MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abvneg Structured version   Visualization version   GIF version

Theorem abvneg 20009
Description: The absolute value of a negative is the same as that of the positive. (Contributed by Mario Carneiro, 8-Sep-2014.)
Hypotheses
Ref Expression
abv0.a 𝐴 = (AbsVal‘𝑅)
abvneg.b 𝐵 = (Base‘𝑅)
abvneg.p 𝑁 = (invg𝑅)
Assertion
Ref Expression
abvneg ((𝐹𝐴𝑋𝐵) → (𝐹‘(𝑁𝑋)) = (𝐹𝑋))

Proof of Theorem abvneg
StepHypRef Expression
1 abv0.a . . . . . . 7 𝐴 = (AbsVal‘𝑅)
21abvrcl 19996 . . . . . 6 (𝐹𝐴𝑅 ∈ Ring)
32adantr 480 . . . . 5 ((𝐹𝐴𝑋𝐵) → 𝑅 ∈ Ring)
4 ringgrp 19703 . . . . . . 7 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
52, 4syl 17 . . . . . 6 (𝐹𝐴𝑅 ∈ Grp)
6 abvneg.b . . . . . . 7 𝐵 = (Base‘𝑅)
7 abvneg.p . . . . . . 7 𝑁 = (invg𝑅)
86, 7grpinvcl 18542 . . . . . 6 ((𝑅 ∈ Grp ∧ 𝑋𝐵) → (𝑁𝑋) ∈ 𝐵)
95, 8sylan 579 . . . . 5 ((𝐹𝐴𝑋𝐵) → (𝑁𝑋) ∈ 𝐵)
10 simpr 484 . . . . 5 ((𝐹𝐴𝑋𝐵) → 𝑋𝐵)
11 eqid 2738 . . . . . 6 (1r𝑅) = (1r𝑅)
12 eqid 2738 . . . . . 6 (0g𝑅) = (0g𝑅)
136, 11, 12ring1eq0 19744 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑁𝑋) ∈ 𝐵𝑋𝐵) → ((1r𝑅) = (0g𝑅) → (𝑁𝑋) = 𝑋))
143, 9, 10, 13syl3anc 1369 . . . 4 ((𝐹𝐴𝑋𝐵) → ((1r𝑅) = (0g𝑅) → (𝑁𝑋) = 𝑋))
1514imp 406 . . 3 (((𝐹𝐴𝑋𝐵) ∧ (1r𝑅) = (0g𝑅)) → (𝑁𝑋) = 𝑋)
1615fveq2d 6760 . 2 (((𝐹𝐴𝑋𝐵) ∧ (1r𝑅) = (0g𝑅)) → (𝐹‘(𝑁𝑋)) = (𝐹𝑋))
176, 11ringidcl 19722 . . . . . . . . . . . . . . . 16 (𝑅 ∈ Ring → (1r𝑅) ∈ 𝐵)
182, 17syl 17 . . . . . . . . . . . . . . 15 (𝐹𝐴 → (1r𝑅) ∈ 𝐵)
196, 7grpinvcl 18542 . . . . . . . . . . . . . . 15 ((𝑅 ∈ Grp ∧ (1r𝑅) ∈ 𝐵) → (𝑁‘(1r𝑅)) ∈ 𝐵)
205, 18, 19syl2anc 583 . . . . . . . . . . . . . 14 (𝐹𝐴 → (𝑁‘(1r𝑅)) ∈ 𝐵)
211, 6abvcl 19999 . . . . . . . . . . . . . 14 ((𝐹𝐴 ∧ (𝑁‘(1r𝑅)) ∈ 𝐵) → (𝐹‘(𝑁‘(1r𝑅))) ∈ ℝ)
2220, 21mpdan 683 . . . . . . . . . . . . 13 (𝐹𝐴 → (𝐹‘(𝑁‘(1r𝑅))) ∈ ℝ)
2322recnd 10934 . . . . . . . . . . . 12 (𝐹𝐴 → (𝐹‘(𝑁‘(1r𝑅))) ∈ ℂ)
2423sqvald 13789 . . . . . . . . . . 11 (𝐹𝐴 → ((𝐹‘(𝑁‘(1r𝑅)))↑2) = ((𝐹‘(𝑁‘(1r𝑅))) · (𝐹‘(𝑁‘(1r𝑅)))))
25 eqid 2738 . . . . . . . . . . . . 13 (.r𝑅) = (.r𝑅)
