MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abvmet Structured version   Visualization version   GIF version

Theorem abvmet 22788
Description: An absolute value 𝐹 generates a metric defined by 𝑑(𝑥, 𝑦) = 𝐹(𝑥𝑦), analogously to cnmet 22983. (In fact, the ring structure is not needed at all; the group properties abveq0 19218 and abvtri 19222, abvneg 19226 are sufficient.) (Contributed by Mario Carneiro, 9-Sep-2014.) (Revised by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
abvmet.x 𝑋 = (Base‘𝑅)
abvmet.a 𝐴 = (AbsVal‘𝑅)
abvmet.m = (-g𝑅)
Assertion
Ref Expression
abvmet (𝐹𝐴 → (𝐹 ) ∈ (Met‘𝑋))

Proof of Theorem abvmet
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 abvmet.x . 2 𝑋 = (Base‘𝑅)
2 abvmet.m . 2 = (-g𝑅)
3 eqid 2778 . 2 (0g𝑅) = (0g𝑅)
4 abvmet.a . . . 4 𝐴 = (AbsVal‘𝑅)
54abvrcl 19213 . . 3 (𝐹𝐴𝑅 ∈ Ring)
6 ringgrp 18939 . . 3 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
75, 6syl 17 . 2 (𝐹𝐴𝑅 ∈ Grp)
84, 1abvf 19215 . 2 (𝐹𝐴𝐹:𝑋⟶ℝ)
94, 1, 3abveq0 19218 . 2 ((𝐹𝐴𝑥𝑋) → ((𝐹𝑥) = 0 ↔ 𝑥 = (0g𝑅)))
104, 1, 2abvsubtri 19227 . . 3 ((𝐹𝐴𝑥𝑋𝑦𝑋) → (𝐹‘(𝑥 𝑦)) ≤ ((𝐹𝑥) + (𝐹𝑦)))
11103expb 1110 . 2 ((𝐹𝐴 ∧ (𝑥𝑋𝑦𝑋)) → (𝐹‘(𝑥 𝑦)) ≤ ((𝐹𝑥) + (𝐹𝑦)))
121, 2, 3, 7, 8, 9, 11nrmmetd 22787 1 (𝐹𝐴 → (𝐹 ) ∈ (Met‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1601  wcel 2107   class class class wbr 4886  ccom 5359  cfv 6135  (class class class)co 6922   + caddc 10275  cle 10412  Basecbs 16255  0gc0g 16486  Grpcgrp 17809  -gcsg 17811  Ringcrg 18934  AbsValcabv 19208  Metcmet 20128
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-cnex 10328  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348  ax-pre-mulgt0 10349
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4672  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-om 7344  df-1st 7445  df-2nd 7446  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-er 8026  df-map 8142  df-en 8242  df-dom 8243  df-sdom 8244  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-sub 10608  df-neg 10609  df-div 11033  df-nn 11375  df-2 11438  df-n0 11643  df-z 11729  df-uz 11993  df-ico 12493  df-seq 13120  df-exp 13179  df-ndx 16258  df-slot 16259  df-base 16261  df-sets 16262  df-plusg 16351  df-0g 16488  df-mgm 17628  df-sgrp 17670  df-mnd 17681  df-grp 17812  df-minusg 17813  df-sbg 17814  df-mgp 18877  df-ur 18889  df-ring 18936  df-abv 19209  df-met 20136
This theorem is referenced by:  tngnrg  22886
  Copyright terms: Public domain W3C validator