MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abvpropd Structured version   Visualization version   GIF version

Theorem abvpropd 20017
Description: If two structures have the same ring components, they have the same collection of absolute values. (Contributed by Mario Carneiro, 4-Oct-2015.)
Hypotheses
Ref Expression
abvpropd.1 (𝜑𝐵 = (Base‘𝐾))
abvpropd.2 (𝜑𝐵 = (Base‘𝐿))
abvpropd.3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
abvpropd.4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦))
Assertion
Ref Expression
abvpropd (𝜑 → (AbsVal‘𝐾) = (AbsVal‘𝐿))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐾,𝑦   𝑥,𝐿,𝑦   𝜑,𝑥,𝑦

Proof of Theorem abvpropd
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 abvpropd.1 . . . . 5 (𝜑𝐵 = (Base‘𝐾))
2 abvpropd.2 . . . . 5 (𝜑𝐵 = (Base‘𝐿))
3 abvpropd.3 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
4 abvpropd.4 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦))
51, 2, 3, 4ringpropd 19736 . . . 4 (𝜑 → (𝐾 ∈ Ring ↔ 𝐿 ∈ Ring))
61, 2eqtr3d 2780 . . . . . 6 (𝜑 → (Base‘𝐾) = (Base‘𝐿))
76feq2d 6570 . . . . 5 (𝜑 → (𝑓:(Base‘𝐾)⟶(0[,)+∞) ↔ 𝑓:(Base‘𝐿)⟶(0[,)+∞)))
81, 2, 3grpidpropd 18261 . . . . . . . . . . 11 (𝜑 → (0g𝐾) = (0g𝐿))
98adantr 480 . . . . . . . . . 10 ((𝜑𝑥𝐵) → (0g𝐾) = (0g𝐿))
109eqeq2d 2749 . . . . . . . . 9 ((𝜑𝑥𝐵) → (𝑥 = (0g𝐾) ↔ 𝑥 = (0g𝐿)))
1110bibi2d 342 . . . . . . . 8 ((𝜑𝑥𝐵) → (((𝑓𝑥) = 0 ↔ 𝑥 = (0g𝐾)) ↔ ((𝑓𝑥) = 0 ↔ 𝑥 = (0g𝐿))))
