MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abvmul Structured version   Visualization version   GIF version

Theorem abvmul 20668
Description: An absolute value distributes under multiplication. (Contributed by Mario Carneiro, 8-Sep-2014.)
Hypotheses
Ref Expression
abvf.a 𝐴 = (AbsVal‘𝑅)
abvf.b 𝐵 = (Base‘𝑅)
abvmul.t · = (.r𝑅)
Assertion
Ref Expression
abvmul ((𝐹𝐴𝑋𝐵𝑌𝐵) → (𝐹‘(𝑋 · 𝑌)) = ((𝐹𝑋) · (𝐹𝑌)))

Proof of Theorem abvmul
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 abvf.a . . . . . . 7 𝐴 = (AbsVal‘𝑅)
21abvrcl 20660 . . . . . 6 (𝐹𝐴𝑅 ∈ Ring)
3 abvf.b . . . . . . 7 𝐵 = (Base‘𝑅)
4 eqid 2731 . . . . . . 7 (+g𝑅) = (+g𝑅)
5 abvmul.t . . . . . . 7 · = (.r𝑅)
6 eqid 2731 . . . . . . 7 (0g𝑅) = (0g𝑅)
71, 3, 4, 5, 6isabv 20658 . . . . . 6 (𝑅 ∈ Ring → (𝐹𝐴 ↔ (𝐹:𝐵⟶(0[,)+∞) ∧ ∀𝑥𝐵 (((𝐹𝑥) = 0 ↔ 𝑥 = (0g𝑅)) ∧ ∀𝑦𝐵 ((𝐹‘(𝑥 · 𝑦)) = ((𝐹𝑥) · (𝐹𝑦)) ∧ (𝐹‘(𝑥(+g𝑅)𝑦)) ≤ ((𝐹𝑥) + (𝐹𝑦)))))))
82, 7syl 17 . . . . 5 (𝐹𝐴 → (𝐹𝐴 ↔ (𝐹:𝐵⟶(0[,)+∞) ∧ ∀𝑥𝐵 (((𝐹𝑥) = 0 ↔ 𝑥 = (0g𝑅)) ∧ ∀𝑦𝐵 ((𝐹‘(𝑥 · 𝑦)) = ((𝐹𝑥) · (𝐹𝑦)) ∧ (𝐹‘(𝑥(+g𝑅)𝑦)) ≤ ((𝐹𝑥) + (𝐹𝑦)))))))
98ibi 267 . . . 4 (𝐹𝐴 → (𝐹:𝐵⟶(0[,)+∞) ∧ ∀𝑥𝐵 (((𝐹𝑥) = 0 ↔ 𝑥 = (0g𝑅)) ∧ ∀𝑦𝐵 ((𝐹‘(𝑥 · 𝑦)) = ((𝐹𝑥) · (𝐹𝑦)) ∧ (𝐹‘(𝑥(+g𝑅)𝑦)) ≤ ((𝐹𝑥) + (𝐹𝑦))))))
10 simpl 482 . . . . . . 7 (((𝐹‘(𝑥 · 𝑦)) = ((𝐹𝑥) · (𝐹𝑦)) ∧ (𝐹‘(𝑥(+g𝑅)𝑦)) ≤ ((𝐹𝑥) + (𝐹𝑦))) → (𝐹‘(𝑥 · 𝑦)) = ((𝐹𝑥) · (𝐹𝑦)))
1110ralimi 3082 . . . . . 6 (∀𝑦𝐵 ((𝐹‘(𝑥 · 𝑦)) = ((𝐹𝑥) · (𝐹𝑦)) ∧ (𝐹‘(𝑥(+g𝑅)𝑦)) ≤ ((𝐹𝑥) + (𝐹𝑦))) → ∀𝑦𝐵 (𝐹‘(𝑥 · 𝑦)) = ((𝐹𝑥) · (𝐹𝑦)))
1211adantl 481 . . . . 5 ((((𝐹𝑥) = 0 ↔ 𝑥 = (0g𝑅)) ∧ ∀𝑦𝐵 ((𝐹‘(𝑥 · 𝑦)) = ((𝐹𝑥) · (𝐹𝑦)) ∧ (𝐹‘(𝑥(+g𝑅)𝑦)) ≤ ((𝐹𝑥) + (𝐹𝑦)))) → ∀𝑦𝐵 (𝐹‘(𝑥 · 𝑦)) = ((𝐹𝑥) · (𝐹𝑦)))
1312ralimi 3082 . . . 4 (∀𝑥𝐵 (((𝐹𝑥) = 0 ↔ 𝑥 = (0g𝑅)) ∧ ∀𝑦𝐵 ((𝐹‘(𝑥 · 𝑦)) = ((𝐹𝑥) · (𝐹𝑦)) ∧ (𝐹‘(𝑥(+g𝑅)𝑦)) ≤ ((𝐹𝑥) + (𝐹𝑦)))) → ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥 · 𝑦)) = ((𝐹𝑥) · (𝐹𝑦)))
