MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abvneg Structured version   Visualization version   GIF version

Theorem abvneg 20667
Description: The absolute value of a negative is the same as that of the positive. (Contributed by Mario Carneiro, 8-Sep-2014.)
Hypotheses
Ref Expression
abv0.a 𝐴 = (AbsVal‘𝑅)
abvneg.b 𝐵 = (Base‘𝑅)
abvneg.p 𝑁 = (invg𝑅)
Assertion
Ref Expression
abvneg ((𝐹𝐴𝑋𝐵) → (𝐹‘(𝑁𝑋)) = (𝐹𝑋))

Proof of Theorem abvneg
StepHypRef Expression
1 abv0.a . . . . . . 7 𝐴 = (AbsVal‘𝑅)
21abvrcl 20654 . . . . . 6 (𝐹𝐴𝑅 ∈ Ring)
32adantr 480 . . . . 5 ((𝐹𝐴𝑋𝐵) → 𝑅 ∈ Ring)
4 ringgrp 20133 . . . . . . 7 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
52, 4syl 17 . . . . . 6 (𝐹𝐴𝑅 ∈ Grp)
6 abvneg.b . . . . . . 7 𝐵 = (Base‘𝑅)
7 abvneg.p . . . . . . 7 𝑁 = (invg𝑅)
86, 7grpinvcl 18907 . . . . . 6 ((𝑅 ∈ Grp ∧ 𝑋𝐵) → (𝑁𝑋) ∈ 𝐵)
95, 8sylan 579 . . . . 5 ((𝐹𝐴𝑋𝐵) → (𝑁𝑋) ∈ 𝐵)
10 simpr 484 . . . . 5 ((𝐹𝐴𝑋𝐵) → 𝑋𝐵)
11 eqid 2724 . . . . . 6 (1r𝑅) = (1r𝑅)
12 eqid 2724 . . . . . 6 (0g𝑅) = (0g𝑅)
136, 11, 12ring1eq0 20187 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑁𝑋) ∈ 𝐵𝑋𝐵) → ((1r𝑅) = (0g𝑅) → (𝑁𝑋) = 𝑋))
143, 9, 10, 13syl3anc 1368 . . . 4 ((𝐹𝐴𝑋𝐵) → ((1r𝑅) = (0g𝑅) → (𝑁𝑋) = 𝑋))
1514imp 406 . . 3 (((𝐹𝐴𝑋𝐵) ∧ (1r𝑅) = (0g𝑅)) → (𝑁𝑋) = 𝑋)
1615fveq2d 6885 . 2 (((𝐹𝐴𝑋𝐵) ∧ (1r𝑅) = (0g𝑅)) → (𝐹‘(𝑁𝑋)) = (𝐹𝑋))
176, 11ringidcl 20155 . . . . . . . . . . . . . . . 16 (𝑅 ∈ Ring → (1r𝑅) ∈ 𝐵)
182, 17syl 17 . . . . . . . . . . . . . . 15 (𝐹𝐴 → (1r𝑅) ∈ 𝐵)
196, 7grpinvcl 18907 . . . . . . . . . . . . . . 15 ((𝑅 ∈ Grp ∧ (1r𝑅) ∈ 𝐵) → (𝑁‘(1r𝑅)) ∈ 𝐵)
205, 18, 19syl2anc 583 . . . . . . . . . . . . . 14 (𝐹𝐴 → (𝑁‘(1r𝑅)) ∈ 𝐵)
211, 6abvcl 20657 . . . . . . . . . . . . . 14 ((𝐹𝐴 ∧ (𝑁‘(1r𝑅)) ∈ 𝐵) → (𝐹‘(𝑁‘(1r𝑅))) ∈ ℝ)
