Step | Hyp | Ref
| Expression |
1 | | abvpropd.1 |
. . . . 5
⊢ (𝜑 → 𝐵 = (Base‘𝐾)) |
2 | | abvpropd.2 |
. . . . 5
⊢ (𝜑 → 𝐵 = (Base‘𝐿)) |
3 | | abvpropd.3 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) |
4 | | abvpropd.4 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝐾)𝑦) = (𝑥(.r‘𝐿)𝑦)) |
5 | 1, 2, 3, 4 | ringpropd 19821 |
. . . 4
⊢ (𝜑 → (𝐾 ∈ Ring ↔ 𝐿 ∈ Ring)) |
6 | 1, 2 | eqtr3d 2780 |
. . . . . 6
⊢ (𝜑 → (Base‘𝐾) = (Base‘𝐿)) |
7 | 6 | feq2d 6586 |
. . . . 5
⊢ (𝜑 → (𝑓:(Base‘𝐾)⟶(0[,)+∞) ↔ 𝑓:(Base‘𝐿)⟶(0[,)+∞))) |
8 | 1, 2, 3 | grpidpropd 18346 |
. . . . . . . . . . 11
⊢ (𝜑 → (0g‘𝐾) = (0g‘𝐿)) |
9 | 8 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (0g‘𝐾) = (0g‘𝐿)) |
10 | 9 | eqeq2d 2749 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑥 = (0g‘𝐾) ↔ 𝑥 = (0g‘𝐿))) |
11 | 10 | bibi2d 343 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (((𝑓‘𝑥) = 0 ↔ 𝑥 = (0g‘𝐾)) ↔ ((𝑓‘𝑥) = 0 ↔ 𝑥 = (0g‘𝐿)))) |
12 | 4 | fveqeq2d 6782 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ((𝑓‘(𝑥(.r‘𝐾)𝑦)) = ((𝑓‘𝑥) · (𝑓‘𝑦)) ↔ (𝑓‘(𝑥(.r‘𝐿)𝑦)) = ((𝑓‘𝑥) · (𝑓‘𝑦)))) |
13 | 3 | fveq2d 6778 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑓‘(𝑥(+g‘𝐾)𝑦)) = (𝑓‘(𝑥(+g‘𝐿)𝑦))) |
14 | 13 | breq1d 5084 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ((𝑓‘(𝑥(+g‘𝐾)𝑦)) ≤ ((𝑓‘𝑥) + (𝑓‘𝑦)) ↔ (𝑓‘(𝑥(+g‘𝐿)𝑦)) ≤ ((𝑓‘𝑥) + (𝑓‘𝑦)))) |
