Proof of Theorem abvneg
Step | Hyp | Ref
| Expression |
1 | | abv0.a |
. . . . . . 7
⊢ 𝐴 = (AbsVal‘𝑅) |
2 | 1 | abvrcl 19996 |
. . . . . 6
⊢ (𝐹 ∈ 𝐴 → 𝑅 ∈ Ring) |
3 | 2 | adantr 480 |
. . . . 5
⊢ ((𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) → 𝑅 ∈ Ring) |
4 | | ringgrp 19703 |
. . . . . . 7
⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) |
5 | 2, 4 | syl 17 |
. . . . . 6
⊢ (𝐹 ∈ 𝐴 → 𝑅 ∈ Grp) |
6 | | abvneg.b |
. . . . . . 7
⊢ 𝐵 = (Base‘𝑅) |
7 | | abvneg.p |
. . . . . . 7
⊢ 𝑁 = (invg‘𝑅) |
8 | 6, 7 | grpinvcl 18542 |
. . . . . 6
⊢ ((𝑅 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑁‘𝑋) ∈ 𝐵) |
9 | 5, 8 | sylan 579 |
. . . . 5
⊢ ((𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) → (𝑁‘𝑋) ∈ 𝐵) |
10 | | simpr 484 |
. . . . 5
⊢ ((𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) → 𝑋 ∈ 𝐵) |
11 | | eqid 2738 |
. . . . . 6
⊢
(1r‘𝑅) = (1r‘𝑅) |
12 | | eqid 2738 |
. . . . . 6
⊢
(0g‘𝑅) = (0g‘𝑅) |
13 | 6, 11, 12 | ring1eq0 19744 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ (𝑁‘𝑋) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → ((1r‘𝑅) = (0g‘𝑅) → (𝑁‘𝑋) = 𝑋)) |
14 | 3, 9, 10, 13 | syl3anc 1369 |
. . . 4
⊢ ((𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) → ((1r‘𝑅) = (0g‘𝑅) → (𝑁‘𝑋) = 𝑋)) |
15 | 14 | imp 406 |
. . 3
⊢ (((𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (1r‘𝑅) = (0g‘𝑅)) → (𝑁‘𝑋) = 𝑋) |
16 | 15 | fveq2d 6760 |
. 2
⊢ (((𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (1r‘𝑅) = (0g‘𝑅)) → (𝐹‘(𝑁‘𝑋)) = (𝐹‘𝑋)) |
17 | 6, 11 | ringidcl 19722 |
. . . . . . . . . . . . . . . 16
⊢ (𝑅 ∈ Ring →
(1r‘𝑅)
∈ 𝐵) |
18 | 2, 17 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝐹 ∈ 𝐴 → (1r‘𝑅) ∈ 𝐵) |
19 | 6, 7 | grpinvcl 18542 |
. . . . . . . . . . . . . . 15
⊢ ((𝑅 ∈ Grp ∧
(1r‘𝑅)
∈ 𝐵) → (𝑁‘(1r‘𝑅)) ∈ 𝐵) |
20 | 5, 18, 19 | syl2anc 583 |
