MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abvneg Structured version   Visualization version   GIF version

Theorem abvneg 20746
Description: The absolute value of a negative is the same as that of the positive. (Contributed by Mario Carneiro, 8-Sep-2014.)
Hypotheses
Ref Expression
abv0.a 𝐴 = (AbsVal‘𝑅)
abvneg.b 𝐵 = (Base‘𝑅)
abvneg.p 𝑁 = (invg𝑅)
Assertion
Ref Expression
abvneg ((𝐹𝐴𝑋𝐵) → (𝐹‘(𝑁𝑋)) = (𝐹𝑋))

Proof of Theorem abvneg
StepHypRef Expression
1 abv0.a . . . . . . 7 𝐴 = (AbsVal‘𝑅)
21abvrcl 20733 . . . . . 6 (𝐹𝐴𝑅 ∈ Ring)
32adantr 480 . . . . 5 ((𝐹𝐴𝑋𝐵) → 𝑅 ∈ Ring)
4 ringgrp 20158 . . . . . . 7 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
52, 4syl 17 . . . . . 6 (𝐹𝐴𝑅 ∈ Grp)
6 abvneg.b . . . . . . 7 𝐵 = (Base‘𝑅)
7 abvneg.p . . . . . . 7 𝑁 = (invg𝑅)
86, 7grpinvcl 18901 . . . . . 6 ((𝑅 ∈ Grp ∧ 𝑋𝐵) → (𝑁𝑋) ∈ 𝐵)
95, 8sylan 580 . . . . 5 ((𝐹𝐴𝑋𝐵) → (𝑁𝑋) ∈ 𝐵)
10 simpr 484 . . . . 5 ((𝐹𝐴𝑋𝐵) → 𝑋𝐵)
11 eqid 2729 . . . . . 6 (1r𝑅) = (1r𝑅)
12 eqid 2729 . . . . . 6 (0g𝑅) = (0g𝑅)
136, 11, 12ring1eq0 20218 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑁𝑋) ∈ 𝐵𝑋𝐵) → ((1r𝑅) = (0g𝑅) → (𝑁𝑋) = 𝑋))
143, 9, 10, 13syl3anc 1373 . . . 4 ((𝐹𝐴𝑋𝐵) → ((1r𝑅) = (0g𝑅) → (𝑁𝑋) = 𝑋))
1514imp 406 . . 3 (((𝐹𝐴𝑋𝐵) ∧ (1r𝑅) = (0g𝑅)) → (𝑁𝑋) = 𝑋)
1615fveq2d 6844 . 2 (((𝐹𝐴𝑋𝐵) ∧ (1r𝑅) = (0g𝑅)) → (𝐹‘(𝑁𝑋)) = (𝐹𝑋))
176, 11ringidcl 20185 . . . . . . . . . . . . . . . 16 (𝑅 ∈ Ring → (1r𝑅) ∈ 𝐵)
182, 17syl 17 . . . . . . . . . . . . . . 15 (𝐹𝐴 → (1r𝑅) ∈ 𝐵)
196, 7grpinvcl 18901 . . . . . . . . . . . . . . 15 ((𝑅 ∈ Grp ∧ (1r𝑅) ∈ 𝐵) → (𝑁‘(1r𝑅)) ∈ 𝐵)
205, 18, 19syl2anc 584 . . . . . . . . . . . . . 14 (𝐹𝐴 → (𝑁‘(1r𝑅)) ∈ 𝐵)
211, 6abvcl 20736 . . . . . . . . . . . . . 14 ((𝐹𝐴 ∧ (𝑁‘(1r𝑅)) ∈ 𝐵) → (𝐹‘(𝑁‘(1r𝑅))) ∈ ℝ)
2220, 21mpdan 687 . . . . . . . . . . . . 13 (𝐹𝐴 → (𝐹‘(𝑁‘(1r𝑅))) ∈ ℝ)
2322recnd 11178 . . . . . . . . . . . 12 (𝐹𝐴 → (𝐹‘(𝑁‘(1r𝑅))) ∈ ℂ)
2423sqvald 14084 . . . . . . . . . . 11 (𝐹𝐴 → ((𝐹‘(𝑁‘(1r𝑅)))↑2) = ((𝐹‘(𝑁‘(1r𝑅))) · (𝐹‘(𝑁‘(1r𝑅)))))
25 eqid 2729 . . . . . . . . . . . . 13 (.r𝑅) = (.r𝑅)
261, 6, 25abvmul 20741 . . . . . . . . . . . 12 ((𝐹𝐴 ∧ (𝑁‘(1r𝑅)) ∈ 𝐵 ∧ (𝑁‘(1r𝑅)) ∈ 𝐵) → (𝐹‘((𝑁‘(1r𝑅))(.r𝑅)(𝑁‘(1r𝑅)))) = ((𝐹‘(𝑁‘(1r𝑅))) · (𝐹‘(𝑁‘(1r𝑅)))))
