MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abvpropd Structured version   Visualization version   GIF version

Theorem abvpropd 20102
Description: If two structures have the same ring components, they have the same collection of absolute values. (Contributed by Mario Carneiro, 4-Oct-2015.)
Hypotheses
Ref Expression
abvpropd.1 (𝜑𝐵 = (Base‘𝐾))
abvpropd.2 (𝜑𝐵 = (Base‘𝐿))
abvpropd.3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
abvpropd.4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦))
Assertion
Ref Expression
abvpropd (𝜑 → (AbsVal‘𝐾) = (AbsVal‘𝐿))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐾,𝑦   𝑥,𝐿,𝑦   𝜑,𝑥,𝑦

Proof of Theorem abvpropd
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 abvpropd.1 . . . . 5 (𝜑𝐵 = (Base‘𝐾))
2 abvpropd.2 . . . . 5 (𝜑𝐵 = (Base‘𝐿))
3 abvpropd.3 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
4 abvpropd.4 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦))
51, 2, 3, 4ringpropd 19821 . . . 4 (𝜑 → (𝐾 ∈ Ring ↔ 𝐿 ∈ Ring))
61, 2eqtr3d 2780 . . . . . 6 (𝜑 → (Base‘𝐾) = (Base‘𝐿))
76feq2d 6586 . . . . 5 (𝜑 → (𝑓:(Base‘𝐾)⟶(0[,)+∞) ↔ 𝑓:(Base‘𝐿)⟶(0[,)+∞)))
81, 2, 3grpidpropd 18346 . . . . . . . . . . 11 (𝜑 → (0g𝐾) = (0g𝐿))
98adantr 481 . . . . . . . . . 10 ((𝜑𝑥𝐵) → (0g𝐾) = (0g𝐿))
109eqeq2d 2749 . . . . . . . . 9 ((𝜑𝑥𝐵) → (𝑥 = (0g𝐾) ↔ 𝑥 = (0g𝐿)))
1110bibi2d 343 . . . . . . . 8 ((𝜑𝑥𝐵) → (((𝑓𝑥) = 0 ↔ 𝑥 = (0g𝐾)) ↔ ((𝑓𝑥) = 0 ↔ 𝑥 = (0g𝐿))))
