MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abvneg Structured version   Visualization version   GIF version

Theorem abvneg 20735
Description: The absolute value of a negative is the same as that of the positive. (Contributed by Mario Carneiro, 8-Sep-2014.)
Hypotheses
Ref Expression
abv0.a 𝐴 = (AbsVal‘𝑅)
abvneg.b 𝐵 = (Base‘𝑅)
abvneg.p 𝑁 = (invg𝑅)
Assertion
Ref Expression
abvneg ((𝐹𝐴𝑋𝐵) → (𝐹‘(𝑁𝑋)) = (𝐹𝑋))

Proof of Theorem abvneg
StepHypRef Expression
1 abv0.a . . . . . . 7 𝐴 = (AbsVal‘𝑅)
21abvrcl 20722 . . . . . 6 (𝐹𝐴𝑅 ∈ Ring)
32adantr 480 . . . . 5 ((𝐹𝐴𝑋𝐵) → 𝑅 ∈ Ring)
4 ringgrp 20147 . . . . . . 7 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
52, 4syl 17 . . . . . 6 (𝐹𝐴𝑅 ∈ Grp)
6 abvneg.b . . . . . . 7 𝐵 = (Base‘𝑅)
7 abvneg.p . . . . . . 7 𝑁 = (invg𝑅)
86, 7grpinvcl 18919 . . . . . 6 ((𝑅 ∈ Grp ∧ 𝑋𝐵) → (𝑁𝑋) ∈ 𝐵)
95, 8sylan 580 . . . . 5 ((𝐹𝐴𝑋𝐵) → (𝑁𝑋) ∈ 𝐵)
10 simpr 484 . . . . 5 ((𝐹𝐴𝑋𝐵) → 𝑋𝐵)
11 eqid 2729 . . . . . 6 (1r𝑅) = (1r𝑅)
12 eqid 2729 . . . . . 6 (0g𝑅) = (0g𝑅)
136, 11, 12ring1eq0 20207 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑁𝑋) ∈ 𝐵𝑋𝐵) → ((1r𝑅) = (0g𝑅) → (𝑁𝑋) = 𝑋))
143, 9, 10, 13syl3anc 1373 . . . 4 ((𝐹𝐴𝑋𝐵) → ((1r𝑅) = (0g𝑅) → (𝑁𝑋) = 𝑋))
1514imp 406 . . 3 (((𝐹𝐴𝑋𝐵) ∧ (1r𝑅) = (0g𝑅)) → (𝑁𝑋) = 𝑋)
1615fveq2d 6862 . 2 (((𝐹𝐴𝑋𝐵) ∧ (1r𝑅) = (0g𝑅)) → (𝐹‘(𝑁𝑋)) = (𝐹𝑋))
176, 11ringidcl 20174 . . . . . . . . . . . . . . . 16 (𝑅 ∈ Ring → (1r𝑅) ∈ 𝐵)
182, 17syl 17 . . . . . . . . . . . . . . 15 (𝐹𝐴 → (1r𝑅) ∈ 𝐵)
196, 7grpinvcl 18919 . . . . . . . . . . . . . . 15 ((𝑅 ∈ Grp ∧ (1r𝑅) ∈ 𝐵) → (𝑁‘(1r𝑅)) ∈ 𝐵)
205, 18, 19syl2anc 584 . . . . . . . . . . . . . 14 (𝐹𝐴 → (𝑁‘(1r𝑅)) ∈ 𝐵)
211, 6abvcl 20725 . . . . . . . . . . . . . 14 ((𝐹𝐴 ∧ (𝑁‘(1r𝑅)) ∈ 𝐵) → (𝐹‘(𝑁‘(1r𝑅))) ∈ ℝ)
2220, 21mpdan 687 . . . . . . . . . . . . 13 (𝐹𝐴 → (𝐹‘(𝑁‘(1r𝑅))) ∈ ℝ)
2322recnd 11202 . . . . . . . . . . . 12 (𝐹𝐴 → (𝐹‘(𝑁‘(1r𝑅))) ∈ ℂ)
2423sqvald 14108 . . . . . . . . . . 11 (𝐹𝐴 → ((𝐹‘(𝑁‘(1r𝑅)))↑2) = ((𝐹‘(𝑁‘(1r𝑅))) · (𝐹‘(𝑁‘(1r𝑅)))))
25 eqid 2729 . . . . . . . . . . . . 13 (.r𝑅) = (.r𝑅)
