Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  abvpropd Structured version   Visualization version   GIF version

Theorem abvpropd 19610
 Description: If two structures have the same ring components, they have the same collection of absolute values. (Contributed by Mario Carneiro, 4-Oct-2015.)
Hypotheses
Ref Expression
abvpropd.1 (𝜑𝐵 = (Base‘𝐾))
abvpropd.2 (𝜑𝐵 = (Base‘𝐿))
abvpropd.3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
abvpropd.4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦))
Assertion
Ref Expression
abvpropd (𝜑 → (AbsVal‘𝐾) = (AbsVal‘𝐿))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐾,𝑦   𝑥,𝐿,𝑦   𝜑,𝑥,𝑦

Proof of Theorem abvpropd
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 abvpropd.1 . . . . 5 (𝜑𝐵 = (Base‘𝐾))
2 abvpropd.2 . . . . 5 (𝜑𝐵 = (Base‘𝐿))
3 abvpropd.3 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
4 abvpropd.4 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦))
51, 2, 3, 4ringpropd 19332 . . . 4 (𝜑 → (𝐾 ∈ Ring ↔ 𝐿 ∈ Ring))
61, 2eqtr3d 2838 . . . . . 6 (𝜑 → (Base‘𝐾) = (Base‘𝐿))
76feq2d 6477 . . . . 5 (𝜑 → (𝑓:(Base‘𝐾)⟶(0[,)+∞) ↔ 𝑓:(Base‘𝐿)⟶(0[,)+∞)))
81, 2, 3grpidpropd 17868 . . . . . . . . . . 11 (𝜑 → (0g𝐾) = (0g𝐿))
98adantr 484 . . . . . . . . . 10 ((𝜑𝑥𝐵) → (0g𝐾) = (0g𝐿))
109eqeq2d 2812 . . . . . . . . 9 ((𝜑𝑥𝐵) → (𝑥 = (0g𝐾) ↔ 𝑥 = (0g𝐿)))
1110bibi2d 346 . . . . . . . 8 ((𝜑𝑥𝐵) → (((𝑓𝑥) = 0 ↔ 𝑥 = (0g𝐾)) ↔ ((𝑓𝑥) = 0 ↔ 𝑥 = (0g𝐿))))