124fveqeq2d 6764 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ((𝑓‘(𝑥(.r𝐾)𝑦)) = ((𝑓𝑥) · (𝑓𝑦)) ↔ (𝑓‘(𝑥(.r𝐿)𝑦)) = ((𝑓𝑥) · (𝑓𝑦))))
133fveq2d 6760 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑓‘(𝑥(+g𝐾)𝑦)) = (𝑓‘(𝑥(+g𝐿)𝑦)))
1413breq1d 5080 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ((𝑓‘(𝑥(+g𝐾)𝑦)) ≤ ((𝑓𝑥) + (𝑓𝑦)) ↔ (𝑓‘(𝑥(+g𝐿)𝑦)) ≤ ((𝑓𝑥) + (𝑓𝑦))))
1512, 14anbi12d 630 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (((𝑓‘(𝑥(.r𝐾)𝑦)) = ((𝑓𝑥) · (𝑓𝑦)) ∧ (𝑓‘(𝑥(+g𝐾)𝑦)) ≤ ((𝑓𝑥) + (𝑓𝑦))) ↔ ((𝑓‘(𝑥(.r𝐿)𝑦)) = ((𝑓𝑥) · (𝑓𝑦)) ∧ (𝑓‘(𝑥(+g𝐿)𝑦)) ≤ ((𝑓𝑥) + (𝑓𝑦)))))
1615anassrs 467 . . . . . . . . 9 (((𝜑𝑥𝐵) ∧ 𝑦𝐵) → (((𝑓‘(𝑥(.r𝐾)𝑦)) = ((𝑓𝑥) · (𝑓𝑦)) ∧ (𝑓‘(𝑥(+g𝐾)𝑦)) ≤ ((𝑓𝑥) + (𝑓𝑦))) ↔ ((𝑓‘(𝑥(.r𝐿)𝑦)) = ((𝑓𝑥) · (𝑓𝑦)) ∧ (𝑓‘(𝑥(+g𝐿)𝑦)) ≤ ((𝑓𝑥) + (𝑓𝑦)))))
1716ralbidva 3119 . . . . . . . 8 ((𝜑𝑥𝐵) → (∀𝑦𝐵 ((𝑓‘(𝑥(.r𝐾)𝑦)) = ((𝑓𝑥) · (𝑓𝑦)) ∧ (𝑓‘(𝑥(+g𝐾)𝑦)) ≤ ((𝑓𝑥) + (𝑓𝑦))) ↔ ∀𝑦𝐵 ((𝑓‘(𝑥(.r𝐿)𝑦)) = ((𝑓𝑥) · (𝑓𝑦)) ∧ (𝑓‘(𝑥(+g𝐿)𝑦)) ≤ ((𝑓𝑥) + (𝑓𝑦)))))
1811, 17anbi12d 630 . . . . . . 7 ((𝜑𝑥𝐵) → ((((𝑓𝑥) = 0 ↔ 𝑥 = (0g𝐾)) ∧ ∀𝑦𝐵 ((𝑓‘(𝑥(.r𝐾)𝑦)) = ((𝑓𝑥) · (𝑓𝑦)) ∧ (𝑓‘(𝑥(+g𝐾)𝑦)) ≤ ((𝑓𝑥) + (𝑓𝑦)))) ↔ (((𝑓𝑥) = 0 ↔ 𝑥 = (0g𝐿)) ∧ ∀𝑦𝐵 ((𝑓‘(𝑥(.r𝐿)𝑦)) = ((𝑓𝑥) · (𝑓𝑦)) ∧ (𝑓‘(𝑥(+g𝐿)𝑦)) ≤ ((𝑓𝑥) + (𝑓𝑦))))))
1918ralbidva 3119 . . . . . 6 (𝜑 → (∀𝑥𝐵 (((𝑓𝑥) = 0 ↔ 𝑥 = (0g𝐾)) ∧ ∀𝑦𝐵 ((𝑓‘(𝑥(.r𝐾)𝑦)) = ((𝑓𝑥) · (𝑓𝑦)) ∧ (𝑓‘(𝑥(+g𝐾)𝑦)) ≤ ((𝑓𝑥) + (𝑓𝑦)))) ↔ ∀𝑥𝐵 (((𝑓𝑥) = 0 ↔ 𝑥 = (0g𝐿)) ∧ ∀𝑦𝐵 ((𝑓‘(𝑥(.r𝐿)𝑦)) = ((𝑓𝑥) · (𝑓𝑦)) ∧ (𝑓‘(𝑥(+g𝐿)𝑦)) ≤ ((𝑓𝑥) + (𝑓𝑦))))))