2220, 21mpdan 684 . . . . . . . . . . . . 13 (𝐹𝐴 → (𝐹‘(𝑁‘(1r𝑅))) ∈ ℝ)
2322recnd 11239 . . . . . . . . . . . 12 (𝐹𝐴 → (𝐹‘(𝑁‘(1r𝑅))) ∈ ℂ)
2423sqvald 14105 . . . . . . . . . . 11 (𝐹𝐴 → ((𝐹‘(𝑁‘(1r𝑅)))↑2) = ((𝐹‘(𝑁‘(1r𝑅))) · (𝐹‘(𝑁‘(1r𝑅)))))
25 eqid 2724 . . . . . . . . . . . . 13 (.r𝑅) = (.r𝑅)
261, 6, 25abvmul 20662 . . . . . . . . . . . 12 ((𝐹𝐴 ∧ (𝑁‘(1r𝑅)) ∈ 𝐵 ∧ (𝑁‘(1r𝑅)) ∈ 𝐵) → (𝐹‘((𝑁‘(1r𝑅))(.r𝑅)(𝑁‘(1r𝑅)))) = ((𝐹‘(𝑁‘(1r𝑅))) · (𝐹‘(𝑁‘(1r𝑅)))))
2720, 20, 26mpd3an23 1459 . . . . . . . . . . 11 (𝐹𝐴 → (𝐹‘((𝑁‘(1r𝑅))(.r𝑅)(𝑁‘(1r𝑅)))) = ((𝐹‘(𝑁‘(1r𝑅))) · (𝐹‘(𝑁‘(1r𝑅)))))
286, 25, 7, 2, 20, 18ringmneg2 20194 . . . . . . . . . . . . 13 (𝐹𝐴 → ((𝑁‘(1r𝑅))(.r𝑅)(𝑁‘(1r𝑅))) = (𝑁‘((𝑁‘(1r𝑅))(.r𝑅)(1r𝑅))))
296, 25, 11, 7, 2, 18ringnegl 20191 . . . . . . . . . . . . . 14 (𝐹𝐴 → ((𝑁‘(1r𝑅))(.r𝑅)(1r𝑅)) = (𝑁‘(1r𝑅)))
3029fveq2d 6885 . . . . . . . . . . . . 13 (𝐹𝐴 → (𝑁‘((𝑁‘(1r𝑅))(.r𝑅)(1r𝑅))) = (𝑁‘(𝑁‘(1r𝑅))))
316, 7grpinvinv 18925 . . . . . . . . . . . . . 14 ((𝑅 ∈ Grp ∧ (1r𝑅) ∈ 𝐵) → (𝑁‘(𝑁‘(1r𝑅))) = (1r𝑅))
325, 18, 31syl2anc 583 . . . . . . . . . . . . 13 (𝐹𝐴 → (𝑁‘(𝑁‘(1r𝑅))) = (1r𝑅))
3328, 30, 323eqtrd 2768 . . . . . . . . . . . 12 (𝐹𝐴 → ((𝑁‘(1r𝑅))(.r𝑅)(𝑁‘(1r𝑅))) = (1r𝑅))
3433fveq2d 6885 . . . . . . . . . . 11 (𝐹𝐴 → (𝐹‘((𝑁‘(1r𝑅))(.r𝑅)(𝑁‘(1r𝑅)))) = (𝐹‘(1r𝑅)))
3524, 27, 343eqtr2d 2770 . . . . . . . . . 10 (𝐹𝐴 → ((𝐹‘(𝑁‘(1r𝑅)))↑2) = (𝐹‘(1r𝑅)))
3635adantr 480 . . . . . . . . 9 ((𝐹𝐴 ∧ (1r𝑅) ≠ (0g𝑅)) → ((𝐹‘(𝑁‘(1r𝑅)))↑2) = (𝐹‘(1r𝑅)))
371, 11, 12abv1z 20665 . . . . . . . . 9 ((𝐹𝐴 ∧ (1r𝑅) ≠ (0g𝑅)) → (𝐹‘(1r𝑅)) = 1)
3836, 37eqtrd 2764 . . . . . . . 8 ((𝐹𝐴 ∧ (1r𝑅) ≠ (0g𝑅)) → ((𝐹‘(𝑁‘(1r𝑅)))↑2) = 1)
39 sq1 14156 . . . . . . . 8 (1↑2) = 1
4038, 39eqtr4di 2782 . . . . . . 7 ((𝐹𝐴 ∧ (1r𝑅) ≠ (0g𝑅)) → ((𝐹‘(𝑁‘(1r𝑅)))↑2) = (1↑2))
