubval 18893 | . . . 4 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 − 𝑌) = (𝑋(+g‘𝑅)((invg‘𝑅)‘𝑌))) |
| 6 | 5 | 3adant1 1130 | . . 3 ⊢ ((𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 − 𝑌) = (𝑋(+g‘𝑅)((invg‘𝑅)‘𝑌))) |
| 7 | 6 | fveq2d 6844 | . 2 ⊢ ((𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝐹‘(𝑋 − 𝑌)) = (𝐹‘(𝑋(+g‘𝑅)((invg‘𝑅)‘𝑌)))) |
| 8 | abv0.a | . . . . . . . 8 ⊢ 𝐴 = (AbsVal‘𝑅) | |
| 9 | 8 | abvrcl 20698 | . . . . . . 7 ⊢ (𝐹 ∈ 𝐴 → 𝑅 ∈ Ring) |
| 10 | 9 | 3ad2ant1 1133 | . . . . . 6 ⊢ ((𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑅 ∈ Ring) |
| 11 | ringgrp 20123 | . . . . . 6 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) | |
| 12 | 10, 11 | syl 17 | . . . . 5 ⊢ ((𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑅 ∈ Grp) |
| 13 | simp3 1138 | . . . . 5 ⊢ ((𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑌 ∈ 𝐵) | |
| 14 | 1, 3 | grpinvcl 18895 | . . . . 5 ⊢ ((𝑅 ∈ Grp ∧ 𝑌 ∈ 𝐵) → ((invg‘𝑅)‘𝑌) ∈ 𝐵) |
| 15 | 12, 13, 14 | syl2anc 584 | . . . 4 ⊢ ((𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((invg‘𝑅)‘𝑌) ∈ 𝐵) |
| 16 | 8, 1, 2 | abvtri 20707 | . . . 4 ⊢ ((𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ ((invg‘𝑅)‘𝑌) ∈ 𝐵) → (𝐹‘(𝑋(+g‘𝑅)((invg‘𝑅)‘𝑌))) ≤ ((𝐹‘𝑋) + (𝐹‘((invg‘𝑅)‘𝑌)))) |
| 17 | 15, 16 | syld3an3 1411 | . . 3 ⊢ ((𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝐹‘(𝑋(+g‘𝑅)((invg‘𝑅)‘𝑌))) ≤ ((𝐹‘𝑋) + (𝐹‘((invg‘𝑅)‘𝑌)))) |
| 18 | 8, 1, 3 | abvneg 20711 | . . . . 5 ⊢ ((𝐹 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) → (𝐹‘((invg‘𝑅)‘𝑌)) = (𝐹‘𝑌)) |
| 19 | 18 | 3adant2 1131 | . . . 4 ⊢ ((𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝐹‘((invg‘𝑅)‘𝑌)) = (𝐹‘𝑌)) |
| 20 | 19 | oveq2d 7385 | . . 3 ⊢ ((𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝐹‘𝑋) + (𝐹‘((invg‘𝑅)‘𝑌))) = ((𝐹‘𝑋) + (𝐹‘𝑌))) |
| 21 | 17, 20 | breqtrd 5128 | . 2 ⊢ ((𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝐹‘(𝑋(+g‘𝑅)((invg‘𝑅)‘𝑌))) ≤ ((𝐹‘𝑋) + (𝐹‘𝑌))) |
| 22 | 7, 21 | eqbrtrd 5124 | 1 ⊢ ((𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝐹‘(𝑋 − 𝑌)) ≤ ((𝐹‘𝑋) + (𝐹‘𝑌))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 class class class wbr 5102 ‘cfv 6499 (class class class)co 7369 + caddc 11047 ≤ cle 11185 Basecbs 17155 +gcplusg 17196 Grpcgrp 18841 invgcminusg 18842 -gcsg 18843 Ringcrg 20118 AbsValcabv 20693 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-map 8778 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-2 12225 df-n0 12419 df-z 12506 df-uz 12770 df-ico 13288 df-seq 13943 df-exp 14003 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-plusg 17209 df-0g 17380 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-grp 18844 df-minusg 18845 df-sbg 18846 df-cmn 19688 df-abl 19689 df-mgp 20026 df-rng 20038 df-ur 20067 df-ring 20120 df-abv 20694 |
| This theorem is referenced by: abvmet 24439 |
| Copyright terms: Public domain | W3C validator |