201raleqdv 3339 . . . . . . . 8 (𝜑 → (∀𝑦𝐵 ((𝑓‘(𝑥(.r𝐾)𝑦)) = ((𝑓𝑥) · (𝑓𝑦)) ∧ (𝑓‘(𝑥(+g𝐾)𝑦)) ≤ ((𝑓𝑥) + (𝑓𝑦))) ↔ ∀𝑦 ∈ (Base‘𝐾)((𝑓‘(𝑥(.r𝐾)𝑦)) = ((𝑓𝑥) · (𝑓𝑦)) ∧ (𝑓‘(𝑥(+g𝐾)𝑦)) ≤ ((𝑓𝑥) + (𝑓𝑦)))))
2120anbi2d 628 . . . . . . 7 (𝜑 → ((((𝑓𝑥) = 0 ↔ 𝑥 = (0g𝐾)) ∧ ∀𝑦𝐵 ((𝑓‘(𝑥(.r𝐾)𝑦)) = ((𝑓𝑥) · (𝑓𝑦)) ∧ (𝑓‘(𝑥(+g𝐾)𝑦)) ≤ ((𝑓𝑥) + (𝑓𝑦)))) ↔ (((𝑓𝑥) = 0 ↔ 𝑥 = (0g𝐾)) ∧ ∀𝑦 ∈ (Base‘𝐾)((𝑓‘(𝑥(.r𝐾)𝑦)) = ((𝑓𝑥) · (𝑓𝑦)) ∧ (𝑓‘(𝑥(+g𝐾)𝑦)) ≤ ((𝑓𝑥) + (𝑓𝑦))))))
221, 21raleqbidv 3327 . . . . . 6 (𝜑 → (∀𝑥𝐵 (((𝑓𝑥) = 0 ↔ 𝑥 = (0g𝐾)) ∧ ∀𝑦𝐵 ((𝑓‘(𝑥(.r𝐾)𝑦)) = ((𝑓𝑥) · (𝑓𝑦)) ∧ (𝑓‘(𝑥(+g𝐾)𝑦)) ≤ ((𝑓𝑥) + (𝑓𝑦)))) ↔ ∀𝑥 ∈ (Base‘𝐾)(((𝑓𝑥) = 0 ↔ 𝑥 = (0g𝐾)) ∧ ∀𝑦 ∈ (Base‘𝐾)((𝑓‘(𝑥(.r𝐾)𝑦)) = ((𝑓𝑥) · (𝑓𝑦)) ∧ (𝑓‘(𝑥(+g𝐾)𝑦)) ≤ ((𝑓𝑥) + (𝑓𝑦))))))
232raleqdv 3339 . . . . . . . 8 (𝜑 → (∀𝑦𝐵 ((𝑓‘(𝑥(.r𝐿)𝑦)) = ((𝑓𝑥) · (𝑓𝑦)) ∧ (𝑓‘(𝑥(+g𝐿)𝑦)) ≤ ((𝑓𝑥) + (𝑓𝑦))) ↔ ∀𝑦 ∈ (Base‘𝐿)((𝑓‘(𝑥(.r𝐿)𝑦)) = ((𝑓𝑥) · (𝑓𝑦)) ∧ (𝑓‘(𝑥(+g𝐿)𝑦)) ≤ ((𝑓𝑥) + (𝑓𝑦)))))
2423anbi2d 628 . . . . . . 7 (𝜑 → ((((𝑓𝑥) = 0 ↔ 𝑥 = (0g𝐿)) ∧ ∀𝑦𝐵 ((𝑓‘(𝑥(.r𝐿)𝑦)) = ((𝑓𝑥) · (𝑓𝑦)) ∧ (𝑓‘(𝑥(+g𝐿)𝑦)) ≤ ((𝑓𝑥) + (𝑓𝑦)))) ↔ (((𝑓𝑥) = 0 ↔ 𝑥 = (0g𝐿)) ∧ ∀𝑦 ∈ (Base‘𝐿)((𝑓‘(𝑥(.r𝐿)𝑦)) = ((𝑓𝑥) · (𝑓𝑦)) ∧ (𝑓‘(𝑥(+g𝐿)𝑦)) ≤ ((𝑓𝑥) + (𝑓𝑦))))))
252, 24raleqbidv 3327 . . . . . 6 (𝜑 → (∀𝑥𝐵 (((𝑓𝑥) = 0 ↔ 𝑥 = (0g𝐿)) ∧ ∀𝑦𝐵 ((𝑓‘(𝑥(.r𝐿)𝑦)) = ((𝑓𝑥) · (𝑓𝑦)) ∧ (𝑓‘(𝑥(+g𝐿)𝑦)) ≤ ((𝑓𝑥) + (𝑓𝑦)))) ↔ ∀𝑥 ∈ (Base‘𝐿)(((𝑓𝑥) = 0 ↔ 𝑥 = (0g𝐿)) ∧ ∀𝑦 ∈ (Base‘𝐿)((𝑓‘(𝑥(.r𝐿)𝑦)) = ((𝑓𝑥) · (𝑓𝑦)) ∧ (𝑓‘(𝑥(+g𝐿)𝑦)) ≤ ((𝑓𝑥) + (𝑓𝑦))))))
