MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abvmul Structured version   Visualization version   GIF version

Theorem abvmul 20781
Description: An absolute value distributes under multiplication. (Contributed by Mario Carneiro, 8-Sep-2014.)
Hypotheses
Ref Expression
abvf.a 𝐴 = (AbsVal‘𝑅)
abvf.b 𝐵 = (Base‘𝑅)
abvmul.t · = (.r𝑅)
Assertion
Ref Expression
abvmul ((𝐹𝐴𝑋𝐵𝑌𝐵) → (𝐹‘(𝑋 · 𝑌)) = ((𝐹𝑋) · (𝐹𝑌)))

Proof of Theorem abvmul
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 abvf.a . . . . . . 7 𝐴 = (AbsVal‘𝑅)
21abvrcl 20773 . . . . . 6 (𝐹𝐴𝑅 ∈ Ring)
3 abvf.b . . . . . . 7 𝐵 = (Base‘𝑅)
4 eqid 2735 . . . . . . 7 (+g𝑅) = (+g𝑅)
5 abvmul.t . . . . . . 7 · = (.r𝑅)
6 eqid 2735 . . . . . . 7 (0g𝑅) = (0g𝑅)
71, 3, 4, 5, 6isabv 20771 . . . . . 6 (𝑅 ∈ Ring → (𝐹𝐴 ↔ (𝐹:𝐵⟶(0[,)+∞) ∧ ∀𝑥𝐵 (((𝐹𝑥) = 0 ↔ 𝑥 = (0g𝑅)) ∧ ∀𝑦𝐵 ((𝐹‘(𝑥 · 𝑦)) = ((𝐹𝑥) · (𝐹𝑦)) ∧ (𝐹‘(𝑥(+g𝑅)𝑦)) ≤ ((𝐹𝑥) + (𝐹𝑦)))))))
82, 7syl 17 . . . . 5 (𝐹𝐴 → (𝐹𝐴 ↔ (𝐹:𝐵⟶(0[,)+∞) ∧ ∀𝑥𝐵 (((𝐹𝑥) = 0 ↔ 𝑥 = (0g𝑅)) ∧ ∀𝑦𝐵 ((𝐹‘(𝑥 · 𝑦)) = ((𝐹𝑥) · (𝐹𝑦)) ∧ (𝐹‘(𝑥(+g𝑅)𝑦)) ≤ ((𝐹𝑥) + (𝐹𝑦)))))))
98ibi 267 . . . 4 (𝐹𝐴 → (𝐹:𝐵⟶(0[,)+∞) ∧ ∀𝑥𝐵 (((𝐹𝑥) = 0 ↔ 𝑥 = (0g𝑅)) ∧ ∀𝑦𝐵 ((𝐹‘(𝑥 · 𝑦)) = ((𝐹𝑥) · (𝐹𝑦)) ∧ (𝐹‘(𝑥(+g𝑅)𝑦)) ≤ ((𝐹𝑥) + (𝐹𝑦))))))
10 simpl 482 . . . . . . 7 (((𝐹‘(𝑥 · 𝑦)) = ((𝐹𝑥) · (𝐹𝑦)) ∧ (𝐹‘(𝑥(+g𝑅)𝑦)) ≤ ((𝐹𝑥) + (𝐹𝑦))) → (𝐹‘(𝑥 · 𝑦)) = ((𝐹𝑥) · (𝐹𝑦)))
1110ralimi 3073 . . . . . 6 (∀𝑦𝐵 ((𝐹‘(𝑥 · 𝑦)) = ((𝐹𝑥) · (𝐹𝑦)) ∧ (𝐹‘(𝑥(+g𝑅)𝑦)) ≤ ((𝐹𝑥) + (𝐹𝑦))) → ∀𝑦𝐵 (𝐹‘(𝑥 · 𝑦)) = ((𝐹𝑥) · (𝐹𝑦)))
1211adantl 481 . . . . 5 ((((𝐹𝑥) = 0 ↔ 𝑥 = (0g𝑅)) ∧ ∀𝑦𝐵 ((𝐹‘(𝑥 · 𝑦)) = ((𝐹𝑥) · (𝐹𝑦)) ∧ (𝐹‘(𝑥(+g𝑅)𝑦)) ≤ ((𝐹𝑥) + (𝐹𝑦)))) → ∀𝑦𝐵 (𝐹‘(𝑥 · 𝑦)) = ((𝐹𝑥) · (𝐹𝑦)))
1312ralimi 3073 . . . 4 (∀𝑥𝐵 (((𝐹𝑥) = 0 ↔ 𝑥 = (0g𝑅)) ∧ ∀𝑦𝐵 ((𝐹‘(𝑥 · 𝑦)) = ((𝐹𝑥) · (𝐹𝑦)) ∧ (𝐹‘(𝑥(+g𝑅)𝑦)) ≤ ((𝐹𝑥) + (𝐹𝑦)))) → ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥 · 𝑦)) = ((𝐹𝑥) · (𝐹𝑦)))