2720, 20, 26mpd3an23 1465 . . . . . . . . . . 11 (𝐹𝐴 → (𝐹‘((𝑁‘(1r𝑅))(.r𝑅)(𝑁‘(1r𝑅)))) = ((𝐹‘(𝑁‘(1r𝑅))) · (𝐹‘(𝑁‘(1r𝑅)))))
286, 25, 7, 2, 20, 18ringmneg2 20225 . . . . . . . . . . . . 13 (𝐹𝐴 → ((𝑁‘(1r𝑅))(.r𝑅)(𝑁‘(1r𝑅))) = (𝑁‘((𝑁‘(1r𝑅))(.r𝑅)(1r𝑅))))
296, 25, 11, 7, 2, 18ringnegl 20222 . . . . . . . . . . . . . 14 (𝐹𝐴 → ((𝑁‘(1r𝑅))(.r𝑅)(1r𝑅)) = (𝑁‘(1r𝑅)))
3029fveq2d 6844 . . . . . . . . . . . . 13 (𝐹𝐴 → (𝑁‘((𝑁‘(1r𝑅))(.r𝑅)(1r𝑅))) = (𝑁‘(𝑁‘(1r𝑅))))
316, 7grpinvinv 18919 . . . . . . . . . . . . . 14 ((𝑅 ∈ Grp ∧ (1r𝑅) ∈ 𝐵) → (𝑁‘(𝑁‘(1r𝑅))) = (1r𝑅))
325, 18, 31syl2anc 584 . . . . . . . . . . . . 13 (𝐹𝐴 → (𝑁‘(𝑁‘(1r𝑅))) = (1r𝑅))
3328, 30, 323eqtrd 2768 . . . . . . . . . . . 12 (𝐹𝐴 → ((𝑁‘(1r𝑅))(.r𝑅)(𝑁‘(1r𝑅))) = (1r𝑅))
3433fveq2d 6844 . . . . . . . . . . 11 (𝐹𝐴 → (𝐹‘((𝑁‘(1r𝑅))(.r𝑅)(𝑁‘(1r𝑅)))) = (𝐹‘(1r𝑅)))
3524, 27, 343eqtr2d 2770 . . . . . . . . . 10 (𝐹𝐴 → ((𝐹‘(𝑁‘(1r𝑅)))↑2) = (𝐹‘(1r𝑅)))
3635adantr 480 . . . . . . . . 9 ((𝐹𝐴 ∧ (1r𝑅) ≠ (0g𝑅)) → ((𝐹‘(𝑁‘(1r𝑅)))↑2) = (𝐹‘(1r𝑅)))
371, 11, 12abv1z 20744 . . . . . . . . 9 ((𝐹𝐴 ∧ (1r𝑅) ≠ (0g𝑅)) → (𝐹‘(1r𝑅)) = 1)
3836, 37eqtrd 2764 . . . . . . . 8 ((𝐹𝐴 ∧ (1r𝑅) ≠ (0g𝑅)) → ((𝐹‘(𝑁‘(1r𝑅)))↑2) = 1)
39 sq1 14136 . . . . . . . 8 (1↑2) = 1
4038, 39eqtr4di 2782 . . . . . . 7 ((𝐹𝐴 ∧ (1r𝑅) ≠ (0g𝑅)) → ((𝐹‘(𝑁‘(1r𝑅)))↑2) = (1↑2))
411, 6abvge0 20737 . . . . . . . . . 10 ((𝐹𝐴 ∧ (𝑁‘(1r𝑅)) ∈ 𝐵) → 0 ≤ (𝐹‘(𝑁‘(1r𝑅))))
4220, 41mpdan 687 . . . . . . . . 9 (𝐹𝐴 → 0 ≤ (𝐹‘(𝑁‘(1r𝑅))))
43 1re 11150 . . . . . . . . . 10 1 ∈ ℝ
44 0le1 11677 . . . . . . . . . 10 0 ≤ 1
45 sq11 14072 . . . . . . . . . 10 ((((𝐹‘(𝑁‘(1r𝑅))) ∈ ℝ ∧ 0 ≤ (𝐹‘(𝑁‘(1r𝑅)))) ∧ (1 ∈ ℝ ∧ 0 ≤ 1)) → (((𝐹‘(𝑁‘(1r𝑅)))↑2) = (1↑2) ↔ (𝐹‘(𝑁‘(1r𝑅))) = 1))
4643, 44, 45mpanr12 705 . . . . . . . . 9 (((𝐹‘(𝑁‘(1r𝑅))) ∈ ℝ ∧ 0 ≤ (𝐹‘(𝑁‘(1r𝑅)))) → (((𝐹‘(𝑁‘(1r𝑅)))↑2) = (1↑2) ↔ (𝐹‘(𝑁‘(1r𝑅))) = 1))
4722, 42, 46syl2anc 584 . . . . . . . 8 (𝐹𝐴 → (((𝐹‘(𝑁‘(1r𝑅)))↑2) = (1↑2) ↔ (𝐹‘(𝑁‘(1r𝑅))) = 1))
4847biimpa 476 . . . . . . 7 ((𝐹𝐴 ∧ ((𝐹‘(𝑁‘(1r𝑅)))↑2) = (1↑2)) → (𝐹‘(𝑁‘(1r𝑅))) = 1)
4940, 48syldan 591 . . . . . 6 ((𝐹𝐴 ∧ (1r𝑅) ≠ (0g𝑅)) → (𝐹‘(𝑁‘(1r𝑅))) = 1)