149, 13simpl2im 503 . . 3 (𝐹𝐴 → ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥 · 𝑦)) = ((𝐹𝑥) · (𝐹𝑦)))
15 fvoveq1 7435 . . . . 5 (𝑥 = 𝑋 → (𝐹‘(𝑥 · 𝑦)) = (𝐹‘(𝑋 · 𝑦)))
16 fveq2 6891 . . . . . 6 (𝑥 = 𝑋 → (𝐹𝑥) = (𝐹𝑋))
1716oveq1d 7427 . . . . 5 (𝑥 = 𝑋 → ((𝐹𝑥) · (𝐹𝑦)) = ((𝐹𝑋) · (𝐹𝑦)))
1815, 17eqeq12d 2747 . . . 4 (𝑥 = 𝑋 → ((𝐹‘(𝑥 · 𝑦)) = ((𝐹𝑥) · (𝐹𝑦)) ↔ (𝐹‘(𝑋 · 𝑦)) = ((𝐹𝑋) · (𝐹𝑦))))
19 oveq2 7420 . . . . . 6 (𝑦 = 𝑌 → (𝑋 · 𝑦) = (𝑋 · 𝑌))
2019fveq2d 6895 . . . . 5 (𝑦 = 𝑌 → (𝐹‘(𝑋 · 𝑦)) = (𝐹‘(𝑋 · 𝑌)))
21 fveq2 6891 . . . . . 6 (𝑦 = 𝑌 → (𝐹𝑦) = (𝐹𝑌))
2221oveq2d 7428 . . . . 5 (𝑦 = 𝑌 → ((𝐹𝑋) · (𝐹𝑦)) = ((𝐹𝑋) · (𝐹𝑌)))
2320, 22eqeq12d 2747 . . . 4 (𝑦 = 𝑌 → ((𝐹‘(𝑋 · 𝑦)) = ((𝐹𝑋) · (𝐹𝑦)) ↔ (𝐹‘(𝑋 · 𝑌)) = ((𝐹𝑋) · (𝐹𝑌))))
2418, 23rspc2v 3622 . . 3 ((𝑋𝐵𝑌𝐵) → (∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥 · 𝑦)) = ((𝐹𝑥) · (𝐹𝑦)) → (𝐹‘(𝑋 · 𝑌)) = ((𝐹𝑋) · (𝐹𝑌))))
2514, 24syl5com 31 . 2 (𝐹𝐴 → ((𝑋𝐵𝑌𝐵) → (𝐹‘(𝑋 · 𝑌)) = ((𝐹𝑋) · (𝐹𝑌))))
26253impib 1115 1 ((𝐹𝐴𝑋𝐵𝑌𝐵) → (𝐹‘(𝑋 · 𝑌)) = ((𝐹𝑋) · (𝐹𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1086   = wceq 1540  wcel 2105  wral 3060   class class class wbr 5148  wf 6539  cfv 6543  (class class class)co 7412  0cc0 11116   + caddc 11119   · cmul 11121  +∞cpnf 11252  cle 11256  [,)cico 13333  Basecbs 17151  +gcplusg 17204  .rcmulr 17205  0gc0g 17392  Ringcrg 20134  AbsValcabv 20655
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-sbc 3778  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-fv 6551  df-ov 7415  df-oprab 7416  df-mpo 7417  df-map 8828  df-abv 20656
This theorem is referenced by:  abv1z  20671  abvneg  20673  abvrec  20675  abvdiv  20676  abvdom  20677  abvres  20678  nmmul  24501  sranlm  24521  abvcxp  27461  qabvexp  27472  ostthlem2  27474  ostth2lem2  27480  ostth3  27484
  Copyright terms: Public domain W3C validator