Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > abveq0 | Structured version Visualization version GIF version |
Description: The value of an absolute value is zero iff the argument is zero. (Contributed by Mario Carneiro, 8-Sep-2014.) |
Ref | Expression |
---|---|
abvf.a | ⊢ 𝐴 = (AbsVal‘𝑅) |
abvf.b | ⊢ 𝐵 = (Base‘𝑅) |
abveq0.z | ⊢ 0 = (0g‘𝑅) |
Ref | Expression |
---|---|
abveq0 | ⊢ ((𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) → ((𝐹‘𝑋) = 0 ↔ 𝑋 = 0 )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abvf.a | . . . . . 6 ⊢ 𝐴 = (AbsVal‘𝑅) | |
2 | 1 | abvrcl 19996 | . . . . 5 ⊢ (𝐹 ∈ 𝐴 → 𝑅 ∈ Ring) |
3 | abvf.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑅) | |
4 | eqid 2738 | . . . . . 6 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
5 | eqid 2738 | . . . . . 6 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
6 | abveq0.z | . . . . . 6 ⊢ 0 = (0g‘𝑅) | |
7 | 1, 3, 4, 5, 6 | isabv 19994 | . . . . 5 ⊢ (𝑅 ∈ Ring → (𝐹 ∈ 𝐴 ↔ (𝐹:𝐵⟶(0[,)+∞) ∧ ∀𝑥 ∈ 𝐵 (((𝐹‘𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦 ∈ 𝐵 ((𝐹‘(𝑥(.r‘𝑅)𝑦)) = ((𝐹‘𝑥) · (𝐹‘𝑦)) ∧ (𝐹‘(𝑥(+g‘𝑅)𝑦)) ≤ ((𝐹‘𝑥) + (𝐹‘𝑦))))))) |
8 | 2, 7 | syl 17 | . . . 4 ⊢ (𝐹 ∈ 𝐴 → (𝐹 ∈ 𝐴 ↔ (𝐹:𝐵⟶(0[,)+∞) ∧ ∀𝑥 ∈ 𝐵 (((𝐹‘𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦 ∈ 𝐵 ((𝐹‘(𝑥(.r‘𝑅)𝑦)) = ((𝐹‘𝑥) · (𝐹‘𝑦)) ∧ (𝐹‘(𝑥(+g‘𝑅)𝑦)) ≤ ((𝐹‘𝑥) + (𝐹‘𝑦))))))) |
9 | 8 | ibi 266 | . . 3 ⊢ (𝐹 ∈ 𝐴 → (𝐹:𝐵⟶(0[,)+∞) ∧ ∀𝑥 ∈ 𝐵 (((𝐹‘𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦 ∈ 𝐵 ((𝐹‘(𝑥(.r‘𝑅)𝑦)) = ((𝐹‘𝑥) · (𝐹‘𝑦)) ∧ (𝐹‘(𝑥(+g‘𝑅)𝑦)) ≤ ((𝐹‘𝑥) + (𝐹‘𝑦)))))) |
10 | simpl 482 | . . . 4 ⊢ ((((𝐹‘𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦 ∈ 𝐵 ((𝐹‘(𝑥(.r‘𝑅)𝑦)) = ((𝐹‘𝑥) · (𝐹‘𝑦)) ∧ (𝐹‘(𝑥(+g‘𝑅)𝑦)) ≤ ((𝐹‘𝑥) + (𝐹‘𝑦)))) → ((𝐹‘𝑥) = 0 ↔ 𝑥 = 0 )) | |
11 | 10 | ralimi 3086 | . . 3 ⊢ (∀𝑥 ∈ 𝐵 (((𝐹‘𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦 ∈ 𝐵 ((𝐹‘(𝑥(.r‘𝑅)𝑦)) = ((𝐹‘𝑥) · (𝐹‘𝑦)) ∧ (𝐹‘(𝑥(+g‘𝑅)𝑦)) ≤ ((𝐹‘𝑥) + (𝐹‘𝑦)))) → ∀𝑥 ∈ 𝐵 ((𝐹‘𝑥) = 0 ↔ 𝑥 = 0 )) |
12 | 9, 11 | simpl2im 503 | . 2 ⊢ (𝐹 ∈ 𝐴 → ∀𝑥 ∈ 𝐵 ((𝐹‘𝑥) = 0 ↔ 𝑥 = 0 )) |
13 | fveqeq2 6765 | . . . 4 ⊢ (𝑥 = 𝑋 → ((𝐹‘𝑥) = 0 ↔ (𝐹‘𝑋) = 0)) | |
14 | eqeq1 2742 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝑥 = 0 ↔ 𝑋 = 0 )) | |
15 | 13, 14 | bibi12d 345 | . . 3 ⊢ (𝑥 = 𝑋 → (((𝐹‘𝑥) = 0 ↔ 𝑥 = 0 ) ↔ ((𝐹‘𝑋) = 0 ↔ 𝑋 = 0 ))) |
16 | 15 | rspccva 3551 | . 2 ⊢ ((∀𝑥 ∈ 𝐵 ((𝐹‘𝑥) = 0 ↔ 𝑥 = 0 ) ∧ 𝑋 ∈ 𝐵) → ((𝐹‘𝑋) = 0 ↔ 𝑋 = 0 )) |
17 | 12, 16 | sylan 579 | 1 ⊢ ((𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) → ((𝐹‘𝑋) = 0 ↔ 𝑋 = 0 )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∀wral 3063 class class class wbr 5070 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 0cc0 10802 + caddc 10805 · cmul 10807 +∞cpnf 10937 ≤ cle 10941 [,)cico 13010 Basecbs 16840 +gcplusg 16888 .rcmulr 16889 0gc0g 17067 Ringcrg 19698 AbsValcabv 19991 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-map 8575 df-abv 19992 |
This theorem is referenced by: abvne0 20002 abv0 20006 abvmet 23637 |
Copyright terms: Public domain | W3C validator |