MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abvmul Structured version   Visualization version   GIF version

Theorem abvmul 20737
Description: An absolute value distributes under multiplication. (Contributed by Mario Carneiro, 8-Sep-2014.)
Hypotheses
Ref Expression
abvf.a 𝐴 = (AbsVal‘𝑅)
abvf.b 𝐵 = (Base‘𝑅)
abvmul.t · = (.r𝑅)
Assertion
Ref Expression
abvmul ((𝐹𝐴𝑋𝐵𝑌𝐵) → (𝐹‘(𝑋 · 𝑌)) = ((𝐹𝑋) · (𝐹𝑌)))

Proof of Theorem abvmul
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 abvf.a . . . . . . 7 𝐴 = (AbsVal‘𝑅)
21abvrcl 20729 . . . . . 6 (𝐹𝐴𝑅 ∈ Ring)
3 abvf.b . . . . . . 7 𝐵 = (Base‘𝑅)
4 eqid 2730 . . . . . . 7 (+g𝑅) = (+g𝑅)
5 abvmul.t . . . . . . 7 · = (.r𝑅)
6 eqid 2730 . . . . . . 7 (0g𝑅) = (0g𝑅)
71, 3, 4, 5, 6isabv 20727 . . . . . 6 (𝑅 ∈ Ring → (𝐹𝐴 ↔ (𝐹:𝐵⟶(0[,)+∞) ∧ ∀𝑥𝐵 (((𝐹𝑥) = 0 ↔ 𝑥 = (0g𝑅)) ∧ ∀𝑦𝐵 ((𝐹‘(𝑥 · 𝑦)) = ((𝐹𝑥) · (𝐹𝑦)) ∧ (𝐹‘(𝑥(+g𝑅)𝑦)) ≤ ((𝐹𝑥) + (𝐹𝑦)))))))
82, 7syl 17 . . . . 5 (𝐹𝐴 → (𝐹𝐴 ↔ (𝐹:𝐵⟶(0[,)+∞) ∧ ∀𝑥𝐵 (((𝐹𝑥) = 0 ↔ 𝑥 = (0g𝑅)) ∧ ∀𝑦𝐵 ((𝐹‘(𝑥 · 𝑦)) = ((𝐹𝑥) · (𝐹𝑦)) ∧ (𝐹‘(𝑥(+g𝑅)𝑦)) ≤ ((𝐹𝑥) + (𝐹𝑦)))))))
98ibi 267 . . . 4 (𝐹𝐴 → (𝐹:𝐵⟶(0[,)+∞) ∧ ∀𝑥𝐵 (((𝐹𝑥) = 0 ↔ 𝑥 = (0g𝑅)) ∧ ∀𝑦𝐵 ((𝐹‘(𝑥 · 𝑦)) = ((𝐹𝑥) · (𝐹𝑦)) ∧ (𝐹‘(𝑥(+g𝑅)𝑦)) ≤ ((𝐹𝑥) + (𝐹𝑦))))))
10 simpl 482 . . . . . . 7 (((𝐹‘(𝑥 · 𝑦)) = ((𝐹𝑥) · (𝐹𝑦)) ∧ (𝐹‘(𝑥(+g𝑅)𝑦)) ≤ ((𝐹𝑥) + (𝐹𝑦))) → (𝐹‘(𝑥 · 𝑦)) = ((𝐹𝑥) · (𝐹𝑦)))
1110ralimi 3067 . . . . . 6 (∀𝑦𝐵 ((𝐹‘(𝑥 · 𝑦)) = ((𝐹𝑥) · (𝐹𝑦)) ∧ (𝐹‘(𝑥(+g𝑅)𝑦)) ≤ ((𝐹𝑥) + (𝐹𝑦))) → ∀𝑦𝐵 (𝐹‘(𝑥 · 𝑦)) = ((𝐹𝑥) · (𝐹𝑦)))
1211adantl 481 . . . . 5 ((((𝐹𝑥) = 0 ↔ 𝑥 = (0g𝑅)) ∧ ∀𝑦𝐵 ((𝐹‘(𝑥 · 𝑦)) = ((𝐹𝑥) · (𝐹𝑦)) ∧ (𝐹‘(𝑥(+g𝑅)𝑦)) ≤ ((𝐹𝑥) + (𝐹𝑦)))) → ∀𝑦𝐵 (𝐹‘(𝑥 · 𝑦)) = ((𝐹𝑥) · (𝐹𝑦)))
1312ralimi 3067 . . . 4 (∀𝑥𝐵 (((𝐹𝑥) = 0 ↔ 𝑥 = (0g𝑅)) ∧ ∀𝑦𝐵 ((𝐹‘(𝑥 · 𝑦)) = ((𝐹𝑥) · (𝐹𝑦)) ∧ (𝐹‘(𝑥(+g𝑅)𝑦)) ≤ ((𝐹𝑥) + (𝐹𝑦)))) → ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥 · 𝑦)) = ((𝐹𝑥) · (𝐹𝑦)))