261, 6, 25abvmul 20730 . . . . . . . . . . . 12 ((𝐹𝐴 ∧ (𝑁‘(1r𝑅)) ∈ 𝐵 ∧ (𝑁‘(1r𝑅)) ∈ 𝐵) → (𝐹‘((𝑁‘(1r𝑅))(.r𝑅)(𝑁‘(1r𝑅)))) = ((𝐹‘(𝑁‘(1r𝑅))) · (𝐹‘(𝑁‘(1r𝑅)))))
2720, 20, 26mpd3an23 1465 . . . . . . . . . . 11 (𝐹𝐴 → (𝐹‘((𝑁‘(1r𝑅))(.r𝑅)(𝑁‘(1r𝑅)))) = ((𝐹‘(𝑁‘(1r𝑅))) · (𝐹‘(𝑁‘(1r𝑅)))))
286, 25, 7, 2, 20, 18ringmneg2 20214 . . . . . . . . . . . . 13 (𝐹𝐴 → ((𝑁‘(1r𝑅))(.r𝑅)(𝑁‘(1r𝑅))) = (𝑁‘((𝑁‘(1r𝑅))(.r𝑅)(1r𝑅))))
296, 25, 11, 7, 2, 18ringnegl 20211 . . . . . . . . . . . . . 14 (𝐹𝐴 → ((𝑁‘(1r𝑅))(.r𝑅)(1r𝑅)) = (𝑁‘(1r𝑅)))
3029fveq2d 6862 . . . . . . . . . . . . 13 (𝐹𝐴 → (𝑁‘((𝑁‘(1r𝑅))(.r𝑅)(1r𝑅))) = (𝑁‘(𝑁‘(1r𝑅))))
316, 7grpinvinv 18937 . . . . . . . . . . . . . 14 ((𝑅 ∈ Grp ∧ (1r𝑅) ∈ 𝐵) → (𝑁‘(𝑁‘(1r𝑅))) = (1r𝑅))
325, 18, 31syl2anc 584 . . . . . . . . . . . . 13 (𝐹𝐴 → (𝑁‘(𝑁‘(1r𝑅))) = (1r𝑅))
3328, 30, 323eqtrd 2768 . . . . . . . . . . . 12 (𝐹𝐴 → ((𝑁‘(1r𝑅))(.r𝑅)(𝑁‘(1r𝑅))) = (1r𝑅))
3433fveq2d 6862 . . . . . . . . . . 11 (𝐹𝐴 → (𝐹‘((𝑁‘(1r𝑅))(.r𝑅)(𝑁‘(1r𝑅)))) = (𝐹‘(1r𝑅)))
3524, 27, 343eqtr2d 2770 . . . . . . . . . 10 (𝐹𝐴 → ((𝐹‘(𝑁‘(1r𝑅)))↑2) = (𝐹‘(1r𝑅)))
3635adantr 480 . . . . . . . . 9 ((𝐹𝐴 ∧ (1r𝑅) ≠ (0g𝑅)) → ((𝐹‘(𝑁‘(1r𝑅)))↑2) = (𝐹‘(1r𝑅)))
371, 11, 12abv1z 20733 . . . . . . . . 9 ((𝐹𝐴 ∧ (1r𝑅) ≠ (0g𝑅)) → (𝐹‘(1r𝑅)) = 1)
3836, 37eqtrd 2764 . . . . . . . 8 ((𝐹𝐴 ∧ (1r𝑅) ≠ (0g𝑅)) → ((𝐹‘(𝑁‘(1r𝑅)))↑2) = 1)
39 sq1 14160 . . . . . . . 8 (1↑2) = 1
4038, 39eqtr4di 2782 . . . . . . 7 ((𝐹𝐴 ∧ (1r𝑅) ≠ (0g𝑅)) → ((𝐹‘(𝑁‘(1r𝑅)))↑2) = (1↑2))
411, 6abvge0 20726 . . . . . . . . . 10 ((𝐹𝐴 ∧ (𝑁‘(1r𝑅)) ∈ 𝐵) → 0 ≤ (𝐹‘(𝑁‘(1r𝑅))))
4220, 41mpdan 687 . . . . . . . . 9 (𝐹𝐴 → 0 ≤ (𝐹‘(𝑁‘(1r𝑅))))
43 1re 11174 . . . . . . . . . 10 1 ∈ ℝ
44 0le1 11701 . . . . . . . . . 10 0 ≤ 1
45 sq11 14096 . . . . . . . . . 10 ((((𝐹‘(𝑁‘(1r𝑅))) ∈ ℝ ∧ 0 ≤ (𝐹‘(𝑁‘(1r𝑅)))) ∧ (1 ∈ ℝ ∧ 0 ≤ 1)) → (((𝐹‘(𝑁‘(1r𝑅)))↑2) = (1↑2) ↔ (𝐹‘(𝑁‘(1r𝑅))) = 1))
4643, 44, 45mpanr12 705 . . . . . . . . 9 (((𝐹‘(𝑁‘(1r𝑅))) ∈ ℝ ∧ 0 ≤ (𝐹‘(𝑁‘(1r𝑅)))) → (((𝐹‘(𝑁‘(1r𝑅)))↑2) = (1↑2) ↔ (𝐹‘(𝑁‘(1r𝑅))) = 1))
4722, 42, 46syl2anc 584 . . . . . . . 8 (𝐹𝐴 → (((𝐹‘(𝑁‘(1r𝑅)))↑2) = (1↑2) ↔ (𝐹‘(𝑁‘(1r𝑅))) = 1))
4847biimpa 476 . . . . . . 7 ((𝐹𝐴 ∧ ((𝐹‘(𝑁‘(1r𝑅)))↑2) = (1↑2)) → (𝐹‘(𝑁‘(1r𝑅))) = 1)
4940, 48syldan 591 . . . . . 6 ((𝐹𝐴 ∧ (1r𝑅) ≠ (0g𝑅)) → (𝐹‘(𝑁‘(1r𝑅))) = 1)