124fveqeq2d 6782 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ((𝑓‘(𝑥(.r𝐾)𝑦)) = ((𝑓𝑥) · (𝑓𝑦)) ↔ (𝑓‘(𝑥(.r𝐿)𝑦)) = ((𝑓𝑥) · (𝑓𝑦))))
133fveq2d 6778 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑓‘(𝑥(+g𝐾)𝑦)) = (𝑓‘(𝑥(+g𝐿)𝑦)))
1413breq1d 5084 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ((𝑓‘(𝑥(+g𝐾)𝑦)) ≤ ((𝑓𝑥) + (𝑓𝑦)) ↔ (𝑓‘(𝑥(+g𝐿)𝑦)) ≤ ((𝑓𝑥) + (𝑓𝑦))))
1512, 14anbi12d 631 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (((𝑓‘(𝑥(.r𝐾)𝑦)) = ((𝑓𝑥) · (𝑓𝑦)) ∧ (𝑓‘(𝑥(+g𝐾)𝑦)) ≤ ((𝑓𝑥) + (𝑓𝑦))) ↔ ((𝑓‘(𝑥(.r𝐿)𝑦)) = ((𝑓𝑥) · (𝑓𝑦)) ∧ (𝑓‘(𝑥(+g𝐿)𝑦)) ≤ ((𝑓𝑥) + (𝑓𝑦)))))
1615anassrs 468 . . . . . . . . 9 (((𝜑𝑥𝐵) ∧ 𝑦𝐵) → (((𝑓‘(𝑥(.r𝐾)𝑦)) = ((𝑓𝑥) · (𝑓𝑦)) ∧ (𝑓‘(𝑥(+g𝐾)𝑦)) ≤ ((𝑓𝑥) + (𝑓𝑦))) ↔ ((𝑓‘(𝑥(.r𝐿)𝑦)) = ((𝑓𝑥) · (𝑓𝑦)) ∧ (𝑓‘(𝑥(+g𝐿)𝑦)) ≤ ((𝑓𝑥) + (𝑓𝑦)))))
1716ralbidva 3111 . . . . . . . 8 ((𝜑𝑥𝐵) → (∀𝑦𝐵 ((𝑓‘(𝑥(.r𝐾)𝑦)) = ((𝑓𝑥) · (𝑓𝑦)) ∧ (𝑓‘(𝑥(+g𝐾)𝑦)) ≤ ((𝑓𝑥) + (𝑓𝑦))) ↔ ∀𝑦𝐵 ((𝑓‘(𝑥(.r𝐿)𝑦)) = ((𝑓𝑥) · (𝑓𝑦)) ∧ (𝑓‘(𝑥(+g𝐿)𝑦)) ≤ ((𝑓𝑥) + (𝑓𝑦)))))
1811, 17anbi12d 631 . . . . . . 7 ((𝜑𝑥𝐵) → ((((𝑓𝑥) = 0 ↔ 𝑥 = (0g𝐾)) ∧ ∀𝑦𝐵 ((𝑓‘(𝑥(.r𝐾)𝑦)) = ((𝑓𝑥) · (𝑓𝑦)) ∧ (𝑓‘(𝑥(+g𝐾)𝑦)) ≤ ((𝑓𝑥) + (𝑓𝑦)))) ↔ (((𝑓𝑥) = 0 ↔ 𝑥 = (0g𝐿)) ∧ ∀𝑦𝐵 ((𝑓‘(𝑥(.r𝐿)𝑦)) = ((𝑓𝑥) · (𝑓𝑦)) ∧ (𝑓‘(𝑥(+g𝐿)𝑦)) ≤ ((𝑓𝑥) + (𝑓𝑦))))))
1918ralbidva 3111 . . . . . 6 (𝜑 → (∀𝑥𝐵 (((𝑓𝑥) = 0 ↔ 𝑥 = (0g𝐾)) ∧ ∀𝑦𝐵 ((𝑓‘(𝑥(.r𝐾)𝑦)) = ((𝑓𝑥) · (𝑓𝑦)) ∧ (𝑓‘(𝑥(+g𝐾)𝑦)) ≤ ((𝑓𝑥) + (𝑓𝑦)))) ↔ ∀𝑥𝐵 (((𝑓𝑥) = 0 ↔ 𝑥 = (0g𝐿)) ∧ ∀𝑦𝐵 ((𝑓‘(𝑥(.r𝐿)𝑦)) = ((𝑓𝑥) · (𝑓𝑦)) ∧ (𝑓‘(𝑥(+g𝐿)𝑦)) ≤ ((𝑓𝑥) + (𝑓𝑦))))))