411, 6abvge0 20658 . . . . . . . . . 10 ((𝐹𝐴 ∧ (𝑁‘(1r𝑅)) ∈ 𝐵) → 0 ≤ (𝐹‘(𝑁‘(1r𝑅))))
4220, 41mpdan 684 . . . . . . . . 9 (𝐹𝐴 → 0 ≤ (𝐹‘(𝑁‘(1r𝑅))))
43 1re 11211 . . . . . . . . . 10 1 ∈ ℝ
44 0le1 11734 . . . . . . . . . 10 0 ≤ 1
45 sq11 14093 . . . . . . . . . 10 ((((𝐹‘(𝑁‘(1r𝑅))) ∈ ℝ ∧ 0 ≤ (𝐹‘(𝑁‘(1r𝑅)))) ∧ (1 ∈ ℝ ∧ 0 ≤ 1)) → (((𝐹‘(𝑁‘(1r𝑅)))↑2) = (1↑2) ↔ (𝐹‘(𝑁‘(1r𝑅))) = 1))
4643, 44, 45mpanr12 702 . . . . . . . . 9 (((𝐹‘(𝑁‘(1r𝑅))) ∈ ℝ ∧ 0 ≤ (𝐹‘(𝑁‘(1r𝑅)))) → (((𝐹‘(𝑁‘(1r𝑅)))↑2) = (1↑2) ↔ (𝐹‘(𝑁‘(1r𝑅))) = 1))
4722, 42, 46syl2anc 583 . . . . . . . 8 (𝐹𝐴 → (((𝐹‘(𝑁‘(1r𝑅)))↑2) = (1↑2) ↔ (𝐹‘(𝑁‘(1r𝑅))) = 1))
4847biimpa 476 . . . . . . 7 ((𝐹𝐴 ∧ ((𝐹‘(𝑁‘(1r𝑅)))↑2) = (1↑2)) → (𝐹‘(𝑁‘(1r𝑅))) = 1)
4940, 48syldan 590 . . . . . 6 ((𝐹𝐴 ∧ (1r𝑅) ≠ (0g𝑅)) → (𝐹‘(𝑁‘(1r𝑅))) = 1)
5049adantlr 712 . . . . 5 (((𝐹𝐴𝑋𝐵) ∧ (1r𝑅) ≠ (0g𝑅)) → (𝐹‘(𝑁‘(1r𝑅))) = 1)
5150oveq1d 7416 . . . 4 (((𝐹𝐴𝑋𝐵) ∧ (1r𝑅) ≠ (0g𝑅)) → ((𝐹‘(𝑁‘(1r𝑅))) · (𝐹𝑋)) = (1 · (𝐹𝑋)))
52 simpl 482 . . . . . . 7 ((𝐹𝐴𝑋𝐵) → 𝐹𝐴)
5320adantr 480 . . . . . . 7 ((𝐹𝐴𝑋𝐵) → (𝑁‘(1r𝑅)) ∈ 𝐵)
541, 6, 25abvmul 20662 . . . . . . 7 ((𝐹𝐴 ∧ (𝑁‘(1r𝑅)) ∈ 𝐵𝑋𝐵) → (𝐹‘((𝑁‘(1r𝑅))(.r𝑅)𝑋)) = ((𝐹‘(𝑁‘(1r𝑅))) · (𝐹𝑋)))
5552, 53, 10, 54syl3anc 1368 . . . . . 6 ((𝐹𝐴𝑋𝐵) → (𝐹‘((𝑁‘(1r𝑅))(.r𝑅)𝑋)) = ((𝐹‘(𝑁‘(1r𝑅))) · (𝐹𝑋)))
566, 25, 11, 7, 3, 10ringnegl 20191 . . . . . . 7 ((𝐹𝐴𝑋𝐵) → ((𝑁‘(1r𝑅))(.r𝑅)𝑋) = (𝑁𝑋))
5756fveq2d 6885 . . . . . 6 ((𝐹𝐴𝑋𝐵) → (𝐹‘((𝑁‘(1r𝑅))(.r𝑅)𝑋)) = (𝐹‘(𝑁𝑋)))
5855, 57eqtr3d 2766 . . . . 5 ((𝐹𝐴𝑋𝐵) → ((𝐹‘(𝑁‘(1r𝑅))) · (𝐹𝑋)) = (𝐹‘(𝑁𝑋)))
5958adantr 480 . . . 4 (((𝐹𝐴𝑋𝐵) ∧ (1r𝑅) ≠ (0g𝑅)) → ((𝐹‘(𝑁‘(1r𝑅))) · (𝐹𝑋)) = (𝐹‘(𝑁𝑋)))
6051, 59eqtr3d 2766 . . 3 (((𝐹𝐴𝑋𝐵) ∧ (1r𝑅) ≠ (0g𝑅)) → (1 · (𝐹𝑋)) = (𝐹‘(𝑁𝑋)))
611, 6abvcl 20657 . . . . . 6 ((𝐹𝐴𝑋𝐵) → (𝐹𝑋) ∈ ℝ)