. . . . . . . . . . . . . 14
⊢ (𝐹 ∈ 𝐴 → (𝑁‘(1r‘𝑅)) ∈ 𝐵) |
21 | 1, 6 | abvcl 19999 |
. . . . . . . . . . . . . 14
⊢ ((𝐹 ∈ 𝐴 ∧ (𝑁‘(1r‘𝑅)) ∈ 𝐵) → (𝐹‘(𝑁‘(1r‘𝑅))) ∈
ℝ) |
22 | 20, 21 | mpdan 683 |
. . . . . . . . . . . . 13
⊢ (𝐹 ∈ 𝐴 → (𝐹‘(𝑁‘(1r‘𝑅))) ∈
ℝ) |
23 | 22 | recnd 10934 |
. . . . . . . . . . . 12
⊢ (𝐹 ∈ 𝐴 → (𝐹‘(𝑁‘(1r‘𝑅))) ∈
ℂ) |
24 | 23 | sqvald 13789 |
. . . . . . . . . . 11
⊢ (𝐹 ∈ 𝐴 → ((𝐹‘(𝑁‘(1r‘𝑅)))↑2) = ((𝐹‘(𝑁‘(1r‘𝑅))) · (𝐹‘(𝑁‘(1r‘𝑅))))) |
25 | | eqid 2738 |
. . . . . . . . . . . . 13
⊢
(.r‘𝑅) = (.r‘𝑅) |
26 | 1, 6, 25 | abvmul 20004 |
. . . . . . . . . . . 12
⊢ ((𝐹 ∈ 𝐴 ∧ (𝑁‘(1r‘𝑅)) ∈ 𝐵 ∧ (𝑁‘(1r‘𝑅)) ∈ 𝐵) → (𝐹‘((𝑁‘(1r‘𝑅))(.r‘𝑅)(𝑁‘(1r‘𝑅)))) = ((𝐹‘(𝑁‘(1r‘𝑅))) · (𝐹‘(𝑁‘(1r‘𝑅))))) |
27 | 20, 20, 26 | mpd3an23 1461 |
. . . . . . . . . . 11
⊢ (𝐹 ∈ 𝐴 → (𝐹‘((𝑁‘(1r‘𝑅))(.r‘𝑅)(𝑁‘(1r‘𝑅)))) = ((𝐹‘(𝑁‘(1r‘𝑅))) · (𝐹‘(𝑁‘(1r‘𝑅))))) |
28 | 6, 25, 7, 2, 20, 18 | ringmneg2 19751 |
. . . . . . . . . . . . 13
⊢ (𝐹 ∈ 𝐴 → ((𝑁‘(1r‘𝑅))(.r‘𝑅)(𝑁‘(1r‘𝑅))) = (𝑁‘((𝑁‘(1r‘𝑅))(.r‘𝑅)(1r‘𝑅)))) |
29 | 6, 25, 11, 7, 2, 18 | ringnegl 19748 |
. . . . . . . . . . . . . 14
⊢ (𝐹 ∈ 𝐴 → ((𝑁‘(1r‘𝑅))(.r‘𝑅)(1r‘𝑅)) = (𝑁‘(1r‘𝑅))) |
30 | 29 | fveq2d 6760 |
. . . . . . . . . . . . 13
⊢ (𝐹 ∈ 𝐴 → (𝑁‘((𝑁‘(1r‘𝑅))(.r‘𝑅)(1r‘𝑅))) = (𝑁‘(𝑁‘(1r‘𝑅)))) |
31 | 6, 7 | grpinvinv 18557 |
. . . . . . . . . . . . . 14
⊢ ((𝑅 ∈ Grp ∧
(1r‘𝑅)
∈ 𝐵) → (𝑁‘(𝑁‘(1r‘𝑅))) = (1r‘𝑅)) |
32 | 5, 18, 31 | syl2anc 583 |
. . . . . . . . . . . . 13
⊢ (𝐹 ∈ 𝐴 → (𝑁‘(𝑁‘(1r‘𝑅))) = (1r‘𝑅)) |
33 | 28, 30, 32 | 3eqtrd 2782 |
. . . . . . . . . . . 12
⊢ (𝐹 ∈ 𝐴 → ((𝑁‘(1r‘𝑅))(.r‘𝑅)(𝑁‘(1r‘𝑅))) = (1r‘𝑅)) |
34 | 33 | fveq2d 6760 |
. . . . . . . . . . 11
⊢ (𝐹 ∈ 𝐴 → (𝐹‘((𝑁‘(1r‘𝑅))(.r‘𝑅)(𝑁‘(1r‘𝑅)))) = (𝐹‘(1r‘𝑅))) |
35 | 24, 27, 34 | 3eqtr2d 2784 |
. . . . . . . . . 10
⊢ (𝐹 ∈ 𝐴 → ((𝐹‘(𝑁‘(1r‘𝑅)))↑2) = (𝐹‘(1r‘𝑅))) |
36 | 35 | adantr 480 |
. . . . . . . . 9