201raleqdv 3348 . . . . . . . 8 (𝜑 → (∀𝑦𝐵 ((𝑓‘(𝑥(.r𝐾)𝑦)) = ((𝑓𝑥) · (𝑓𝑦)) ∧ (𝑓‘(𝑥(+g𝐾)𝑦)) ≤ ((𝑓𝑥) + (𝑓𝑦))) ↔ ∀𝑦 ∈ (Base‘𝐾)((𝑓‘(𝑥(.r𝐾)𝑦)) = ((𝑓𝑥) · (𝑓𝑦)) ∧ (𝑓‘(𝑥(+g𝐾)𝑦)) ≤ ((𝑓𝑥) + (𝑓𝑦)))))
2120anbi2d 629 . . . . . . 7 (𝜑 → ((((𝑓𝑥) = 0 ↔ 𝑥 = (0g𝐾)) ∧ ∀𝑦𝐵 ((𝑓‘(𝑥(.r𝐾)𝑦)) = ((𝑓𝑥) · (𝑓𝑦)) ∧ (𝑓‘(𝑥(+g𝐾)𝑦)) ≤ ((𝑓𝑥) + (𝑓𝑦)))) ↔ (((𝑓𝑥) = 0 ↔ 𝑥 = (0g𝐾)) ∧ ∀𝑦 ∈ (Base‘𝐾)((𝑓‘(𝑥(.r𝐾)𝑦)) = ((𝑓𝑥) · (𝑓𝑦)) ∧ (𝑓‘(𝑥(+g𝐾)𝑦)) ≤ ((𝑓𝑥) + (𝑓𝑦))))))
221, 21raleqbidv 3336 . . . . . 6 (𝜑 → (∀𝑥𝐵 (((𝑓𝑥) = 0 ↔ 𝑥 = (0g𝐾)) ∧ ∀𝑦𝐵 ((𝑓‘(𝑥(.r𝐾)𝑦)) = ((𝑓𝑥) · (𝑓𝑦)) ∧ (𝑓‘(𝑥(+g𝐾)𝑦)) ≤ ((𝑓𝑥) + (𝑓𝑦)))) ↔ ∀𝑥 ∈ (Base‘𝐾)(((𝑓𝑥) = 0 ↔ 𝑥 = (0g𝐾)) ∧ ∀𝑦 ∈ (Base‘𝐾)((𝑓‘(𝑥(.r𝐾)𝑦)) = ((𝑓𝑥) · (𝑓𝑦)) ∧ (𝑓‘(𝑥(+g𝐾)𝑦)) ≤ ((𝑓𝑥) + (𝑓𝑦))))))
232raleqdv 3348 . . . . . . . 8 (𝜑 → (∀𝑦𝐵 ((𝑓‘(𝑥(.r𝐿)𝑦)) = ((𝑓𝑥) · (𝑓𝑦)) ∧ (𝑓‘(𝑥(+g𝐿)𝑦)) ≤ ((𝑓𝑥) + (𝑓𝑦))) ↔ ∀𝑦 ∈ (Base‘𝐿)((𝑓‘(𝑥(.r𝐿)𝑦)) = ((𝑓𝑥) · (𝑓𝑦)) ∧ (𝑓‘(𝑥(+g𝐿)𝑦)) ≤ ((𝑓𝑥) + (𝑓𝑦)))))
2423anbi2d 629 . . . . . . 7 (𝜑 → ((((𝑓𝑥) = 0 ↔ 𝑥 = (0g𝐿)) ∧ ∀𝑦𝐵 ((𝑓‘(𝑥(.r𝐿)𝑦)) = ((𝑓𝑥) · (𝑓𝑦)) ∧ (𝑓‘(𝑥(+g𝐿)𝑦)) ≤ ((𝑓𝑥) + (𝑓𝑦)))) ↔ (((𝑓𝑥) = 0 ↔ 𝑥 = (0g𝐿)) ∧ ∀𝑦 ∈ (Base‘𝐿)((𝑓‘(𝑥(.r𝐿)𝑦)) = ((𝑓𝑥) · (𝑓𝑦)) ∧ (𝑓‘(𝑥(+g𝐿)𝑦)) ≤ ((𝑓𝑥) + (𝑓𝑦))))))
252, 24raleqbidv 3336 . . . . . 6 (𝜑 → (∀𝑥𝐵 (((𝑓𝑥) = 0 ↔ 𝑥 = (0g𝐿)) ∧ ∀𝑦𝐵 ((𝑓‘(𝑥(.r𝐿)𝑦)) = ((𝑓𝑥) · (𝑓𝑦)) ∧ (𝑓‘(𝑥(+g𝐿)𝑦)) ≤ ((𝑓𝑥) + (𝑓𝑦)))) ↔ ∀𝑥 ∈ (Base‘𝐿)(((𝑓𝑥) = 0 ↔ 𝑥 = (0g𝐿)) ∧ ∀𝑦 ∈ (Base‘𝐿)((𝑓‘(𝑥(.r𝐿)𝑦)) = ((𝑓𝑥) · (𝑓𝑦)) ∧ (𝑓‘(𝑥(+g𝐿)𝑦)) ≤ ((𝑓𝑥) + (𝑓𝑦))))))