261, 6, 25abvmul 20004 . . . . . . . . . . . 12 ((𝐹𝐴 ∧ (𝑁‘(1r𝑅)) ∈ 𝐵 ∧ (𝑁‘(1r𝑅)) ∈ 𝐵) → (𝐹‘((𝑁‘(1r𝑅))(.r𝑅)(𝑁‘(1r𝑅)))) = ((𝐹‘(𝑁‘(1r𝑅))) · (𝐹‘(𝑁‘(1r𝑅)))))
2720, 20, 26mpd3an23 1461 . . . . . . . . . . 11 (𝐹𝐴 → (𝐹‘((𝑁‘(1r𝑅))(.r𝑅)(𝑁‘(1r𝑅)))) = ((𝐹‘(𝑁‘(1r𝑅))) · (𝐹‘(𝑁‘(1r𝑅)))))
286, 25, 7, 2, 20, 18ringmneg2 19751 . . . . . . . . . . . . 13 (𝐹𝐴 → ((𝑁‘(1r𝑅))(.r𝑅)(𝑁‘(1r𝑅))) = (𝑁‘((𝑁‘(1r𝑅))(.r𝑅)(1r𝑅))))
296, 25, 11, 7, 2, 18ringnegl 19748 . . . . . . . . . . . . . 14 (𝐹𝐴 → ((𝑁‘(1r𝑅))(.r𝑅)(1r𝑅)) = (𝑁‘(1r𝑅)))
3029fveq2d 6760 . . . . . . . . . . . . 13 (𝐹𝐴 → (𝑁‘((𝑁‘(1r𝑅))(.r𝑅)(1r𝑅))) = (𝑁‘(𝑁‘(1r𝑅))))
316, 7grpinvinv 18557 . . . . . . . . . . . . . 14 ((𝑅 ∈ Grp ∧ (1r𝑅) ∈ 𝐵) → (𝑁‘(𝑁‘(1r𝑅))) = (1r𝑅))
325, 18, 31syl2anc 583 . . . . . . . . . . . . 13 (𝐹𝐴 → (𝑁‘(𝑁‘(1r𝑅))) = (1r𝑅))
3328, 30, 323eqtrd 2782 . . . . . . . . . . . 12 (𝐹𝐴 → ((𝑁‘(1r𝑅))(.r𝑅)(𝑁‘(1r𝑅))) = (1r𝑅))
3433fveq2d 6760 . . . . . . . . . . 11 (𝐹𝐴 → (𝐹‘((𝑁‘(1r𝑅))(.r𝑅)(𝑁‘(1r𝑅)))) = (𝐹‘(1r𝑅)))
3524, 27, 343eqtr2d 2784 . . . . . . . . . 10 (𝐹𝐴 → ((𝐹‘(𝑁‘(1r𝑅)))↑2) = (𝐹‘(1r𝑅)))
3635adantr 480 . . . . . . . . 9 ((𝐹𝐴 ∧ (1r𝑅) ≠ (0g𝑅)) → ((𝐹‘(𝑁‘(1r𝑅)))↑2) = (𝐹‘(1r𝑅)))
371, 11, 12abv1z 20007 . . . . . . . . 9 ((𝐹𝐴 ∧ (1r𝑅) ≠ (0g𝑅)) → (𝐹‘(1r𝑅)) = 1)
3836, 37eqtrd 2778 . . . . . . . 8 ((𝐹𝐴 ∧ (1r𝑅) ≠ (0g𝑅)) → ((𝐹‘(𝑁‘(1r𝑅)))↑2) = 1)
39 sq1 13840 . . . . . . . 8 (1↑2) = 1
4038, 39eqtr4di 2797 . . . . . . 7 ((𝐹𝐴 ∧ (1r𝑅) ≠ (0g𝑅)) → ((𝐹‘(𝑁‘(1r𝑅)))↑2) = (1↑2))
411, 6abvge0 20000 . . . . . . . . . 10 ((𝐹𝐴 ∧ (𝑁‘(1r𝑅)) ∈ 𝐵) → 0 ≤ (𝐹‘(𝑁‘(1r𝑅))))
4220, 41mpdan 683 . . . . . . . . 9 (𝐹𝐴 → 0 ≤ (𝐹‘(𝑁‘(1r𝑅))))
43 1re 10906 . . . . . . . . . 10 1 ∈ ℝ
44 0le1 11428 . . . . . . . . . 10 0 ≤ 1
45 sq11 13778 . . . . . . . . . 10 ((((𝐹‘(𝑁‘(1r𝑅))) ∈ ℝ ∧ 0 ≤ (𝐹‘(𝑁‘(1r𝑅)))) ∧ (1 ∈ ℝ ∧ 0 ≤ 1)) → (((𝐹‘(𝑁‘(1r𝑅)))↑2) = (1↑2) ↔ (𝐹‘(𝑁‘(1r𝑅))) = 1))
4643, 44, 45mpanr12 701 . . . . . . . . 9 (((𝐹‘(𝑁‘(1r𝑅))) ∈ ℝ ∧ 0 ≤ (𝐹‘(𝑁‘(1r𝑅)))) → (((𝐹‘(𝑁‘(1r𝑅)))↑2) = (1↑2) ↔ (𝐹‘(𝑁‘(1r𝑅))) = 1))
4722, 42, 46syl2anc 583 . . . . . . . 8 (𝐹𝐴 → (((𝐹‘(𝑁‘(1r𝑅)))↑2) = (1↑2) ↔ (𝐹‘(𝑁‘(1r𝑅))) = 1))
4847biimpa 476 . . . . . . 7 ((𝐹𝐴 ∧ ((𝐹‘(𝑁‘(1r𝑅)))↑2) = (1↑2)) → (𝐹‘(𝑁‘(1r𝑅))) = 1)