124fveqeq2d 6657 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ((𝑓‘(𝑥(.r𝐾)𝑦)) = ((𝑓𝑥) · (𝑓𝑦)) ↔ (𝑓‘(𝑥(.r𝐿)𝑦)) = ((𝑓𝑥) · (𝑓𝑦))))
133fveq2d 6653 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑓‘(𝑥(+g𝐾)𝑦)) = (𝑓‘(𝑥(+g𝐿)𝑦)))
1413breq1d 5043 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ((𝑓‘(𝑥(+g𝐾)𝑦)) ≤ ((𝑓𝑥) + (𝑓𝑦)) ↔ (𝑓‘(𝑥(+g𝐿)𝑦)) ≤ ((𝑓𝑥) + (𝑓𝑦))))
1512, 14anbi12d 633 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (((𝑓‘(𝑥(.r𝐾)𝑦)) = ((𝑓𝑥) · (𝑓𝑦)) ∧ (𝑓‘(𝑥(+g𝐾)𝑦)) ≤ ((𝑓𝑥) + (𝑓𝑦))) ↔ ((𝑓‘(𝑥(.r𝐿)𝑦)) = ((𝑓𝑥) · (𝑓𝑦)) ∧ (𝑓‘(𝑥(+g𝐿)𝑦)) ≤ ((𝑓𝑥) + (𝑓𝑦)))))
1615anassrs 471 . . . . . . . . 9 (((𝜑𝑥𝐵) ∧ 𝑦𝐵) → (((𝑓‘(𝑥(.r𝐾)𝑦)) = ((𝑓𝑥) · (𝑓𝑦)) ∧ (𝑓‘(𝑥(+g𝐾)𝑦)) ≤ ((𝑓𝑥) + (𝑓𝑦))) ↔ ((𝑓‘(𝑥(.r𝐿)𝑦)) = ((𝑓𝑥) · (𝑓𝑦)) ∧ (𝑓‘(𝑥(+g𝐿)𝑦)) ≤ ((𝑓𝑥) + (𝑓𝑦)))))
1716ralbidva 3164 . . . . . . . 8 ((𝜑𝑥𝐵) → (∀𝑦𝐵 ((𝑓‘(𝑥(.r𝐾)𝑦)) = ((𝑓𝑥) · (𝑓𝑦)) ∧ (𝑓‘(𝑥(+g𝐾)𝑦)) ≤ ((𝑓𝑥) + (𝑓𝑦))) ↔ ∀𝑦𝐵 ((𝑓‘(𝑥(.r𝐿)𝑦)) = ((𝑓𝑥) · (𝑓𝑦)) ∧ (𝑓‘(𝑥(+g𝐿)𝑦)) ≤ ((𝑓𝑥) + (𝑓𝑦)))))
1811, 17anbi12d 633 . . . . . . 7 ((𝜑𝑥𝐵) → ((((𝑓𝑥) = 0 ↔ 𝑥 = (0g𝐾)) ∧ ∀𝑦𝐵 ((𝑓‘(𝑥(.r𝐾)𝑦)) = ((𝑓𝑥) · (𝑓𝑦)) ∧ (𝑓‘(𝑥(+g𝐾)𝑦)) ≤ ((𝑓𝑥) + (𝑓𝑦)))) ↔ (((𝑓𝑥) = 0 ↔ 𝑥 = (0g𝐿)) ∧ ∀𝑦𝐵 ((𝑓‘(𝑥(.r𝐿)𝑦)) = ((𝑓𝑥) · (𝑓𝑦)) ∧ (𝑓‘(𝑥(+g𝐿)𝑦)) ≤ ((𝑓𝑥) + (𝑓𝑦))))))
1918ralbidva 3164 . . . . . 6 (𝜑 → (∀𝑥𝐵 (((𝑓𝑥) = 0 ↔ 𝑥 = (0g𝐾)) ∧ ∀𝑦𝐵 ((𝑓‘(𝑥(.r𝐾)𝑦)) = ((𝑓𝑥) · (𝑓𝑦)) ∧ (𝑓‘(𝑥(+g𝐾)𝑦)) ≤ ((𝑓𝑥) + (𝑓𝑦)))) ↔ ∀𝑥𝐵 (((𝑓𝑥) = 0 ↔ 𝑥 = (0g𝐿)) ∧ ∀𝑦𝐵 ((𝑓‘(𝑥(.r𝐿)𝑦)) = ((𝑓𝑥) · (𝑓𝑦)) ∧ (𝑓‘(𝑥(+g𝐿)𝑦)) ≤ ((𝑓𝑥) + (𝑓𝑦))))))
201raleqdv 3367 . . . . . . . 8 (𝜑 → (∀𝑦𝐵 ((𝑓‘(𝑥(.r𝐾)𝑦)) = ((𝑓𝑥) · (𝑓𝑦)) ∧ (𝑓‘(𝑥(+g𝐾)𝑦)) ≤ ((𝑓𝑥) + (𝑓𝑦))) ↔ ∀𝑦 ∈ (Base‘𝐾)((𝑓‘(𝑥(.r𝐾)𝑦)) = ((𝑓𝑥) · (𝑓𝑦)) ∧ (𝑓‘(𝑥(+g𝐾)𝑦)) ≤ ((𝑓𝑥) + (𝑓𝑦)))))
