MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abvmet Structured version   Visualization version   GIF version

Theorem abvmet 23637
Description: An absolute value 𝐹 generates a metric defined by 𝑑(𝑥, 𝑦) = 𝐹(𝑥𝑦), analogously to cnmet 23841. (In fact, the ring structure is not needed at all; the group properties abveq0 20001 and abvtri 20005, abvneg 20009 are sufficient.) (Contributed by Mario Carneiro, 9-Sep-2014.) (Revised by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
abvmet.x 𝑋 = (Base‘𝑅)
abvmet.a 𝐴 = (AbsVal‘𝑅)
abvmet.m = (-g𝑅)
Assertion
Ref Expression
abvmet (𝐹𝐴 → (𝐹 ) ∈ (Met‘𝑋))

Proof of Theorem abvmet
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 abvmet.x . 2 𝑋 = (Base‘𝑅)
2 abvmet.m . 2 = (-g𝑅)
3 eqid 2738 . 2 (0g𝑅) = (0g𝑅)
4 abvmet.a . . . 4 𝐴 = (AbsVal‘𝑅)
54abvrcl 19996 . . 3 (𝐹𝐴𝑅 ∈ Ring)
6 ringgrp 19703 . . 3 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
75, 6syl 17 . 2 (𝐹𝐴𝑅 ∈ Grp)
84, 1abvf 19998 . 2 (𝐹𝐴𝐹:𝑋⟶ℝ)
94, 1, 3abveq0 20001 . 2 ((𝐹𝐴𝑥𝑋) → ((𝐹𝑥) = 0 ↔ 𝑥 = (0g𝑅)))
104, 1, 2abvsubtri 20010 . . 3 ((𝐹𝐴𝑥𝑋𝑦𝑋) → (𝐹‘(𝑥 𝑦)) ≤ ((𝐹𝑥) + (𝐹𝑦)))
11103expb 1118 . 2 ((𝐹𝐴 ∧ (𝑥𝑋𝑦𝑋)) → (𝐹‘(𝑥 𝑦)) ≤ ((𝐹𝑥) + (𝐹𝑦)))
121, 2, 3, 7, 8, 9, 11nrmmetd 23636 1 (𝐹𝐴 → (𝐹 ) ∈ (Met‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108   class class class wbr 5070  ccom 5584  cfv 6418  (class class class)co 7255   + caddc 10805  cle 10941  Basecbs 16840  0gc0g 17067  Grpcgrp 18492  -gcsg 18494  Ringcrg 19698  AbsValcabv 19991  Metcmet 20496
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-n0 12164  df-z 12250  df-uz 12512  df-ico 13014  df-seq 13650  df-exp 13711  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-plusg 16901  df-0g 17069  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-grp 18495  df-minusg 18496  df-sbg 18497  df-mgp 19636  df-ur 19653  df-ring 19700  df-abv 19992  df-met 20504
This theorem is referenced by:  tngnrg  23744
  Copyright terms: Public domain W3C validator