Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > abvfge0 | Structured version Visualization version GIF version |
Description: An absolute value is a function from the ring to the nonnegative real numbers. (Contributed by Mario Carneiro, 8-Sep-2014.) |
Ref | Expression |
---|---|
abvf.a | ⊢ 𝐴 = (AbsVal‘𝑅) |
abvf.b | ⊢ 𝐵 = (Base‘𝑅) |
Ref | Expression |
---|---|
abvfge0 | ⊢ (𝐹 ∈ 𝐴 → 𝐹:𝐵⟶(0[,)+∞)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abvf.a | . . . . 5 ⊢ 𝐴 = (AbsVal‘𝑅) | |
2 | 1 | abvrcl 19971 | . . . 4 ⊢ (𝐹 ∈ 𝐴 → 𝑅 ∈ Ring) |
3 | abvf.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑅) | |
4 | eqid 2739 | . . . . 5 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
5 | eqid 2739 | . . . . 5 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
6 | eqid 2739 | . . . . 5 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
7 | 1, 3, 4, 5, 6 | isabv 19969 | . . . 4 ⊢ (𝑅 ∈ Ring → (𝐹 ∈ 𝐴 ↔ (𝐹:𝐵⟶(0[,)+∞) ∧ ∀𝑥 ∈ 𝐵 (((𝐹‘𝑥) = 0 ↔ 𝑥 = (0g‘𝑅)) ∧ ∀𝑦 ∈ 𝐵 ((𝐹‘(𝑥(.r‘𝑅)𝑦)) = ((𝐹‘𝑥) · (𝐹‘𝑦)) ∧ (𝐹‘(𝑥(+g‘𝑅)𝑦)) ≤ ((𝐹‘𝑥) + (𝐹‘𝑦))))))) |
8 | 2, 7 | syl 17 | . . 3 ⊢ (𝐹 ∈ 𝐴 → (𝐹 ∈ 𝐴 ↔ (𝐹:𝐵⟶(0[,)+∞) ∧ ∀𝑥 ∈ 𝐵 (((𝐹‘𝑥) = 0 ↔ 𝑥 = (0g‘𝑅)) ∧ ∀𝑦 ∈ 𝐵 ((𝐹‘(𝑥(.r‘𝑅)𝑦)) = ((𝐹‘𝑥) · (𝐹‘𝑦)) ∧ (𝐹‘(𝑥(+g‘𝑅)𝑦)) ≤ ((𝐹‘𝑥) + (𝐹‘𝑦))))))) |
9 | 8 | ibi 270 | . 2 ⊢ (𝐹 ∈ 𝐴 → (𝐹:𝐵⟶(0[,)+∞) ∧ ∀𝑥 ∈ 𝐵 (((𝐹‘𝑥) = 0 ↔ 𝑥 = (0g‘𝑅)) ∧ ∀𝑦 ∈ 𝐵 ((𝐹‘(𝑥(.r‘𝑅)𝑦)) = ((𝐹‘𝑥) · (𝐹‘𝑦)) ∧ (𝐹‘(𝑥(+g‘𝑅)𝑦)) ≤ ((𝐹‘𝑥) + (𝐹‘𝑦)))))) |
10 | 9 | simpld 498 | 1 ⊢ (𝐹 ∈ 𝐴 → 𝐹:𝐵⟶(0[,)+∞)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1543 ∈ wcel 2112 ∀wral 3064 class class class wbr 5070 ⟶wf 6411 ‘cfv 6415 (class class class)co 7252 0cc0 10777 + caddc 10780 · cmul 10782 +∞cpnf 10912 ≤ cle 10916 [,)cico 12985 Basecbs 16815 +gcplusg 16863 .rcmulr 16864 0gc0g 17042 Ringcrg 19673 AbsValcabv 19966 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2160 ax-12 2177 ax-ext 2710 ax-sep 5216 ax-nul 5223 ax-pow 5282 ax-pr 5346 ax-un 7563 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2073 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2818 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3425 df-sbc 3713 df-dif 3887 df-un 3889 df-in 3891 df-ss 3901 df-nul 4255 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5153 df-id 5479 df-xp 5585 df-rel 5586 df-cnv 5587 df-co 5588 df-dm 5589 df-rn 5590 df-res 5591 df-ima 5592 df-iota 6373 df-fun 6417 df-fn 6418 df-f 6419 df-fv 6423 df-ov 7255 df-oprab 7256 df-mpo 7257 df-map 8552 df-abv 19967 |
This theorem is referenced by: abvf 19973 abvge0 19975 |
Copyright terms: Public domain | W3C validator |