2619, 22, 253bitr3d 309 . . . . 5 (𝜑 → (∀𝑥 ∈ (Base‘𝐾)(((𝑓𝑥) = 0 ↔ 𝑥 = (0g𝐾)) ∧ ∀𝑦 ∈ (Base‘𝐾)((𝑓‘(𝑥(.r𝐾)𝑦)) = ((𝑓𝑥) · (𝑓𝑦)) ∧ (𝑓‘(𝑥(+g𝐾)𝑦)) ≤ ((𝑓𝑥) + (𝑓𝑦)))) ↔ ∀𝑥 ∈ (Base‘𝐿)(((𝑓𝑥) = 0 ↔ 𝑥 = (0g𝐿)) ∧ ∀𝑦 ∈ (Base‘𝐿)((𝑓‘(𝑥(.r𝐿)𝑦)) = ((𝑓𝑥) · (𝑓𝑦)) ∧ (𝑓‘(𝑥(+g𝐿)𝑦)) ≤ ((𝑓𝑥) + (𝑓𝑦))))))
277, 26anbi12d 631 . . . 4 (𝜑 → ((𝑓:(Base‘𝐾)⟶(0[,)+∞) ∧ ∀𝑥 ∈ (Base‘𝐾)(((𝑓𝑥) = 0 ↔ 𝑥 = (0g𝐾)) ∧ ∀𝑦 ∈ (Base‘𝐾)((𝑓‘(𝑥(.r𝐾)𝑦)) = ((𝑓𝑥) · (𝑓𝑦)) ∧ (𝑓‘(𝑥(+g𝐾)𝑦)) ≤ ((𝑓𝑥) + (𝑓𝑦))))) ↔ (𝑓:(Base‘𝐿)⟶(0[,)+∞) ∧ ∀𝑥 ∈ (Base‘𝐿)(((𝑓𝑥) = 0 ↔ 𝑥 = (0g𝐿)) ∧ ∀𝑦 ∈ (Base‘𝐿)((𝑓‘(𝑥(.r𝐿)𝑦)) = ((𝑓𝑥) · (𝑓𝑦)) ∧ (𝑓‘(𝑥(+g𝐿)𝑦)) ≤ ((𝑓𝑥) + (𝑓𝑦)))))))
285, 27anbi12d 631 . . 3 (𝜑 → ((𝐾 ∈ Ring ∧ (𝑓:(Base‘𝐾)⟶(0[,)+∞) ∧ ∀𝑥 ∈ (Base‘𝐾)(((𝑓𝑥) = 0 ↔ 𝑥 = (0g𝐾)) ∧ ∀𝑦 ∈ (Base‘𝐾)((𝑓‘(𝑥(.r𝐾)𝑦)) = ((𝑓𝑥) · (𝑓𝑦)) ∧ (𝑓‘(𝑥(+g𝐾)𝑦)) ≤ ((𝑓𝑥) + (𝑓𝑦)))))) ↔ (𝐿 ∈ Ring ∧ (𝑓:(Base‘𝐿)⟶(0[,)+∞) ∧ ∀𝑥 ∈ (Base‘𝐿)(((𝑓𝑥) = 0 ↔ 𝑥 = (0g𝐿)) ∧ ∀𝑦 ∈ (Base‘𝐿)((𝑓‘(𝑥(.r𝐿)𝑦)) = ((𝑓𝑥) · (𝑓𝑦)) ∧ (𝑓‘(𝑥(+g𝐿)𝑦)) ≤ ((𝑓𝑥) + (𝑓𝑦))))))))
29 eqid 2738 . . . . 5 (AbsVal‘𝐾) = (AbsVal‘𝐾)
3029abvrcl 20081 . . . 4 (𝑓 ∈ (AbsVal‘𝐾) → 𝐾 ∈ Ring)
31 eqid 2738 . . . . 5 (Base‘𝐾) = (Base‘𝐾)
32 eqid 2738 . . . . 5 (+g𝐾) = (+g𝐾)
33 eqid 2738 . . . . 5 (.r𝐾) = (.r𝐾)
34 eqid 2738 . . . . 5 (0g𝐾) = (0g𝐾)
3529, 31, 32, 33, 34isabv 20079 . . . 4 (𝐾 ∈ Ring → (𝑓 ∈ (AbsVal‘𝐾) ↔ (𝑓:(Base‘𝐾)⟶(0[,)+∞) ∧ ∀𝑥 ∈ (Base‘𝐾)(((𝑓𝑥) = 0 ↔ 𝑥 = (0g𝐾)) ∧ ∀𝑦 ∈ (Base‘𝐾)((𝑓‘(𝑥(.r𝐾)𝑦)) = ((𝑓𝑥) · (𝑓𝑦)) ∧ (𝑓‘(𝑥(+g𝐾)𝑦)) ≤ ((𝑓𝑥) + (𝑓𝑦)))))))
3630, 35biadanii 819 . . 3 (𝑓 ∈ (AbsVal‘𝐾) ↔ (𝐾 ∈ Ring ∧ (𝑓:(Base‘𝐾)⟶(0[,)+∞) ∧ ∀𝑥 ∈ (Base‘𝐾)(((𝑓𝑥) = 0 ↔ 𝑥 = (0g𝐾)) ∧ ∀𝑦 ∈ (Base‘𝐾)((𝑓‘(𝑥(.r𝐾)𝑦)) = ((𝑓𝑥) · (𝑓𝑦)) ∧ (𝑓‘(𝑥(+g𝐾)𝑦)) ≤ ((𝑓𝑥) + (𝑓𝑦)))))))