5049adantlr 715 . . . . 5 (((𝐹𝐴𝑋𝐵) ∧ (1r𝑅) ≠ (0g𝑅)) → (𝐹‘(𝑁‘(1r𝑅))) = 1)
5150oveq1d 7384 . . . 4 (((𝐹𝐴𝑋𝐵) ∧ (1r𝑅) ≠ (0g𝑅)) → ((𝐹‘(𝑁‘(1r𝑅))) · (𝐹𝑋)) = (1 · (𝐹𝑋)))
52 simpl 482 . . . . . . 7 ((𝐹𝐴𝑋𝐵) → 𝐹𝐴)
5320adantr 480 . . . . . . 7 ((𝐹𝐴𝑋𝐵) → (𝑁‘(1r𝑅)) ∈ 𝐵)
541, 6, 25abvmul 20741 . . . . . . 7 ((𝐹𝐴 ∧ (𝑁‘(1r𝑅)) ∈ 𝐵𝑋𝐵) → (𝐹‘((𝑁‘(1r𝑅))(.r𝑅)𝑋)) = ((𝐹‘(𝑁‘(1r𝑅))) · (𝐹𝑋)))
5552, 53, 10, 54syl3anc 1373 . . . . . 6 ((𝐹𝐴𝑋𝐵) → (𝐹‘((𝑁‘(1r𝑅))(.r𝑅)𝑋)) = ((𝐹‘(𝑁‘(1r𝑅))) · (𝐹𝑋)))
566, 25, 11, 7, 3, 10ringnegl 20222 . . . . . . 7 ((𝐹𝐴𝑋𝐵) → ((𝑁‘(1r𝑅))(.r𝑅)𝑋) = (𝑁𝑋))
5756fveq2d 6844 . . . . . 6 ((𝐹𝐴𝑋𝐵) → (𝐹‘((𝑁‘(1r𝑅))(.r𝑅)𝑋)) = (𝐹‘(𝑁𝑋)))
5855, 57eqtr3d 2766 . . . . 5 ((𝐹𝐴𝑋𝐵) → ((𝐹‘(𝑁‘(1r𝑅))) · (𝐹𝑋)) = (𝐹‘(𝑁𝑋)))
5958adantr 480 . . . 4 (((𝐹𝐴𝑋𝐵) ∧ (1r𝑅) ≠ (0g𝑅)) → ((𝐹‘(𝑁‘(1r𝑅))) · (𝐹𝑋)) = (𝐹‘(𝑁𝑋)))
6051, 59eqtr3d 2766 . . 3 (((𝐹𝐴𝑋𝐵) ∧ (1r𝑅) ≠ (0g𝑅)) → (1 · (𝐹𝑋)) = (𝐹‘(𝑁𝑋)))
611, 6abvcl 20736 . . . . . 6 ((𝐹𝐴𝑋𝐵) → (𝐹𝑋) ∈ ℝ)
6261recnd 11178 . . . . 5 ((𝐹𝐴𝑋𝐵) → (𝐹𝑋) ∈ ℂ)
6362mullidd 11168 . . . 4 ((𝐹𝐴𝑋𝐵) → (1 · (𝐹𝑋)) = (𝐹𝑋))
6463adantr 480 . . 3 (((𝐹𝐴𝑋𝐵) ∧ (1r𝑅) ≠ (0g𝑅)) → (1 · (𝐹𝑋)) = (𝐹𝑋))
6560, 64eqtr3d 2766 . 2 (((𝐹𝐴𝑋𝐵) ∧ (1r𝑅) ≠ (0g𝑅)) → (𝐹‘(𝑁𝑋)) = (𝐹𝑋))
6616, 65pm2.61dane 3012 1 ((𝐹𝐴𝑋𝐵) → (𝐹‘(𝑁𝑋)) = (𝐹𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925   class class class wbr 5102  cfv 6499  (class class class)co 7369  cr 11043  0cc0 11044  1c1 11045   · cmul 11049  cle 11185  2c2 12217  cexp 14002  Basecbs 17155  .rcmulr 17197  0gc0g 17378  Grpcgrp 18847  invgcminusg 18848  1rcur 20101  Ringcrg 20153  AbsValcabv 20728
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-map 8778  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-n0 12419  df-z 12506  df-uz 12770  df-ico 13288  df-seq 13943  df-exp 14003  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-plusg 17209  df-0g 17380  df-mgm 18549  df-sgrp 18628  df-mnd 18644  df-grp 18850  df-minusg 18851  df-cmn 19696  df-abl 19697  df-mgp 20061  df-rng 20073  df-ur 20102  df-ring 20155  df-abv 20729
This theorem is referenced by:  abvsubtri  20747  ostthlem1  27571  ostth3  27582
  Copyright terms: Public domain W3C validator