15 | 12, 14 | anbi12d 631 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (((𝑓‘(𝑥(.r‘𝐾)𝑦)) = ((𝑓‘𝑥) · (𝑓‘𝑦)) ∧ (𝑓‘(𝑥(+g‘𝐾)𝑦)) ≤ ((𝑓‘𝑥) + (𝑓‘𝑦))) ↔ ((𝑓‘(𝑥(.r‘𝐿)𝑦)) = ((𝑓‘𝑥) · (𝑓‘𝑦)) ∧ (𝑓‘(𝑥(+g‘𝐿)𝑦)) ≤ ((𝑓‘𝑥) + (𝑓‘𝑦))))) |
16 | 15 | anassrs 468 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) → (((𝑓‘(𝑥(.r‘𝐾)𝑦)) = ((𝑓‘𝑥) · (𝑓‘𝑦)) ∧ (𝑓‘(𝑥(+g‘𝐾)𝑦)) ≤ ((𝑓‘𝑥) + (𝑓‘𝑦))) ↔ ((𝑓‘(𝑥(.r‘𝐿)𝑦)) = ((𝑓‘𝑥) · (𝑓‘𝑦)) ∧ (𝑓‘(𝑥(+g‘𝐿)𝑦)) ≤ ((𝑓‘𝑥) + (𝑓‘𝑦))))) |
17 | 16 | ralbidva 3111 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (∀𝑦 ∈ 𝐵 ((𝑓‘(𝑥(.r‘𝐾)𝑦)) = ((𝑓‘𝑥) · (𝑓‘𝑦)) ∧ (𝑓‘(𝑥(+g‘𝐾)𝑦)) ≤ ((𝑓‘𝑥) + (𝑓‘𝑦))) ↔ ∀𝑦 ∈ 𝐵 ((𝑓‘(𝑥(.r‘𝐿)𝑦)) = ((𝑓‘𝑥) · (𝑓‘𝑦)) ∧ (𝑓‘(𝑥(+g‘𝐿)𝑦)) ≤ ((𝑓‘𝑥) + (𝑓‘𝑦))))) |
18 | 11, 17 | anbi12d 631 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ((((𝑓‘𝑥) = 0 ↔ 𝑥 = (0g‘𝐾)) ∧ ∀𝑦 ∈ 𝐵 ((𝑓‘(𝑥(.r‘𝐾)𝑦)) = ((𝑓‘𝑥) · (𝑓‘𝑦)) ∧ (𝑓‘(𝑥(+g‘𝐾)𝑦)) ≤ ((𝑓‘𝑥) + (𝑓‘𝑦)))) ↔ (((𝑓‘𝑥) = 0 ↔ 𝑥 = (0g‘𝐿)) ∧ ∀𝑦 ∈ 𝐵 ((𝑓‘(𝑥(.r‘𝐿)𝑦)) = ((𝑓‘𝑥) · (𝑓‘𝑦)) ∧ (𝑓‘(𝑥(+g‘𝐿)𝑦)) ≤ ((𝑓‘𝑥) + (𝑓‘𝑦)))))) |
19 | 18 | ralbidva 3111 |
. . . . . 6
⊢ (𝜑 → (∀𝑥 ∈ 𝐵 (((𝑓‘𝑥) = 0 ↔ 𝑥 = (0g‘𝐾)) ∧ ∀𝑦 ∈ 𝐵 ((𝑓‘(𝑥(.r‘𝐾)𝑦)) = ((𝑓‘𝑥) · (𝑓‘𝑦)) ∧ (𝑓‘(𝑥(+g‘𝐾)𝑦)) ≤ ((𝑓‘𝑥) + (𝑓‘𝑦)))) ↔ ∀𝑥 ∈ 𝐵 (((𝑓‘𝑥) = 0 ↔ 𝑥 = (0g‘𝐿)) ∧ ∀𝑦 ∈ 𝐵 ((𝑓‘(𝑥(.r‘𝐿)𝑦)) = ((𝑓‘𝑥) · (𝑓‘𝑦)) ∧ (𝑓‘(𝑥(+g‘𝐿)𝑦)) ≤ ((𝑓‘𝑥) + (𝑓‘𝑦)))))) |
20 | 1 | raleqdv 3348 |
. . . . . . . 8
⊢ (𝜑 → (∀𝑦 ∈ 𝐵 ((𝑓‘(𝑥(.r‘𝐾)𝑦)) = ((𝑓‘𝑥) · (𝑓‘𝑦)) ∧ (𝑓‘(𝑥(+g‘𝐾)𝑦)) ≤ ((𝑓‘𝑥) + (𝑓‘𝑦))) ↔ ∀𝑦 ∈ (Base‘𝐾)((𝑓‘(𝑥(.r‘𝐾)𝑦)) = ((𝑓‘𝑥) · (𝑓‘𝑦)) ∧ (𝑓‘(𝑥(+g‘𝐾)𝑦)) ≤ ((𝑓‘𝑥) + (𝑓‘𝑦))))) |