149, 13simpl2im 503 . . 3 (𝐹𝐴 → ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥 · 𝑦)) = ((𝐹𝑥) · (𝐹𝑦)))
15 fvoveq1 7428 . . . . 5 (𝑥 = 𝑋 → (𝐹‘(𝑥 · 𝑦)) = (𝐹‘(𝑋 · 𝑦)))
16 fveq2 6876 . . . . . 6 (𝑥 = 𝑋 → (𝐹𝑥) = (𝐹𝑋))
1716oveq1d 7420 . . . . 5 (𝑥 = 𝑋 → ((𝐹𝑥) · (𝐹𝑦)) = ((𝐹𝑋) · (𝐹𝑦)))
1815, 17eqeq12d 2751 . . . 4 (𝑥 = 𝑋 → ((𝐹‘(𝑥 · 𝑦)) = ((𝐹𝑥) · (𝐹𝑦)) ↔ (𝐹‘(𝑋 · 𝑦)) = ((𝐹𝑋) · (𝐹𝑦))))
19 oveq2 7413 . . . . . 6 (𝑦 = 𝑌 → (𝑋 · 𝑦) = (𝑋 · 𝑌))
2019fveq2d 6880 . . . . 5 (𝑦 = 𝑌 → (𝐹‘(𝑋 · 𝑦)) = (𝐹‘(𝑋 · 𝑌)))
21 fveq2 6876 . . . . . 6 (𝑦 = 𝑌 → (𝐹𝑦) = (𝐹𝑌))
2221oveq2d 7421 . . . . 5 (𝑦 = 𝑌 → ((𝐹𝑋) · (𝐹𝑦)) = ((𝐹𝑋) · (𝐹𝑌)))
2320, 22eqeq12d 2751 . . . 4 (𝑦 = 𝑌 → ((𝐹‘(𝑋 · 𝑦)) = ((𝐹𝑋) · (𝐹𝑦)) ↔ (𝐹‘(𝑋 · 𝑌)) = ((𝐹𝑋) · (𝐹𝑌))))
2418, 23rspc2v 3612 . . 3 ((𝑋𝐵𝑌𝐵) → (∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥 · 𝑦)) = ((𝐹𝑥) · (𝐹𝑦)) → (𝐹‘(𝑋 · 𝑌)) = ((𝐹𝑋) · (𝐹𝑌))))
2514, 24syl5com 31 . 2 (𝐹𝐴 → ((𝑋𝐵𝑌𝐵) → (𝐹‘(𝑋 · 𝑌)) = ((𝐹𝑋) · (𝐹𝑌))))
26253impib 1116 1 ((𝐹𝐴𝑋𝐵𝑌𝐵) → (𝐹‘(𝑋 · 𝑌)) = ((𝐹𝑋) · (𝐹𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2108  wral 3051   class class class wbr 5119  wf 6527  cfv 6531  (class class class)co 7405  0cc0 11129   + caddc 11132   · cmul 11134  +∞cpnf 11266  cle 11270  [,)cico 13364  Basecbs 17228  +gcplusg 17271  .rcmulr 17272  0gc0g 17453  Ringcrg 20193  AbsValcabv 20768
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-map 8842  df-abv 20769
This theorem is referenced by:  abv1z  20784  abvneg  20786  abvrec  20788  abvdiv  20789  abvdom  20790  abvres  20791  nmmul  24603  sranlm  24623  abvcxp  27578  qabvexp  27589  ostthlem2  27591  ostth2lem2  27597  ostth3  27601  abvexp  42555
  Copyright terms: Public domain W3C validator