2120anbi2d 631 . . . . . . 7 (𝜑 → ((((𝑓𝑥) = 0 ↔ 𝑥 = (0g𝐾)) ∧ ∀𝑦𝐵 ((𝑓‘(𝑥(.r𝐾)𝑦)) = ((𝑓𝑥) · (𝑓𝑦)) ∧ (𝑓‘(𝑥(+g𝐾)𝑦)) ≤ ((𝑓𝑥) + (𝑓𝑦)))) ↔ (((𝑓𝑥) = 0 ↔ 𝑥 = (0g𝐾)) ∧ ∀𝑦 ∈ (Base‘𝐾)((𝑓‘(𝑥(.r𝐾)𝑦)) = ((𝑓𝑥) · (𝑓𝑦)) ∧ (𝑓‘(𝑥(+g𝐾)𝑦)) ≤ ((𝑓𝑥) + (𝑓𝑦))))))
221, 21raleqbidv 3357 . . . . . 6 (𝜑 → (∀𝑥𝐵 (((𝑓𝑥) = 0 ↔ 𝑥 = (0g𝐾)) ∧ ∀𝑦𝐵 ((𝑓‘(𝑥(.r𝐾)𝑦)) = ((𝑓𝑥) · (𝑓𝑦)) ∧ (𝑓‘(𝑥(+g𝐾)𝑦)) ≤ ((𝑓𝑥) + (𝑓𝑦)))) ↔ ∀𝑥 ∈ (Base‘𝐾)(((𝑓𝑥) = 0 ↔ 𝑥 = (0g𝐾)) ∧ ∀𝑦 ∈ (Base‘𝐾)((𝑓‘(𝑥(.r𝐾)𝑦)) = ((𝑓𝑥) · (𝑓𝑦)) ∧ (𝑓‘(𝑥(+g𝐾)𝑦)) ≤ ((𝑓𝑥) + (𝑓𝑦))))))
232raleqdv 3367 . . . . . . . 8 (𝜑 → (∀𝑦𝐵 ((𝑓‘(𝑥(.r𝐿)𝑦)) = ((𝑓𝑥) · (𝑓𝑦)) ∧ (𝑓‘(𝑥(+g𝐿)𝑦)) ≤ ((𝑓𝑥) + (𝑓𝑦))) ↔ ∀𝑦 ∈ (Base‘𝐿)((𝑓‘(𝑥(.r𝐿)𝑦)) = ((𝑓𝑥) · (𝑓𝑦)) ∧ (𝑓‘(𝑥(+g𝐿)𝑦)) ≤ ((𝑓𝑥) + (𝑓𝑦)))))
2423anbi2d 631 . . . . . . 7 (𝜑 → ((((𝑓𝑥) = 0 ↔ 𝑥 = (0g𝐿)) ∧ ∀𝑦𝐵 ((𝑓‘(𝑥(.r𝐿)𝑦)) = ((𝑓𝑥) · (𝑓𝑦)) ∧ (𝑓‘(𝑥(+g𝐿)𝑦)) ≤ ((𝑓𝑥) + (𝑓𝑦)))) ↔ (((𝑓𝑥) = 0 ↔ 𝑥 = (0g𝐿)) ∧ ∀𝑦 ∈ (Base‘𝐿)((𝑓‘(𝑥(.r𝐿)𝑦)) = ((𝑓𝑥) · (𝑓𝑦)) ∧ (𝑓‘(𝑥(+g𝐿)𝑦)) ≤ ((𝑓𝑥) + (𝑓𝑦))))))
252, 24raleqbidv 3357 . . . . . 6 (𝜑 → (∀𝑥𝐵 (((𝑓𝑥) = 0 ↔ 𝑥 = (0g𝐿)) ∧ ∀𝑦𝐵 ((𝑓‘(𝑥(.r𝐿)𝑦)) = ((𝑓𝑥) · (𝑓𝑦)) ∧ (𝑓‘(𝑥(+g𝐿)𝑦)) ≤ ((𝑓𝑥) + (𝑓𝑦)))) ↔ ∀𝑥 ∈ (Base‘𝐿)(((𝑓𝑥) = 0 ↔ 𝑥 = (0g𝐿)) ∧ ∀𝑦 ∈ (Base‘𝐿)((𝑓‘(𝑥(.r𝐿)𝑦)) = ((𝑓𝑥) · (𝑓𝑦)) ∧ (𝑓‘(𝑥(+g𝐿)𝑦)) ≤ ((𝑓𝑥) + (𝑓𝑦))))))
2619, 22, 253bitr3d 312 . . . . 5 (𝜑 → (∀𝑥 ∈ (Base‘𝐾)(((𝑓𝑥) = 0 ↔ 𝑥 = (0g𝐾)) ∧ ∀𝑦 ∈ (Base‘𝐾)((𝑓‘(𝑥(.r𝐾)𝑦)) = ((𝑓𝑥) · (𝑓𝑦)) ∧ (𝑓‘(𝑥(+g𝐾)𝑦)) ≤ ((𝑓𝑥) + (𝑓𝑦)))) ↔ ∀𝑥 ∈ (Base‘𝐿)(((𝑓𝑥) = 0 ↔ 𝑥 = (0g𝐿)) ∧ ∀𝑦 ∈ (Base‘𝐿)((𝑓‘(𝑥(.r𝐿)𝑦)) = ((𝑓𝑥) · (𝑓𝑦)) ∧ (𝑓‘(𝑥(+g𝐿)𝑦)) ≤ ((𝑓𝑥) + (𝑓𝑦))))))