⊢ ((𝐹 ∈ 𝐴 ∧ (1r‘𝑅) ≠
(0g‘𝑅))
→ ((𝐹‘(𝑁‘(1r‘𝑅)))↑2) = (𝐹‘(1r‘𝑅))) |
37 | 1, 11, 12 | abv1z 20007 |
. . . . . . . . 9
⊢ ((𝐹 ∈ 𝐴 ∧ (1r‘𝑅) ≠
(0g‘𝑅))
→ (𝐹‘(1r‘𝑅)) = 1) |
38 | 36, 37 | eqtrd 2778 |
. . . . . . . 8
⊢ ((𝐹 ∈ 𝐴 ∧ (1r‘𝑅) ≠
(0g‘𝑅))
→ ((𝐹‘(𝑁‘(1r‘𝑅)))↑2) =
1) |
39 | | sq1 13840 |
. . . . . . . 8
⊢
(1↑2) = 1 |
40 | 38, 39 | eqtr4di 2797 |
. . . . . . 7
⊢ ((𝐹 ∈ 𝐴 ∧ (1r‘𝑅) ≠
(0g‘𝑅))
→ ((𝐹‘(𝑁‘(1r‘𝑅)))↑2) =
(1↑2)) |
41 | 1, 6 | abvge0 20000 |
. . . . . . . . . 10
⊢ ((𝐹 ∈ 𝐴 ∧ (𝑁‘(1r‘𝑅)) ∈ 𝐵) → 0 ≤ (𝐹‘(𝑁‘(1r‘𝑅)))) |
42 | 20, 41 | mpdan 683 |
. . . . . . . . 9
⊢ (𝐹 ∈ 𝐴 → 0 ≤ (𝐹‘(𝑁‘(1r‘𝑅)))) |
43 | | 1re 10906 |
. . . . . . . . . 10
⊢ 1 ∈
ℝ |
44 | | 0le1 11428 |
. . . . . . . . . 10
⊢ 0 ≤
1 |
45 | | sq11 13778 |
. . . . . . . . . 10
⊢ ((((𝐹‘(𝑁‘(1r‘𝑅))) ∈ ℝ ∧ 0 ≤
(𝐹‘(𝑁‘(1r‘𝑅)))) ∧ (1 ∈ ℝ
∧ 0 ≤ 1)) → (((𝐹‘(𝑁‘(1r‘𝑅)))↑2) = (1↑2) ↔
(𝐹‘(𝑁‘(1r‘𝑅))) = 1)) |
46 | 43, 44, 45 | mpanr12 701 |
. . . . . . . . 9
⊢ (((𝐹‘(𝑁‘(1r‘𝑅))) ∈ ℝ ∧ 0 ≤
(𝐹‘(𝑁‘(1r‘𝑅)))) → (((𝐹‘(𝑁‘(1r‘𝑅)))↑2) = (1↑2) ↔
(𝐹‘(𝑁‘(1r‘𝑅))) = 1)) |
47 | 22, 42, 46 | syl2anc 583 |
. . . . . . . 8
⊢ (𝐹 ∈ 𝐴 → (((𝐹‘(𝑁‘(1r‘𝑅)))↑2) = (1↑2) ↔
(𝐹‘(𝑁‘(1r‘𝑅))) = 1)) |
48 | 47 | biimpa 476 |
. . . . . . 7
⊢ ((𝐹 ∈ 𝐴 ∧ ((𝐹‘(𝑁‘(1r‘𝑅)))↑2) = (1↑2)) →
(𝐹‘(𝑁‘(1r‘𝑅))) = 1) |
49 | 40, 48 | syldan 590 |
. . . . . 6
⊢ ((𝐹 ∈ 𝐴 ∧ (1r‘𝑅) ≠
(0g‘𝑅))
→ (𝐹‘(𝑁‘(1r‘𝑅))) = 1) |
50 | 49 | adantlr 711 |
. . . . 5
⊢ (((𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (1r‘𝑅) ≠
(0g‘𝑅))
→ (𝐹‘(𝑁‘(1r‘𝑅))) = 1) |
51 | 50 | oveq1d 7270 |
. . . 4
⊢ (((𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (1r‘𝑅) ≠
(0g‘𝑅))
→ ((𝐹‘(𝑁‘(1r‘𝑅))) · (𝐹‘𝑋)) = (1 · (𝐹‘𝑋))) |
52 | | simpl 482 |
. . . . . . 7
⊢ ((𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) → 𝐹 ∈ 𝐴) |
53 | 20 | adantr 480 |
. . . . . . 7
⊢ ((𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) → (𝑁‘(1r‘𝑅)) ∈ 𝐵) |
