![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > abveq0 | Structured version Visualization version GIF version |
Description: The value of an absolute value is zero iff the argument is zero. (Contributed by Mario Carneiro, 8-Sep-2014.) |
Ref | Expression |
---|---|
abvf.a | ⊢ 𝐴 = (AbsVal‘𝑅) |
abvf.b | ⊢ 𝐵 = (Base‘𝑅) |
abveq0.z | ⊢ 0 = (0g‘𝑅) |
Ref | Expression |
---|---|
abveq0 | ⊢ ((𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) → ((𝐹‘𝑋) = 0 ↔ 𝑋 = 0 )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abvf.a | . . . . . 6 ⊢ 𝐴 = (AbsVal‘𝑅) | |
2 | 1 | abvrcl 20421 | . . . . 5 ⊢ (𝐹 ∈ 𝐴 → 𝑅 ∈ Ring) |
3 | abvf.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑅) | |
4 | eqid 2732 | . . . . . 6 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
5 | eqid 2732 | . . . . . 6 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
6 | abveq0.z | . . . . . 6 ⊢ 0 = (0g‘𝑅) | |
7 | 1, 3, 4, 5, 6 | isabv 20419 | . . . . 5 ⊢ (𝑅 ∈ Ring → (𝐹 ∈ 𝐴 ↔ (𝐹:𝐵⟶(0[,)+∞) ∧ ∀𝑥 ∈ 𝐵 (((𝐹‘𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦 ∈ 𝐵 ((𝐹‘(𝑥(.r‘𝑅)𝑦)) = ((𝐹‘𝑥) · (𝐹‘𝑦)) ∧ (𝐹‘(𝑥(+g‘𝑅)𝑦)) ≤ ((𝐹‘𝑥) + (𝐹‘𝑦))))))) |
8 | 2, 7 | syl 17 | . . . 4 ⊢ (𝐹 ∈ 𝐴 → (𝐹 ∈ 𝐴 ↔ (𝐹:𝐵⟶(0[,)+∞) ∧ ∀𝑥 ∈ 𝐵 (((𝐹‘𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦 ∈ 𝐵 ((𝐹‘(𝑥(.r‘𝑅)𝑦)) = ((𝐹‘𝑥) · (𝐹‘𝑦)) ∧ (𝐹‘(𝑥(+g‘𝑅)𝑦)) ≤ ((𝐹‘𝑥) + (𝐹‘𝑦))))))) |
9 | 8 | ibi 266 | . . 3 ⊢ (𝐹 ∈ 𝐴 → (𝐹:𝐵⟶(0[,)+∞) ∧ ∀𝑥 ∈ 𝐵 (((𝐹‘𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦 ∈ 𝐵 ((𝐹‘(𝑥(.r‘𝑅)𝑦)) = ((𝐹‘𝑥) · (𝐹‘𝑦)) ∧ (𝐹‘(𝑥(+g‘𝑅)𝑦)) ≤ ((𝐹‘𝑥) + (𝐹‘𝑦)))))) |
10 | simpl 483 | . . . 4 ⊢ ((((𝐹‘𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦 ∈ 𝐵 ((𝐹‘(𝑥(.r‘𝑅)𝑦)) = ((𝐹‘𝑥) · (𝐹‘𝑦)) ∧ (𝐹‘(𝑥(+g‘𝑅)𝑦)) ≤ ((𝐹‘𝑥) + (𝐹‘𝑦)))) → ((𝐹‘𝑥) = 0 ↔ 𝑥 = 0 )) | |
11 | 10 | ralimi 3083 | . . 3 ⊢ (∀𝑥 ∈ 𝐵 (((𝐹‘𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦 ∈ 𝐵 ((𝐹‘(𝑥(.r‘𝑅)𝑦)) = ((𝐹‘𝑥) · (𝐹‘𝑦)) ∧ (𝐹‘(𝑥(+g‘𝑅)𝑦)) ≤ ((𝐹‘𝑥) + (𝐹‘𝑦)))) → ∀𝑥 ∈ 𝐵 ((𝐹‘𝑥) = 0 ↔ 𝑥 = 0 )) |
12 | 9, 11 | simpl2im 504 | . 2 ⊢ (𝐹 ∈ 𝐴 → ∀𝑥 ∈ 𝐵 ((𝐹‘𝑥) = 0 ↔ 𝑥 = 0 )) |
13 | fveqeq2 6897 | . . . 4 ⊢ (𝑥 = 𝑋 → ((𝐹‘𝑥) = 0 ↔ (𝐹‘𝑋) = 0)) | |
14 | eqeq1 2736 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝑥 = 0 ↔ 𝑋 = 0 )) | |
15 | 13, 14 | bibi12d 345 | . . 3 ⊢ (𝑥 = 𝑋 → (((𝐹‘𝑥) = 0 ↔ 𝑥 = 0 ) ↔ ((𝐹‘𝑋) = 0 ↔ 𝑋 = 0 ))) |
16 | 15 | rspccva 3611 | . 2 ⊢ ((∀𝑥 ∈ 𝐵 ((𝐹‘𝑥) = 0 ↔ 𝑥 = 0 ) ∧ 𝑋 ∈ 𝐵) → ((𝐹‘𝑋) = 0 ↔ 𝑋 = 0 )) |
17 | 12, 16 | sylan 580 | 1 ⊢ ((𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) → ((𝐹‘𝑋) = 0 ↔ 𝑋 = 0 )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ∀wral 3061 class class class wbr 5147 ⟶wf 6536 ‘cfv 6540 (class class class)co 7405 0cc0 11106 + caddc 11109 · cmul 11111 +∞cpnf 11241 ≤ cle 11245 [,)cico 13322 Basecbs 17140 +gcplusg 17193 .rcmulr 17194 0gc0g 17381 Ringcrg 20049 AbsValcabv 20416 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3777 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-fv 6548 df-ov 7408 df-oprab 7409 df-mpo 7410 df-map 8818 df-abv 20417 |
This theorem is referenced by: abvne0 20427 abv0 20431 abvmet 24075 |
Copyright terms: Public domain | W3C validator |