277, 26anbi12d 633 . . . 4 (𝜑 → ((𝑓:(Base‘𝐾)⟶(0[,)+∞) ∧ ∀𝑥 ∈ (Base‘𝐾)(((𝑓𝑥) = 0 ↔ 𝑥 = (0g𝐾)) ∧ ∀𝑦 ∈ (Base‘𝐾)((𝑓‘(𝑥(.r𝐾)𝑦)) = ((𝑓𝑥) · (𝑓𝑦)) ∧ (𝑓‘(𝑥(+g𝐾)𝑦)) ≤ ((𝑓𝑥) + (𝑓𝑦))))) ↔ (𝑓:(Base‘𝐿)⟶(0[,)+∞) ∧ ∀𝑥 ∈ (Base‘𝐿)(((𝑓𝑥) = 0 ↔ 𝑥 = (0g𝐿)) ∧ ∀𝑦 ∈ (Base‘𝐿)((𝑓‘(𝑥(.r𝐿)𝑦)) = ((𝑓𝑥) · (𝑓𝑦)) ∧ (𝑓‘(𝑥(+g𝐿)𝑦)) ≤ ((𝑓𝑥) + (𝑓𝑦)))))))
285, 27anbi12d 633 . . 3 (𝜑 → ((𝐾 ∈ Ring ∧ (𝑓:(Base‘𝐾)⟶(0[,)+∞) ∧ ∀𝑥 ∈ (Base‘𝐾)(((𝑓𝑥) = 0 ↔ 𝑥 = (0g𝐾)) ∧ ∀𝑦 ∈ (Base‘𝐾)((𝑓‘(𝑥(.r𝐾)𝑦)) = ((𝑓𝑥) · (𝑓𝑦)) ∧ (𝑓‘(𝑥(+g𝐾)𝑦)) ≤ ((𝑓𝑥) + (𝑓𝑦)))))) ↔ (𝐿 ∈ Ring ∧ (𝑓:(Base‘𝐿)⟶(0[,)+∞) ∧ ∀𝑥 ∈ (Base‘𝐿)(((𝑓𝑥) = 0 ↔ 𝑥 = (0g𝐿)) ∧ ∀𝑦 ∈ (Base‘𝐿)((𝑓‘(𝑥(.r𝐿)𝑦)) = ((𝑓𝑥) · (𝑓𝑦)) ∧ (𝑓‘(𝑥(+g𝐿)𝑦)) ≤ ((𝑓𝑥) + (𝑓𝑦))))))))
29 eqid 2801 . . . . 5 (AbsVal‘𝐾) = (AbsVal‘𝐾)
3029abvrcl 19589 . . . 4 (𝑓 ∈ (AbsVal‘𝐾) → 𝐾 ∈ Ring)
31 eqid 2801 . . . . 5 (Base‘𝐾) = (Base‘𝐾)
32 eqid 2801 . . . . 5 (+g𝐾) = (+g𝐾)
33 eqid 2801 . . . . 5 (.r𝐾) = (.r𝐾)
34 eqid 2801 . . . . 5 (0g𝐾) = (0g𝐾)
3529, 31, 32, 33, 34isabv 19587 . . . 4 (𝐾 ∈ Ring → (𝑓 ∈ (AbsVal‘𝐾) ↔ (𝑓:(Base‘𝐾)⟶(0[,)+∞) ∧ ∀𝑥 ∈ (Base‘𝐾)(((𝑓𝑥) = 0 ↔ 𝑥 = (0g𝐾)) ∧ ∀𝑦 ∈ (Base‘𝐾)((𝑓‘(𝑥(.r𝐾)𝑦)) = ((𝑓𝑥) · (𝑓𝑦)) ∧ (𝑓‘(𝑥(+g𝐾)𝑦)) ≤ ((𝑓𝑥) + (𝑓𝑦)))))))
3630, 35biadanii 821 . . 3 (𝑓 ∈ (AbsVal‘𝐾) ↔ (𝐾 ∈ Ring ∧ (𝑓:(Base‘𝐾)⟶(0[,)+∞) ∧ ∀𝑥 ∈ (Base‘𝐾)(((𝑓𝑥) = 0 ↔ 𝑥 = (0g𝐾)) ∧ ∀𝑦 ∈ (Base‘𝐾)((𝑓‘(𝑥(.r𝐾)𝑦)) = ((𝑓𝑥) · (𝑓𝑦)) ∧ (𝑓‘(𝑥(+g𝐾)𝑦)) ≤ ((𝑓𝑥) + (𝑓𝑦)))))))
37 eqid 2801 . . . . 5 (AbsVal‘𝐿) = (AbsVal‘𝐿)
3837abvrcl 19589 . . . 4 (𝑓 ∈ (AbsVal‘𝐿) → 𝐿 ∈ Ring)
39 eqid 2801 . . . . 5 (Base‘𝐿) = (Base‘𝐿)