6261recnd 11239 . . . . 5 ((𝐹𝐴𝑋𝐵) → (𝐹𝑋) ∈ ℂ)
6362mullidd 11229 . . . 4 ((𝐹𝐴𝑋𝐵) → (1 · (𝐹𝑋)) = (𝐹𝑋))
6463adantr 480 . . 3 (((𝐹𝐴𝑋𝐵) ∧ (1r𝑅) ≠ (0g𝑅)) → (1 · (𝐹𝑋)) = (𝐹𝑋))
6560, 64eqtr3d 2766 . 2 (((𝐹𝐴𝑋𝐵) ∧ (1r𝑅) ≠ (0g𝑅)) → (𝐹‘(𝑁𝑋)) = (𝐹𝑋))
6616, 65pm2.61dane 3021 1 ((𝐹𝐴𝑋𝐵) → (𝐹‘(𝑁𝑋)) = (𝐹𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1533  wcel 2098  wne 2932   class class class wbr 5138  cfv 6533  (class class class)co 7401  cr 11105  0cc0 11106  1c1 11107   · cmul 11111  cle 11246  2c2 12264  cexp 14024  Basecbs 17143  .rcmulr 17197  0gc0g 17384  Grpcgrp 18853  invgcminusg 18854  1rcur 20076  Ringcrg 20128  AbsValcabv 20649
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3959  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-tr 5256  df-id 5564  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-we 5623  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-riota 7357  df-ov 7404  df-oprab 7405  df-mpo 7406  df-om 7849  df-2nd 7969  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-er 8699  df-map 8818  df-en 8936  df-dom 8937  df-sdom 8938  df-pnf 11247  df-mnf 11248  df-xr 11249  df-ltxr 11250  df-le 11251  df-sub 11443  df-neg 11444  df-div 11869  df-nn 12210  df-2 12272  df-n0 12470  df-z 12556  df-uz 12820  df-ico 13327  df-seq 13964  df-exp 14025  df-sets 17096  df-slot 17114  df-ndx 17126  df-base 17144  df-plusg 17209  df-0g 17386  df-mgm 18563  df-sgrp 18642  df-mnd 18658  df-grp 18856  df-minusg 18857  df-cmn 19692  df-abl 19693  df-mgp 20030  df-rng 20048  df-ur 20077  df-ring 20130  df-abv 20650
This theorem is referenced by:  abvsubtri  20668  ostthlem1  27476  ostth3  27487
  Copyright terms: Public domain W3C validator