| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > abvfge0 | Structured version Visualization version GIF version | ||
| Description: An absolute value is a function from the ring to the nonnegative real numbers. (Contributed by Mario Carneiro, 8-Sep-2014.) |
| Ref | Expression |
|---|---|
| abvf.a | ⊢ 𝐴 = (AbsVal‘𝑅) |
| abvf.b | ⊢ 𝐵 = (Base‘𝑅) |
| Ref | Expression |
|---|---|
| abvfge0 | ⊢ (𝐹 ∈ 𝐴 → 𝐹:𝐵⟶(0[,)+∞)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abvf.a | . . . . 5 ⊢ 𝐴 = (AbsVal‘𝑅) | |
| 2 | 1 | abvrcl 20722 | . . . 4 ⊢ (𝐹 ∈ 𝐴 → 𝑅 ∈ Ring) |
| 3 | abvf.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑅) | |
| 4 | eqid 2729 | . . . . 5 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
| 5 | eqid 2729 | . . . . 5 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 6 | eqid 2729 | . . . . 5 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
| 7 | 1, 3, 4, 5, 6 | isabv 20720 | . . . 4 ⊢ (𝑅 ∈ Ring → (𝐹 ∈ 𝐴 ↔ (𝐹:𝐵⟶(0[,)+∞) ∧ ∀𝑥 ∈ 𝐵 (((𝐹‘𝑥) = 0 ↔ 𝑥 = (0g‘𝑅)) ∧ ∀𝑦 ∈ 𝐵 ((𝐹‘(𝑥(.r‘𝑅)𝑦)) = ((𝐹‘𝑥) · (𝐹‘𝑦)) ∧ (𝐹‘(𝑥(+g‘𝑅)𝑦)) ≤ ((𝐹‘𝑥) + (𝐹‘𝑦))))))) |
| 8 | 2, 7 | syl 17 | . . 3 ⊢ (𝐹 ∈ 𝐴 → (𝐹 ∈ 𝐴 ↔ (𝐹:𝐵⟶(0[,)+∞) ∧ ∀𝑥 ∈ 𝐵 (((𝐹‘𝑥) = 0 ↔ 𝑥 = (0g‘𝑅)) ∧ ∀𝑦 ∈ 𝐵 ((𝐹‘(𝑥(.r‘𝑅)𝑦)) = ((𝐹‘𝑥) · (𝐹‘𝑦)) ∧ (𝐹‘(𝑥(+g‘𝑅)𝑦)) ≤ ((𝐹‘𝑥) + (𝐹‘𝑦))))))) |
| 9 | 8 | ibi 267 | . 2 ⊢ (𝐹 ∈ 𝐴 → (𝐹:𝐵⟶(0[,)+∞) ∧ ∀𝑥 ∈ 𝐵 (((𝐹‘𝑥) = 0 ↔ 𝑥 = (0g‘𝑅)) ∧ ∀𝑦 ∈ 𝐵 ((𝐹‘(𝑥(.r‘𝑅)𝑦)) = ((𝐹‘𝑥) · (𝐹‘𝑦)) ∧ (𝐹‘(𝑥(+g‘𝑅)𝑦)) ≤ ((𝐹‘𝑥) + (𝐹‘𝑦)))))) |
| 10 | 9 | simpld 494 | 1 ⊢ (𝐹 ∈ 𝐴 → 𝐹:𝐵⟶(0[,)+∞)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 class class class wbr 5107 ⟶wf 6507 ‘cfv 6511 (class class class)co 7387 0cc0 11068 + caddc 11071 · cmul 11073 +∞cpnf 11205 ≤ cle 11209 [,)cico 13308 Basecbs 17179 +gcplusg 17220 .rcmulr 17221 0gc0g 17402 Ringcrg 20142 AbsValcabv 20717 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-map 8801 df-abv 20718 |
| This theorem is referenced by: abvf 20724 abvge0 20726 |
| Copyright terms: Public domain | W3C validator |