2619, 22, 253bitr3d 308 . . . . 5 (𝜑 → (∀𝑥 ∈ (Base‘𝐾)(((𝑓𝑥) = 0 ↔ 𝑥 = (0g𝐾)) ∧ ∀𝑦 ∈ (Base‘𝐾)((𝑓‘(𝑥(.r𝐾)𝑦)) = ((𝑓𝑥) · (𝑓𝑦)) ∧ (𝑓‘(𝑥(+g𝐾)𝑦)) ≤ ((𝑓𝑥) + (𝑓𝑦)))) ↔ ∀𝑥 ∈ (Base‘𝐿)(((𝑓𝑥) = 0 ↔ 𝑥 = (0g𝐿)) ∧ ∀𝑦 ∈ (Base‘𝐿)((𝑓‘(𝑥(.r𝐿)𝑦)) = ((𝑓𝑥) · (𝑓𝑦)) ∧ (𝑓‘(𝑥(+g𝐿)𝑦)) ≤ ((𝑓𝑥) + (𝑓𝑦))))))
277, 26anbi12d 630 . . . 4 (𝜑 → ((𝑓:(Base‘𝐾)⟶(0[,)+∞) ∧ ∀𝑥 ∈ (Base‘𝐾)(((𝑓𝑥) = 0 ↔ 𝑥 = (0g𝐾)) ∧ ∀𝑦 ∈ (Base‘𝐾)((𝑓‘(𝑥(.r𝐾)𝑦)) = ((𝑓𝑥) · (𝑓𝑦)) ∧ (𝑓‘(𝑥(+g𝐾)𝑦)) ≤ ((𝑓𝑥) + (𝑓𝑦))))) ↔ (𝑓:(Base‘𝐿)⟶(0[,)+∞) ∧ ∀𝑥 ∈ (Base‘𝐿)(((𝑓𝑥) = 0 ↔ 𝑥 = (0g𝐿)) ∧ ∀𝑦 ∈ (Base‘𝐿)((𝑓‘(𝑥(.r𝐿)𝑦)) = ((𝑓𝑥) · (𝑓𝑦)) ∧ (𝑓‘(𝑥(+g𝐿)𝑦)) ≤ ((𝑓𝑥) + (𝑓𝑦)))))))
285, 27anbi12d 630 . . 3 (𝜑 → ((𝐾 ∈ Ring ∧ (𝑓:(Base‘𝐾)⟶(0[,)+∞) ∧ ∀𝑥 ∈ (Base‘𝐾)(((𝑓𝑥) = 0 ↔ 𝑥 = (0g𝐾)) ∧ ∀𝑦 ∈ (Base‘𝐾)((𝑓‘(𝑥(.r𝐾)𝑦)) = ((𝑓𝑥) · (𝑓𝑦)) ∧ (𝑓‘(𝑥(+g𝐾)𝑦)) ≤ ((𝑓𝑥) + (𝑓𝑦)))))) ↔ (𝐿 ∈ Ring ∧ (𝑓:(Base‘𝐿)⟶(0[,)+∞) ∧ ∀𝑥 ∈ (Base‘𝐿)(((𝑓𝑥) = 0 ↔ 𝑥 = (0g𝐿)) ∧ ∀𝑦 ∈ (Base‘𝐿)((𝑓‘(𝑥(.r𝐿)𝑦)) = ((𝑓𝑥) · (𝑓𝑦)) ∧ (𝑓‘(𝑥(+g𝐿)𝑦)) ≤ ((𝑓𝑥) + (𝑓𝑦))))))))
29 eqid 2738 . . . . 5 (AbsVal‘𝐾) = (AbsVal‘𝐾)
3029abvrcl 19996 . . . 4 (𝑓 ∈ (AbsVal‘𝐾) → 𝐾 ∈ Ring)
31 eqid 2738 . . . . 5 (Base‘𝐾) = (Base‘𝐾)
32 eqid 2738 . . . . 5 (+g𝐾) = (+g𝐾)
33 eqid 2738 . . . . 5 (.r𝐾) = (.r𝐾)
34 eqid 2738 . . . . 5 (0g𝐾) = (0g𝐾)
3529, 31, 32, 33, 34isabv 19994 . . . 4 (𝐾 ∈ Ring → (𝑓 ∈ (AbsVal‘𝐾) ↔ (𝑓:(Base‘𝐾)⟶(0[,)+∞) ∧ ∀𝑥 ∈ (Base‘𝐾)(((𝑓𝑥) = 0 ↔ 𝑥 = (0g𝐾)) ∧ ∀𝑦 ∈ (Base‘𝐾)((𝑓‘(𝑥(.r𝐾)𝑦)) = ((𝑓𝑥) · (𝑓𝑦)) ∧ (𝑓‘(𝑥(+g𝐾)𝑦)) ≤ ((𝑓𝑥) + (𝑓𝑦)))))))
3630, 35biadanii 818 . . 3 (𝑓 ∈ (AbsVal‘𝐾) ↔ (𝐾 ∈ Ring ∧ (𝑓:(Base‘𝐾)⟶(0[,)+∞) ∧ ∀𝑥 ∈ (Base‘𝐾)(((𝑓𝑥) = 0 ↔ 𝑥 = (0g𝐾)) ∧ ∀𝑦 ∈ (Base‘𝐾)((𝑓‘(𝑥(.r𝐾)𝑦)) = ((𝑓𝑥) · (𝑓𝑦)) ∧ (𝑓‘(𝑥(+g𝐾)𝑦)) ≤ ((𝑓𝑥) + (𝑓𝑦)))))))