4940, 48syldan 590 . . . . . 6 ((𝐹𝐴 ∧ (1r𝑅) ≠ (0g𝑅)) → (𝐹‘(𝑁‘(1r𝑅))) = 1)
5049adantlr 711 . . . . 5 (((𝐹𝐴𝑋𝐵) ∧ (1r𝑅) ≠ (0g𝑅)) → (𝐹‘(𝑁‘(1r𝑅))) = 1)
5150oveq1d 7270 . . . 4 (((𝐹𝐴𝑋𝐵) ∧ (1r𝑅) ≠ (0g𝑅)) → ((𝐹‘(𝑁‘(1r𝑅))) · (𝐹𝑋)) = (1 · (𝐹𝑋)))
52 simpl 482 . . . . . . 7 ((𝐹𝐴𝑋𝐵) → 𝐹𝐴)
5320adantr 480 . . . . . . 7 ((𝐹𝐴𝑋𝐵) → (𝑁‘(1r𝑅)) ∈ 𝐵)
541, 6, 25abvmul 20004 . . . . . . 7 ((𝐹𝐴 ∧ (𝑁‘(1r𝑅)) ∈ 𝐵𝑋𝐵) → (𝐹‘((𝑁‘(1r𝑅))(.r𝑅)𝑋)) = ((𝐹‘(𝑁‘(1r𝑅))) · (𝐹𝑋)))
5552, 53, 10, 54syl3anc 1369 . . . . . 6 ((𝐹𝐴𝑋𝐵) → (𝐹‘((𝑁‘(1r𝑅))(.r𝑅)𝑋)) = ((𝐹‘(𝑁‘(1r𝑅))) · (𝐹𝑋)))
566, 25, 11, 7, 3, 10ringnegl 19748 . . . . . . 7 ((𝐹𝐴𝑋𝐵) → ((𝑁‘(1r𝑅))(.r𝑅)𝑋) = (𝑁𝑋))
5756fveq2d 6760 . . . . . 6 ((𝐹𝐴𝑋𝐵) → (𝐹‘((𝑁‘(1r𝑅))(.r𝑅)𝑋)) = (𝐹‘(𝑁𝑋)))
5855, 57eqtr3d 2780 . . . . 5 ((𝐹𝐴𝑋𝐵) → ((𝐹‘(𝑁‘(1r𝑅))) · (𝐹𝑋)) = (𝐹‘(𝑁𝑋)))
5958adantr 480 . . . 4 (((𝐹𝐴𝑋𝐵) ∧ (1r𝑅) ≠ (0g𝑅)) → ((𝐹‘(𝑁‘(1r𝑅))) · (𝐹𝑋)) = (𝐹‘(𝑁𝑋)))
6051, 59eqtr3d 2780 . . 3 (((𝐹𝐴𝑋𝐵) ∧ (1r𝑅) ≠ (0g𝑅)) → (1 · (𝐹𝑋)) = (𝐹‘(𝑁𝑋)))
611, 6abvcl 19999 . . . . . 6 ((𝐹𝐴𝑋𝐵) → (𝐹𝑋) ∈ ℝ)
6261recnd 10934 . . . . 5 ((𝐹𝐴𝑋𝐵) → (𝐹𝑋) ∈ ℂ)
6362mulid2d 10924 . . . 4 ((𝐹𝐴𝑋𝐵) → (1 · (𝐹𝑋)) = (𝐹𝑋))
6463adantr 480 . . 3 (((𝐹𝐴𝑋𝐵) ∧ (1r𝑅) ≠ (0g𝑅)) → (1 · (𝐹𝑋)) = (𝐹𝑋))
6560, 64eqtr3d 2780 . 2 (((𝐹𝐴𝑋𝐵) ∧ (1r𝑅) ≠ (0g𝑅)) → (𝐹‘(𝑁𝑋)) = (𝐹𝑋))
6616, 65pm2.61dane 3031 1 ((𝐹𝐴𝑋𝐵) → (𝐹‘(𝑁𝑋)) = (𝐹𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wne 2942   class class class wbr 5070  cfv 6418  (class class class)co 7255  cr 10801  0cc0 10802  1c1 10803   · cmul 10807  cle 10941  2c2 11958  cexp 13710  Basecbs 16840  .rcmulr 16889  0gc0g 17067  Grpcgrp 18492  invgcminusg 18493  1rcur 19652  Ringcrg 19698  AbsValcabv 19991
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-n0 12164  df-z 12250  df-uz 12512  df-ico 13014  df-seq 13650  df-exp 13711  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-plusg 16901  df-0g 17069  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-grp 18495  df-minusg 18496  df-mgp 19636  df-ur 19653  df-ring 19700  df-abv 19992
This theorem is referenced by:  abvsubtri  20010  ostthlem1  26680  ostth3  26691
  Copyright terms: Public domain W3C validator