21 | 20 | anbi2d 629 |
. . . . . . 7
⊢ (𝜑 → ((((𝑓‘𝑥) = 0 ↔ 𝑥 = (0g‘𝐾)) ∧ ∀𝑦 ∈ 𝐵 ((𝑓‘(𝑥(.r‘𝐾)𝑦)) = ((𝑓‘𝑥) · (𝑓‘𝑦)) ∧ (𝑓‘(𝑥(+g‘𝐾)𝑦)) ≤ ((𝑓‘𝑥) + (𝑓‘𝑦)))) ↔ (((𝑓‘𝑥) = 0 ↔ 𝑥 = (0g‘𝐾)) ∧ ∀𝑦 ∈ (Base‘𝐾)((𝑓‘(𝑥(.r‘𝐾)𝑦)) = ((𝑓‘𝑥) · (𝑓‘𝑦)) ∧ (𝑓‘(𝑥(+g‘𝐾)𝑦)) ≤ ((𝑓‘𝑥) + (𝑓‘𝑦)))))) |
22 | 1, 21 | raleqbidv 3336 |
. . . . . 6
⊢ (𝜑 → (∀𝑥 ∈ 𝐵 (((𝑓‘𝑥) = 0 ↔ 𝑥 = (0g‘𝐾)) ∧ ∀𝑦 ∈ 𝐵 ((𝑓‘(𝑥(.r‘𝐾)𝑦)) = ((𝑓‘𝑥) · (𝑓‘𝑦)) ∧ (𝑓‘(𝑥(+g‘𝐾)𝑦)) ≤ ((𝑓‘𝑥) + (𝑓‘𝑦)))) ↔ ∀𝑥 ∈ (Base‘𝐾)(((𝑓‘𝑥) = 0 ↔ 𝑥 = (0g‘𝐾)) ∧ ∀𝑦 ∈ (Base‘𝐾)((𝑓‘(𝑥(.r‘𝐾)𝑦)) = ((𝑓‘𝑥) · (𝑓‘𝑦)) ∧ (𝑓‘(𝑥(+g‘𝐾)𝑦)) ≤ ((𝑓‘𝑥) + (𝑓‘𝑦)))))) |
23 | 2 | raleqdv 3348 |
. . . . . . . 8
⊢ (𝜑 → (∀𝑦 ∈ 𝐵 ((𝑓‘(𝑥(.r‘𝐿)𝑦)) = ((𝑓‘𝑥) · (𝑓‘𝑦)) ∧ (𝑓‘(𝑥(+g‘𝐿)𝑦)) ≤ ((𝑓‘𝑥) + (𝑓‘𝑦))) ↔ ∀𝑦 ∈ (Base‘𝐿)((𝑓‘(𝑥(.r‘𝐿)𝑦)) = ((𝑓‘𝑥) · (𝑓‘𝑦)) ∧ (𝑓‘(𝑥(+g‘𝐿)𝑦)) ≤ ((𝑓‘𝑥) + (𝑓‘𝑦))))) |
24 | 23 | anbi2d 629 |
. . . . . . 7
⊢ (𝜑 → ((((𝑓‘𝑥) = 0 ↔ 𝑥 = (0g‘𝐿)) ∧ ∀𝑦 ∈ 𝐵 ((𝑓‘(𝑥(.r‘𝐿)𝑦)) = ((𝑓‘𝑥) · (𝑓‘𝑦)) ∧ (𝑓‘(𝑥(+g‘𝐿)𝑦)) ≤ ((𝑓‘𝑥) + (𝑓‘𝑦)))) ↔ (((𝑓‘𝑥) = 0 ↔ 𝑥 = (0g‘𝐿)) ∧ ∀𝑦 ∈ (Base‘𝐿)((𝑓‘(𝑥(.r‘𝐿)𝑦)) = ((𝑓‘𝑥) · (𝑓‘𝑦)) ∧ (𝑓‘(𝑥(+g‘𝐿)𝑦)) ≤ ((𝑓‘𝑥) + (𝑓‘𝑦)))))) |
25 | 2, 24 | raleqbidv 3336 |
. . . . . 6
⊢ (𝜑 → (∀𝑥 ∈ 𝐵 (((𝑓‘𝑥) = 0 ↔ 𝑥 = (0g‘𝐿)) ∧ ∀𝑦 ∈ 𝐵 ((𝑓‘(𝑥(.r‘𝐿)𝑦)) = ((𝑓‘𝑥) · (𝑓‘𝑦)) ∧ (𝑓‘(𝑥(+g‘𝐿)𝑦)) ≤ ((𝑓‘𝑥) + (𝑓‘𝑦)))) ↔ ∀𝑥 ∈ (Base‘𝐿)(((𝑓‘𝑥) = 0 ↔ 𝑥 = (0g‘𝐿)) ∧ ∀𝑦 ∈ (Base‘𝐿)((𝑓‘(𝑥(.r‘𝐿)𝑦)) = ((𝑓‘𝑥) · (𝑓‘𝑦)) ∧ (𝑓‘(𝑥(+g‘𝐿)𝑦)) ≤ ((𝑓‘𝑥) + (𝑓‘𝑦)))))) |
