MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abvmet Structured version   Visualization version   GIF version

Theorem abvmet 24578
Description: An absolute value 𝐹 generates a metric defined by 𝑑(𝑥, 𝑦) = 𝐹(𝑥𝑦), analogously to cnmet 24782. (In fact, the ring structure is not needed at all; the group properties abveq0 20799 and abvtri 20803, abvneg 20807 are sufficient.) (Contributed by Mario Carneiro, 9-Sep-2014.) (Revised by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
abvmet.x 𝑋 = (Base‘𝑅)
abvmet.a 𝐴 = (AbsVal‘𝑅)
abvmet.m = (-g𝑅)
Assertion
Ref Expression
abvmet (𝐹𝐴 → (𝐹 ) ∈ (Met‘𝑋))

Proof of Theorem abvmet
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 abvmet.x . 2 𝑋 = (Base‘𝑅)
2 abvmet.m . 2 = (-g𝑅)
3 eqid 2726 . 2 (0g𝑅) = (0g𝑅)
4 abvmet.a . . . 4 𝐴 = (AbsVal‘𝑅)
54abvrcl 20794 . . 3 (𝐹𝐴𝑅 ∈ Ring)
6 ringgrp 20223 . . 3 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
75, 6syl 17 . 2 (𝐹𝐴𝑅 ∈ Grp)
84, 1abvf 20796 . 2 (𝐹𝐴𝐹:𝑋⟶ℝ)
94, 1, 3abveq0 20799 . 2 ((𝐹𝐴𝑥𝑋) → ((𝐹𝑥) = 0 ↔ 𝑥 = (0g𝑅)))
104, 1, 2abvsubtri 20808 . . 3 ((𝐹𝐴𝑥𝑋𝑦𝑋) → (𝐹‘(𝑥 𝑦)) ≤ ((𝐹𝑥) + (𝐹𝑦)))
11103expb 1117 . 2 ((𝐹𝐴 ∧ (𝑥𝑋𝑦𝑋)) → (𝐹‘(𝑥 𝑦)) ≤ ((𝐹𝑥) + (𝐹𝑦)))
121, 2, 3, 7, 8, 9, 11nrmmetd 24577 1 (𝐹𝐴 → (𝐹 ) ∈ (Met‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1534  wcel 2099   class class class wbr 5155  ccom 5688  cfv 6556  (class class class)co 7426   + caddc 11163  cle 11301  Basecbs 17215  0gc0g 17456  Grpcgrp 18930  -gcsg 18932  Ringcrg 20218  AbsValcabv 20789  Metcmet 21331
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5306  ax-nul 5313  ax-pow 5371  ax-pr 5435  ax-un 7748  ax-cnex 11216  ax-resscn 11217  ax-1cn 11218  ax-icn 11219  ax-addcl 11220  ax-addrcl 11221  ax-mulcl 11222  ax-mulrcl 11223  ax-mulcom 11224  ax-addass 11225  ax-mulass 11226  ax-distr 11227  ax-i2m1 11228  ax-1ne0 11229  ax-1rid 11230  ax-rnegex 11231  ax-rrecex 11232  ax-cnre 11233  ax-pre-lttri 11234  ax-pre-lttrn 11235  ax-pre-ltadd 11236  ax-pre-mulgt0 11237
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4916  df-iun 5005  df-br 5156  df-opab 5218  df-mpt 5239  df-tr 5273  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5639  df-we 5641  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6314  df-ord 6381  df-on 6382  df-lim 6383  df-suc 6384  df-iota 6508  df-fun 6558  df-fn 6559  df-f 6560  df-f1 6561  df-fo 6562  df-f1o 6563  df-fv 6564  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-om 7879  df-1st 8005  df-2nd 8006  df-frecs 8298  df-wrecs 8329  df-recs 8403  df-rdg 8442  df-er 8736  df-map 8859  df-en 8977  df-dom 8978  df-sdom 8979  df-pnf 11302  df-mnf 11303  df-xr 11304  df-ltxr 11305  df-le 11306  df-sub 11498  df-neg 11499  df-div 11924  df-nn 12267  df-2 12329  df-n0 12527  df-z 12613  df-uz 12877  df-ico 13386  df-seq 14024  df-exp 14084  df-sets 17168  df-slot 17186  df-ndx 17198  df-base 17216  df-plusg 17281  df-0g 17458  df-mgm 18635  df-sgrp 18714  df-mnd 18730  df-grp 18933  df-minusg 18934  df-sbg 18935  df-cmn 19782  df-abl 19783  df-mgp 20120  df-rng 20138  df-ur 20167  df-ring 20220  df-abv 20790  df-met 21339
This theorem is referenced by:  tngnrg  24685
  Copyright terms: Public domain W3C validator