40 eqid 2801 . . . . 5 (+g𝐿) = (+g𝐿)
41 eqid 2801 . . . . 5 (.r𝐿) = (.r𝐿)
42 eqid 2801 . . . . 5 (0g𝐿) = (0g𝐿)
4337, 39, 40, 41, 42isabv 19587 . . . 4 (𝐿 ∈ Ring → (𝑓 ∈ (AbsVal‘𝐿) ↔ (𝑓:(Base‘𝐿)⟶(0[,)+∞) ∧ ∀𝑥 ∈ (Base‘𝐿)(((𝑓𝑥) = 0 ↔ 𝑥 = (0g𝐿)) ∧ ∀𝑦 ∈ (Base‘𝐿)((𝑓‘(𝑥(.r𝐿)𝑦)) = ((𝑓𝑥) · (𝑓𝑦)) ∧ (𝑓‘(𝑥(+g𝐿)𝑦)) ≤ ((𝑓𝑥) + (𝑓𝑦)))))))
4438, 43biadanii 821 . . 3 (𝑓 ∈ (AbsVal‘𝐿) ↔ (𝐿 ∈ Ring ∧ (𝑓:(Base‘𝐿)⟶(0[,)+∞) ∧ ∀𝑥 ∈ (Base‘𝐿)(((𝑓𝑥) = 0 ↔ 𝑥 = (0g𝐿)) ∧ ∀𝑦 ∈ (Base‘𝐿)((𝑓‘(𝑥(.r𝐿)𝑦)) = ((𝑓𝑥) · (𝑓𝑦)) ∧ (𝑓‘(𝑥(+g𝐿)𝑦)) ≤ ((𝑓𝑥) + (𝑓𝑦)))))))
4528, 36, 443bitr4g 317 . 2 (𝜑 → (𝑓 ∈ (AbsVal‘𝐾) ↔ 𝑓 ∈ (AbsVal‘𝐿)))
4645eqrdv 2799 1 (𝜑 → (AbsVal‘𝐾) = (AbsVal‘𝐿))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   = wceq 1538   ∈ wcel 2112  ∀wral 3109   class class class wbr 5033  ⟶wf 6324  ‘cfv 6328  (class class class)co 7139  0cc0 10530   + caddc 10533   · cmul 10535  +∞cpnf 10665   ≤ cle 10669  [,)cico 12732  Basecbs 16479  +gcplusg 16561  .rcmulr 16562  0gc0g 16709  Ringcrg 19294  AbsValcabv 19584 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-er 8276  df-map 8395  df-en 8497  df-dom 8498  df-sdom 8499  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-nn 11630  df-2 11692  df-ndx 16482  df-slot 16483  df-base 16485  df-sets 16486  df-plusg 16574  df-0g 16711  df-mgm 17848  df-sgrp 17897  df-mnd 17908  df-grp 18102  df-mgp 19237  df-ring 19296  df-abv 19585 This theorem is referenced by:  tngnrg  23284  abvpropd2  30669
 Copyright terms: Public domain W3C validator