37 eqid 2738 . . . . 5 (AbsVal‘𝐿) = (AbsVal‘𝐿)
3837abvrcl 19996 . . . 4 (𝑓 ∈ (AbsVal‘𝐿) → 𝐿 ∈ Ring)
39 eqid 2738 . . . . 5 (Base‘𝐿) = (Base‘𝐿)
40 eqid 2738 . . . . 5 (+g𝐿) = (+g𝐿)
41 eqid 2738 . . . . 5 (.r𝐿) = (.r𝐿)
42 eqid 2738 . . . . 5 (0g𝐿) = (0g𝐿)
4337, 39, 40, 41, 42isabv 19994 . . . 4 (𝐿 ∈ Ring → (𝑓 ∈ (AbsVal‘𝐿) ↔ (𝑓:(Base‘𝐿)⟶(0[,)+∞) ∧ ∀𝑥 ∈ (Base‘𝐿)(((𝑓𝑥) = 0 ↔ 𝑥 = (0g𝐿)) ∧ ∀𝑦 ∈ (Base‘𝐿)((𝑓‘(𝑥(.r𝐿)𝑦)) = ((𝑓𝑥) · (𝑓𝑦)) ∧ (𝑓‘(𝑥(+g𝐿)𝑦)) ≤ ((𝑓𝑥) + (𝑓𝑦)))))))
4438, 43biadanii 818 . . 3 (𝑓 ∈ (AbsVal‘𝐿) ↔ (𝐿 ∈ Ring ∧ (𝑓:(Base‘𝐿)⟶(0[,)+∞) ∧ ∀𝑥 ∈ (Base‘𝐿)(((𝑓𝑥) = 0 ↔ 𝑥 = (0g𝐿)) ∧ ∀𝑦 ∈ (Base‘𝐿)((𝑓‘(𝑥(.r𝐿)𝑦)) = ((𝑓𝑥) · (𝑓𝑦)) ∧ (𝑓‘(𝑥(+g𝐿)𝑦)) ≤ ((𝑓𝑥) + (𝑓𝑦)))))))
4528, 36, 443bitr4g 313 . 2 (𝜑 → (𝑓 ∈ (AbsVal‘𝐾) ↔ 𝑓 ∈ (AbsVal‘𝐿)))
4645eqrdv 2736 1 (𝜑 → (AbsVal‘𝐾) = (AbsVal‘𝐿))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wral 3063   class class class wbr 5070  wf 6414  cfv 6418  (class class class)co 7255  0cc0 10802   + caddc 10805   · cmul 10807  +∞cpnf 10937  cle 10941  [,)cico 13010  Basecbs 16840  +gcplusg 16888  .rcmulr 16889  0gc0g 17067  Ringcrg 19698  AbsValcabv 19991
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-plusg 16901  df-0g 17069  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-grp 18495  df-mgp 19636  df-ring 19700  df-abv 19992
This theorem is referenced by:  tngnrg  23744  abvpropd2  31139
  Copyright terms: Public domain W3C validator