5049adantlr 715 . . . . 5 (((𝐹𝐴𝑋𝐵) ∧ (1r𝑅) ≠ (0g𝑅)) → (𝐹‘(𝑁‘(1r𝑅))) = 1)
5150oveq1d 7402 . . . 4 (((𝐹𝐴𝑋𝐵) ∧ (1r𝑅) ≠ (0g𝑅)) → ((𝐹‘(𝑁‘(1r𝑅))) · (𝐹𝑋)) = (1 · (𝐹𝑋)))
52 simpl 482 . . . . . . 7 ((𝐹𝐴𝑋𝐵) → 𝐹𝐴)
5320adantr 480 . . . . . . 7 ((𝐹𝐴𝑋𝐵) → (𝑁‘(1r𝑅)) ∈ 𝐵)
541, 6, 25abvmul 20730 . . . . . . 7 ((𝐹𝐴 ∧ (𝑁‘(1r𝑅)) ∈ 𝐵𝑋𝐵) → (𝐹‘((𝑁‘(1r𝑅))(.r𝑅)𝑋)) = ((𝐹‘(𝑁‘(1r𝑅))) · (𝐹𝑋)))
5552, 53, 10, 54syl3anc 1373 . . . . . 6 ((𝐹𝐴𝑋𝐵) → (𝐹‘((𝑁‘(1r𝑅))(.r𝑅)𝑋)) = ((𝐹‘(𝑁‘(1r𝑅))) · (𝐹𝑋)))
566, 25, 11, 7, 3, 10ringnegl 20211 . . . . . . 7 ((𝐹𝐴𝑋𝐵) → ((𝑁‘(1r𝑅))(.r𝑅)𝑋) = (𝑁𝑋))
5756fveq2d 6862 . . . . . 6 ((𝐹𝐴𝑋𝐵) → (𝐹‘((𝑁‘(1r𝑅))(.r𝑅)𝑋)) = (𝐹‘(𝑁𝑋)))
5855, 57eqtr3d 2766 . . . . 5 ((𝐹𝐴𝑋𝐵) → ((𝐹‘(𝑁‘(1r𝑅))) · (𝐹𝑋)) = (𝐹‘(𝑁𝑋)))
5958adantr 480 . . . 4 (((𝐹𝐴𝑋𝐵) ∧ (1r𝑅) ≠ (0g𝑅)) → ((𝐹‘(𝑁‘(1r𝑅))) · (𝐹𝑋)) = (𝐹‘(𝑁𝑋)))
6051, 59eqtr3d 2766 . . 3 (((𝐹𝐴𝑋𝐵) ∧ (1r𝑅) ≠ (0g𝑅)) → (1 · (𝐹𝑋)) = (𝐹‘(𝑁𝑋)))
611, 6abvcl 20725 . . . . . 6 ((𝐹𝐴𝑋𝐵) → (𝐹𝑋) ∈ ℝ)
6261recnd 11202 . . . . 5 ((𝐹𝐴𝑋𝐵) → (𝐹𝑋) ∈ ℂ)
6362mullidd 11192 . . . 4 ((𝐹𝐴𝑋𝐵) → (1 · (𝐹𝑋)) = (𝐹𝑋))
6463adantr 480 . . 3 (((𝐹𝐴𝑋𝐵) ∧ (1r𝑅) ≠ (0g𝑅)) → (1 · (𝐹𝑋)) = (𝐹𝑋))
6560, 64eqtr3d 2766 . 2 (((𝐹𝐴𝑋𝐵) ∧ (1r𝑅) ≠ (0g𝑅)) → (𝐹‘(𝑁𝑋)) = (𝐹𝑋))
6616, 65pm2.61dane 3012 1 ((𝐹𝐴𝑋𝐵) → (𝐹‘(𝑁𝑋)) = (𝐹𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925   class class class wbr 5107  cfv 6511  (class class class)co 7387  cr 11067  0cc0 11068  1c1 11069   · cmul 11073  cle 11209  2c2 12241  cexp 14026  Basecbs 17179  .rcmulr 17221  0gc0g 17402  Grpcgrp 18865  invgcminusg 18866  1rcur 20090  Ringcrg 20142  AbsValcabv 20717
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-n0 12443  df-z 12530  df-uz 12794  df-ico 13312  df-seq 13967  df-exp 14027  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-plusg 17233  df-0g 17404  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-grp 18868  df-minusg 18869  df-cmn 19712  df-abl 19713  df-mgp 20050  df-rng 20062  df-ur 20091  df-ring 20144  df-abv 20718
This theorem is referenced by:  abvsubtri  20736  ostthlem1  27538  ostth3  27549
  Copyright terms: Public domain W3C validator