26 | 19, 22, 25 | 3bitr3d 309 |
. . . . 5
⊢ (𝜑 → (∀𝑥 ∈ (Base‘𝐾)(((𝑓‘𝑥) = 0 ↔ 𝑥 = (0g‘𝐾)) ∧ ∀𝑦 ∈ (Base‘𝐾)((𝑓‘(𝑥(.r‘𝐾)𝑦)) = ((𝑓‘𝑥) · (𝑓‘𝑦)) ∧ (𝑓‘(𝑥(+g‘𝐾)𝑦)) ≤ ((𝑓‘𝑥) + (𝑓‘𝑦)))) ↔ ∀𝑥 ∈ (Base‘𝐿)(((𝑓‘𝑥) = 0 ↔ 𝑥 = (0g‘𝐿)) ∧ ∀𝑦 ∈ (Base‘𝐿)((𝑓‘(𝑥(.r‘𝐿)𝑦)) = ((𝑓‘𝑥) · (𝑓‘𝑦)) ∧ (𝑓‘(𝑥(+g‘𝐿)𝑦)) ≤ ((𝑓‘𝑥) + (𝑓‘𝑦)))))) |
27 | 7, 26 | anbi12d 631 |
. . . 4
⊢ (𝜑 → ((𝑓:(Base‘𝐾)⟶(0[,)+∞) ∧ ∀𝑥 ∈ (Base‘𝐾)(((𝑓‘𝑥) = 0 ↔ 𝑥 = (0g‘𝐾)) ∧ ∀𝑦 ∈ (Base‘𝐾)((𝑓‘(𝑥(.r‘𝐾)𝑦)) = ((𝑓‘𝑥) · (𝑓‘𝑦)) ∧ (𝑓‘(𝑥(+g‘𝐾)𝑦)) ≤ ((𝑓‘𝑥) + (𝑓‘𝑦))))) ↔ (𝑓:(Base‘𝐿)⟶(0[,)+∞) ∧ ∀𝑥 ∈ (Base‘𝐿)(((𝑓‘𝑥) = 0 ↔ 𝑥 = (0g‘𝐿)) ∧ ∀𝑦 ∈ (Base‘𝐿)((𝑓‘(𝑥(.r‘𝐿)𝑦)) = ((𝑓‘𝑥) · (𝑓‘𝑦)) ∧ (𝑓‘(𝑥(+g‘𝐿)𝑦)) ≤ ((𝑓‘𝑥) + (𝑓‘𝑦))))))) |
28 | 5, 27 | anbi12d 631 |
. . 3
⊢ (𝜑 → ((𝐾 ∈ Ring ∧ (𝑓:(Base‘𝐾)⟶(0[,)+∞) ∧ ∀𝑥 ∈ (Base‘𝐾)(((𝑓‘𝑥) = 0 ↔ 𝑥 = (0g‘𝐾)) ∧ ∀𝑦 ∈ (Base‘𝐾)((𝑓‘(𝑥(.r‘𝐾)𝑦)) = ((𝑓‘𝑥) · (𝑓‘𝑦)) ∧ (𝑓‘(𝑥(+g‘𝐾)𝑦)) ≤ ((𝑓‘𝑥) + (𝑓‘𝑦)))))) ↔ (𝐿 ∈ Ring ∧ (𝑓:(Base‘𝐿)⟶(0[,)+∞) ∧ ∀𝑥 ∈ (Base‘𝐿)(((𝑓‘𝑥) = 0 ↔ 𝑥 = (0g‘𝐿)) ∧ ∀𝑦 ∈ (Base‘𝐿)((𝑓‘(𝑥(.r‘𝐿)𝑦)) = ((𝑓‘𝑥) · (𝑓‘𝑦)) ∧ (𝑓‘(𝑥(+g‘𝐿)𝑦)) ≤ ((𝑓‘𝑥) + (𝑓‘𝑦)))))))) |
29 | | eqid 2738 |
. . . . 5
⊢
(AbsVal‘𝐾) =
(AbsVal‘𝐾) |
30 | 29 | abvrcl 20081 |
. . . 4
⊢ (𝑓 ∈ (AbsVal‘𝐾) → 𝐾 ∈ Ring) |
31 | | eqid 2738 |
. . . . 5
⊢
(Base‘𝐾) =
(Base‘𝐾) |
32 | | eqid 2738 |
. . . . 5
⊢
(+g‘𝐾) = (+g‘𝐾) |
33 | | eqid 2738 |
. . . . 5
⊢
(.r‘𝐾) = (.r‘𝐾) |
34 | | eqid 2738 |
. . . . 5
⊢
(0g‘𝐾) = (0g‘𝐾) |