54 | 1, 6, 25 | abvmul 20004 |
. . . . . . 7
⊢ ((𝐹 ∈ 𝐴 ∧ (𝑁‘(1r‘𝑅)) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → (𝐹‘((𝑁‘(1r‘𝑅))(.r‘𝑅)𝑋)) = ((𝐹‘(𝑁‘(1r‘𝑅))) · (𝐹‘𝑋))) |
55 | 52, 53, 10, 54 | syl3anc 1369 |
. . . . . 6
⊢ ((𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) → (𝐹‘((𝑁‘(1r‘𝑅))(.r‘𝑅)𝑋)) = ((𝐹‘(𝑁‘(1r‘𝑅))) · (𝐹‘𝑋))) |
56 | 6, 25, 11, 7, 3, 10 | ringnegl 19748 |
. . . . . . 7
⊢ ((𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) → ((𝑁‘(1r‘𝑅))(.r‘𝑅)𝑋) = (𝑁‘𝑋)) |
57 | 56 | fveq2d 6760 |
. . . . . 6
⊢ ((𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) → (𝐹‘((𝑁‘(1r‘𝑅))(.r‘𝑅)𝑋)) = (𝐹‘(𝑁‘𝑋))) |
58 | 55, 57 | eqtr3d 2780 |
. . . . 5
⊢ ((𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) → ((𝐹‘(𝑁‘(1r‘𝑅))) · (𝐹‘𝑋)) = (𝐹‘(𝑁‘𝑋))) |
59 | 58 | adantr 480 |
. . . 4
⊢ (((𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (1r‘𝑅) ≠
(0g‘𝑅))
→ ((𝐹‘(𝑁‘(1r‘𝑅))) · (𝐹‘𝑋)) = (𝐹‘(𝑁‘𝑋))) |
60 | 51, 59 | eqtr3d 2780 |
. . 3
⊢ (((𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (1r‘𝑅) ≠
(0g‘𝑅))
→ (1 · (𝐹‘𝑋)) = (𝐹‘(𝑁‘𝑋))) |
61 | 1, 6 | abvcl 19999 |
. . . . . 6
⊢ ((𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) → (𝐹‘𝑋) ∈ ℝ) |
62 | 61 | recnd 10934 |
. . . . 5
⊢ ((𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) → (𝐹‘𝑋) ∈ ℂ) |
63 | 62 | mulid2d 10924 |
. . . 4
⊢ ((𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) → (1 · (𝐹‘𝑋)) = (𝐹‘𝑋)) |
64 | 63 | adantr 480 |
. . 3
⊢ (((𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (1r‘𝑅) ≠
(0g‘𝑅))
→ (1 · (𝐹‘𝑋)) = (𝐹‘𝑋)) |
65 | 60, 64 | eqtr3d 2780 |
. 2
⊢ (((𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (1r‘𝑅) ≠
(0g‘𝑅))
→ (𝐹‘(𝑁‘𝑋)) = (𝐹‘𝑋)) |
66 | 16, 65 | pm2.61dane 3031 |
1
⊢ ((𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) → (𝐹‘(𝑁‘𝑋)) = (𝐹‘𝑋)) |