MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abvfge0 Structured version   Visualization version   GIF version

Theorem abvfge0 20574
Description: An absolute value is a function from the ring to the nonnegative real numbers. (Contributed by Mario Carneiro, 8-Sep-2014.)
Hypotheses
Ref Expression
abvf.a 𝐴 = (AbsValβ€˜π‘…)
abvf.b 𝐡 = (Baseβ€˜π‘…)
Assertion
Ref Expression
abvfge0 (𝐹 ∈ 𝐴 β†’ 𝐹:𝐡⟢(0[,)+∞))

Proof of Theorem abvfge0
Dummy variables π‘₯ 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 abvf.a . . . . 5 𝐴 = (AbsValβ€˜π‘…)
21abvrcl 20573 . . . 4 (𝐹 ∈ 𝐴 β†’ 𝑅 ∈ Ring)
3 abvf.b . . . . 5 𝐡 = (Baseβ€˜π‘…)
4 eqid 2731 . . . . 5 (+gβ€˜π‘…) = (+gβ€˜π‘…)
5 eqid 2731 . . . . 5 (.rβ€˜π‘…) = (.rβ€˜π‘…)
6 eqid 2731 . . . . 5 (0gβ€˜π‘…) = (0gβ€˜π‘…)
71, 3, 4, 5, 6isabv 20571 . . . 4 (𝑅 ∈ Ring β†’ (𝐹 ∈ 𝐴 ↔ (𝐹:𝐡⟢(0[,)+∞) ∧ βˆ€π‘₯ ∈ 𝐡 (((πΉβ€˜π‘₯) = 0 ↔ π‘₯ = (0gβ€˜π‘…)) ∧ βˆ€π‘¦ ∈ 𝐡 ((πΉβ€˜(π‘₯(.rβ€˜π‘…)𝑦)) = ((πΉβ€˜π‘₯) Β· (πΉβ€˜π‘¦)) ∧ (πΉβ€˜(π‘₯(+gβ€˜π‘…)𝑦)) ≀ ((πΉβ€˜π‘₯) + (πΉβ€˜π‘¦)))))))
82, 7syl 17 . . 3 (𝐹 ∈ 𝐴 β†’ (𝐹 ∈ 𝐴 ↔ (𝐹:𝐡⟢(0[,)+∞) ∧ βˆ€π‘₯ ∈ 𝐡 (((πΉβ€˜π‘₯) = 0 ↔ π‘₯ = (0gβ€˜π‘…)) ∧ βˆ€π‘¦ ∈ 𝐡 ((πΉβ€˜(π‘₯(.rβ€˜π‘…)𝑦)) = ((πΉβ€˜π‘₯) Β· (πΉβ€˜π‘¦)) ∧ (πΉβ€˜(π‘₯(+gβ€˜π‘…)𝑦)) ≀ ((πΉβ€˜π‘₯) + (πΉβ€˜π‘¦)))))))
98ibi 267 . 2 (𝐹 ∈ 𝐴 β†’ (𝐹:𝐡⟢(0[,)+∞) ∧ βˆ€π‘₯ ∈ 𝐡 (((πΉβ€˜π‘₯) = 0 ↔ π‘₯ = (0gβ€˜π‘…)) ∧ βˆ€π‘¦ ∈ 𝐡 ((πΉβ€˜(π‘₯(.rβ€˜π‘…)𝑦)) = ((πΉβ€˜π‘₯) Β· (πΉβ€˜π‘¦)) ∧ (πΉβ€˜(π‘₯(+gβ€˜π‘…)𝑦)) ≀ ((πΉβ€˜π‘₯) + (πΉβ€˜π‘¦))))))
109simpld 494 1 (𝐹 ∈ 𝐴 β†’ 𝐹:𝐡⟢(0[,)+∞))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 395   = wceq 1540   ∈ wcel 2105  βˆ€wral 3060   class class class wbr 5148  βŸΆwf 6539  β€˜cfv 6543  (class class class)co 7412  0cc0 11113   + caddc 11116   Β· cmul 11118  +∞cpnf 11250   ≀ cle 11254  [,)cico 13331  Basecbs 17149  +gcplusg 17202  .rcmulr 17203  0gc0g 17390  Ringcrg 20128  AbsValcabv 20568
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7728
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-sbc 3778  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-fv 6551  df-ov 7415  df-oprab 7416  df-mpo 7417  df-map 8825  df-abv 20569
This theorem is referenced by:  abvf  20575  abvge0  20577
  Copyright terms: Public domain W3C validator