35 | 29, 31, 32, 33, 34 | isabv 20079 |
. . . 4
⊢ (𝐾 ∈ Ring → (𝑓 ∈ (AbsVal‘𝐾) ↔ (𝑓:(Base‘𝐾)⟶(0[,)+∞) ∧ ∀𝑥 ∈ (Base‘𝐾)(((𝑓‘𝑥) = 0 ↔ 𝑥 = (0g‘𝐾)) ∧ ∀𝑦 ∈ (Base‘𝐾)((𝑓‘(𝑥(.r‘𝐾)𝑦)) = ((𝑓‘𝑥) · (𝑓‘𝑦)) ∧ (𝑓‘(𝑥(+g‘𝐾)𝑦)) ≤ ((𝑓‘𝑥) + (𝑓‘𝑦))))))) |
36 | 30, 35 | biadanii 819 |
. . 3
⊢ (𝑓 ∈ (AbsVal‘𝐾) ↔ (𝐾 ∈ Ring ∧ (𝑓:(Base‘𝐾)⟶(0[,)+∞) ∧ ∀𝑥 ∈ (Base‘𝐾)(((𝑓‘𝑥) = 0 ↔ 𝑥 = (0g‘𝐾)) ∧ ∀𝑦 ∈ (Base‘𝐾)((𝑓‘(𝑥(.r‘𝐾)𝑦)) = ((𝑓‘𝑥) · (𝑓‘𝑦)) ∧ (𝑓‘(𝑥(+g‘𝐾)𝑦)) ≤ ((𝑓‘𝑥) + (𝑓‘𝑦))))))) |
37 | | eqid 2738 |
. . . . 5
⊢
(AbsVal‘𝐿) =
(AbsVal‘𝐿) |
38 | 37 | abvrcl 20081 |
. . . 4
⊢ (𝑓 ∈ (AbsVal‘𝐿) → 𝐿 ∈ Ring) |
39 | | eqid 2738 |
. . . . 5
⊢
(Base‘𝐿) =
(Base‘𝐿) |
40 | | eqid 2738 |
. . . . 5
⊢
(+g‘𝐿) = (+g‘𝐿) |
41 | | eqid 2738 |
. . . . 5
⊢
(.r‘𝐿) = (.r‘𝐿) |
42 | | eqid 2738 |
. . . . 5
⊢
(0g‘𝐿) = (0g‘𝐿) |
43 | 37, 39, 40, 41, 42 | isabv 20079 |
. . . 4
⊢ (𝐿 ∈ Ring → (𝑓 ∈ (AbsVal‘𝐿) ↔ (𝑓:(Base‘𝐿)⟶(0[,)+∞) ∧ ∀𝑥 ∈ (Base‘𝐿)(((𝑓‘𝑥) = 0 ↔ 𝑥 = (0g‘𝐿)) ∧ ∀𝑦 ∈ (Base‘𝐿)((𝑓‘(𝑥(.r‘𝐿)𝑦)) = ((𝑓‘𝑥) · (𝑓‘𝑦)) ∧ (𝑓‘(𝑥(+g‘𝐿)𝑦)) ≤ ((𝑓‘𝑥) + (𝑓‘𝑦))))))) |
44 | 38, 43 | biadanii 819 |
. . 3
⊢ (𝑓 ∈ (AbsVal‘𝐿) ↔ (𝐿 ∈ Ring ∧ (𝑓:(Base‘𝐿)⟶(0[,)+∞) ∧ ∀𝑥 ∈ (Base‘𝐿)(((𝑓‘𝑥) = 0 ↔ 𝑥 = (0g‘𝐿)) ∧ ∀𝑦 ∈ (Base‘𝐿)((𝑓‘(𝑥(.r‘𝐿)𝑦)) = ((𝑓‘𝑥) · (𝑓‘𝑦)) ∧ (𝑓‘(𝑥(+g‘𝐿)𝑦)) ≤ ((𝑓‘𝑥) + (𝑓‘𝑦))))))) |
45 | 28, 36, 44 | 3bitr4g 314 |
. 2
⊢ (𝜑 → (𝑓 ∈ (AbsVal‘𝐾) ↔ 𝑓 ∈ (AbsVal‘𝐿))) |
46 | 45 | eqrdv 2736 |
1
⊢ (𝜑 → (AbsVal‘𝐾) = (AbsVal‘𝐿)) |