149, 13simpl2im 503 . . 3 (𝐹𝐴 → ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥 · 𝑦)) = ((𝐹𝑥) · (𝐹𝑦)))
15 fvoveq1 7413 . . . . 5 (𝑥 = 𝑋 → (𝐹‘(𝑥 · 𝑦)) = (𝐹‘(𝑋 · 𝑦)))
16 fveq2 6861 . . . . . 6 (𝑥 = 𝑋 → (𝐹𝑥) = (𝐹𝑋))
1716oveq1d 7405 . . . . 5 (𝑥 = 𝑋 → ((𝐹𝑥) · (𝐹𝑦)) = ((𝐹𝑋) · (𝐹𝑦)))
1815, 17eqeq12d 2746 . . . 4 (𝑥 = 𝑋 → ((𝐹‘(𝑥 · 𝑦)) = ((𝐹𝑥) · (𝐹𝑦)) ↔ (𝐹‘(𝑋 · 𝑦)) = ((𝐹𝑋) · (𝐹𝑦))))
19 oveq2 7398 . . . . . 6 (𝑦 = 𝑌 → (𝑋 · 𝑦) = (𝑋 · 𝑌))
2019fveq2d 6865 . . . . 5 (𝑦 = 𝑌 → (𝐹‘(𝑋 · 𝑦)) = (𝐹‘(𝑋 · 𝑌)))
21 fveq2 6861 . . . . . 6 (𝑦 = 𝑌 → (𝐹𝑦) = (𝐹𝑌))
2221oveq2d 7406 . . . . 5 (𝑦 = 𝑌 → ((𝐹𝑋) · (𝐹𝑦)) = ((𝐹𝑋) · (𝐹𝑌)))
2320, 22eqeq12d 2746 . . . 4 (𝑦 = 𝑌 → ((𝐹‘(𝑋 · 𝑦)) = ((𝐹𝑋) · (𝐹𝑦)) ↔ (𝐹‘(𝑋 · 𝑌)) = ((𝐹𝑋) · (𝐹𝑌))))
2418, 23rspc2v 3602 . . 3 ((𝑋𝐵𝑌𝐵) → (∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥 · 𝑦)) = ((𝐹𝑥) · (𝐹𝑦)) → (𝐹‘(𝑋 · 𝑌)) = ((𝐹𝑋) · (𝐹𝑌))))
2514, 24syl5com 31 . 2 (𝐹𝐴 → ((𝑋𝐵𝑌𝐵) → (𝐹‘(𝑋 · 𝑌)) = ((𝐹𝑋) · (𝐹𝑌))))
26253impib 1116 1 ((𝐹𝐴𝑋𝐵𝑌𝐵) → (𝐹‘(𝑋 · 𝑌)) = ((𝐹𝑋) · (𝐹𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3045   class class class wbr 5110  wf 6510  cfv 6514  (class class class)co 7390  0cc0 11075   + caddc 11078   · cmul 11080  +∞cpnf 11212  cle 11216  [,)cico 13315  Basecbs 17186  +gcplusg 17227  .rcmulr 17228  0gc0g 17409  Ringcrg 20149  AbsValcabv 20724
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-map 8804  df-abv 20725
This theorem is referenced by:  abv1z  20740  abvneg  20742  abvrec  20744  abvdiv  20745  abvdom  20746  abvres  20747  nmmul  24559  sranlm  24579  abvcxp  27533  qabvexp  27544  ostthlem2  27546  ostth2lem2  27552  ostth3  27556  abvexp  42527
  Copyright terms: Public domain W3C validator