37 eqid 2738 . . . . 5 (AbsVal‘𝐿) = (AbsVal‘𝐿)
3837abvrcl 20081 . . . 4 (𝑓 ∈ (AbsVal‘𝐿) → 𝐿 ∈ Ring)
39 eqid 2738 . . . . 5 (Base‘𝐿) = (Base‘𝐿)
40 eqid 2738 . . . . 5 (+g𝐿) = (+g𝐿)
41 eqid 2738 . . . . 5 (.r𝐿) = (.r𝐿)
42 eqid 2738 . . . . 5 (0g𝐿) = (0g𝐿)
4337, 39, 40, 41, 42isabv 20079 . . . 4 (𝐿 ∈ Ring → (𝑓 ∈ (AbsVal‘𝐿) ↔ (𝑓:(Base‘𝐿)⟶(0[,)+∞) ∧ ∀𝑥 ∈ (Base‘𝐿)(((𝑓𝑥) = 0 ↔ 𝑥 = (0g𝐿)) ∧ ∀𝑦 ∈ (Base‘𝐿)((𝑓‘(𝑥(.r𝐿)𝑦)) = ((𝑓𝑥) · (𝑓𝑦)) ∧ (𝑓‘(𝑥(+g𝐿)𝑦)) ≤ ((𝑓𝑥) + (𝑓𝑦)))))))
4438, 43biadanii 819 . . 3 (𝑓 ∈ (AbsVal‘𝐿) ↔ (𝐿 ∈ Ring ∧ (𝑓:(Base‘𝐿)⟶(0[,)+∞) ∧ ∀𝑥 ∈ (Base‘𝐿)(((𝑓𝑥) = 0 ↔ 𝑥 = (0g𝐿)) ∧ ∀𝑦 ∈ (Base‘𝐿)((𝑓‘(𝑥(.r𝐿)𝑦)) = ((𝑓𝑥) · (𝑓𝑦)) ∧ (𝑓‘(𝑥(+g𝐿)𝑦)) ≤ ((𝑓𝑥) + (𝑓𝑦)))))))
4528, 36, 443bitr4g 314 . 2 (𝜑 → (𝑓 ∈ (AbsVal‘𝐾) ↔ 𝑓 ∈ (AbsVal‘𝐿)))
4645eqrdv 2736 1 (𝜑 → (AbsVal‘𝐾) = (AbsVal‘𝐿))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wral 3064   class class class wbr 5074  wf 6429  cfv 6433  (class class class)co 7275  0cc0 10871   + caddc 10874   · cmul 10876  +∞cpnf 11006  cle 11010  [,)cico 13081  Basecbs 16912  +gcplusg 16962  .rcmulr 16963  0gc0g 17150  Ringcrg 19783  AbsValcabv 20076
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-plusg 16975  df-0g 17152  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-grp 18580  df-mgp 19721  df-ring 19785  df-abv 20077
This theorem is referenced by:  tngnrg  23838  abvpropd2  31237
  Copyright terms: Public domain W3C validator