| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > abveq0 | Structured version Visualization version GIF version | ||
| Description: The value of an absolute value is zero iff the argument is zero. (Contributed by Mario Carneiro, 8-Sep-2014.) |
| Ref | Expression |
|---|---|
| abvf.a | ⊢ 𝐴 = (AbsVal‘𝑅) |
| abvf.b | ⊢ 𝐵 = (Base‘𝑅) |
| abveq0.z | ⊢ 0 = (0g‘𝑅) |
| Ref | Expression |
|---|---|
| abveq0 | ⊢ ((𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) → ((𝐹‘𝑋) = 0 ↔ 𝑋 = 0 )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abvf.a | . . . . . 6 ⊢ 𝐴 = (AbsVal‘𝑅) | |
| 2 | 1 | abvrcl 20728 | . . . . 5 ⊢ (𝐹 ∈ 𝐴 → 𝑅 ∈ Ring) |
| 3 | abvf.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑅) | |
| 4 | eqid 2731 | . . . . . 6 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
| 5 | eqid 2731 | . . . . . 6 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 6 | abveq0.z | . . . . . 6 ⊢ 0 = (0g‘𝑅) | |
| 7 | 1, 3, 4, 5, 6 | isabv 20726 | . . . . 5 ⊢ (𝑅 ∈ Ring → (𝐹 ∈ 𝐴 ↔ (𝐹:𝐵⟶(0[,)+∞) ∧ ∀𝑥 ∈ 𝐵 (((𝐹‘𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦 ∈ 𝐵 ((𝐹‘(𝑥(.r‘𝑅)𝑦)) = ((𝐹‘𝑥) · (𝐹‘𝑦)) ∧ (𝐹‘(𝑥(+g‘𝑅)𝑦)) ≤ ((𝐹‘𝑥) + (𝐹‘𝑦))))))) |
| 8 | 2, 7 | syl 17 | . . . 4 ⊢ (𝐹 ∈ 𝐴 → (𝐹 ∈ 𝐴 ↔ (𝐹:𝐵⟶(0[,)+∞) ∧ ∀𝑥 ∈ 𝐵 (((𝐹‘𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦 ∈ 𝐵 ((𝐹‘(𝑥(.r‘𝑅)𝑦)) = ((𝐹‘𝑥) · (𝐹‘𝑦)) ∧ (𝐹‘(𝑥(+g‘𝑅)𝑦)) ≤ ((𝐹‘𝑥) + (𝐹‘𝑦))))))) |
| 9 | 8 | ibi 267 | . . 3 ⊢ (𝐹 ∈ 𝐴 → (𝐹:𝐵⟶(0[,)+∞) ∧ ∀𝑥 ∈ 𝐵 (((𝐹‘𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦 ∈ 𝐵 ((𝐹‘(𝑥(.r‘𝑅)𝑦)) = ((𝐹‘𝑥) · (𝐹‘𝑦)) ∧ (𝐹‘(𝑥(+g‘𝑅)𝑦)) ≤ ((𝐹‘𝑥) + (𝐹‘𝑦)))))) |
| 10 | simpl 482 | . . . 4 ⊢ ((((𝐹‘𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦 ∈ 𝐵 ((𝐹‘(𝑥(.r‘𝑅)𝑦)) = ((𝐹‘𝑥) · (𝐹‘𝑦)) ∧ (𝐹‘(𝑥(+g‘𝑅)𝑦)) ≤ ((𝐹‘𝑥) + (𝐹‘𝑦)))) → ((𝐹‘𝑥) = 0 ↔ 𝑥 = 0 )) | |
| 11 | 10 | ralimi 3069 | . . 3 ⊢ (∀𝑥 ∈ 𝐵 (((𝐹‘𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦 ∈ 𝐵 ((𝐹‘(𝑥(.r‘𝑅)𝑦)) = ((𝐹‘𝑥) · (𝐹‘𝑦)) ∧ (𝐹‘(𝑥(+g‘𝑅)𝑦)) ≤ ((𝐹‘𝑥) + (𝐹‘𝑦)))) → ∀𝑥 ∈ 𝐵 ((𝐹‘𝑥) = 0 ↔ 𝑥 = 0 )) |
| 12 | 9, 11 | simpl2im 503 | . 2 ⊢ (𝐹 ∈ 𝐴 → ∀𝑥 ∈ 𝐵 ((𝐹‘𝑥) = 0 ↔ 𝑥 = 0 )) |
| 13 | fveqeq2 6831 | . . . 4 ⊢ (𝑥 = 𝑋 → ((𝐹‘𝑥) = 0 ↔ (𝐹‘𝑋) = 0)) | |
| 14 | eqeq1 2735 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝑥 = 0 ↔ 𝑋 = 0 )) | |
| 15 | 13, 14 | bibi12d 345 | . . 3 ⊢ (𝑥 = 𝑋 → (((𝐹‘𝑥) = 0 ↔ 𝑥 = 0 ) ↔ ((𝐹‘𝑋) = 0 ↔ 𝑋 = 0 ))) |
| 16 | 15 | rspccva 3571 | . 2 ⊢ ((∀𝑥 ∈ 𝐵 ((𝐹‘𝑥) = 0 ↔ 𝑥 = 0 ) ∧ 𝑋 ∈ 𝐵) → ((𝐹‘𝑋) = 0 ↔ 𝑋 = 0 )) |
| 17 | 12, 16 | sylan 580 | 1 ⊢ ((𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) → ((𝐹‘𝑋) = 0 ↔ 𝑋 = 0 )) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 class class class wbr 5089 ⟶wf 6477 ‘cfv 6481 (class class class)co 7346 0cc0 11006 + caddc 11009 · cmul 11011 +∞cpnf 11143 ≤ cle 11147 [,)cico 13247 Basecbs 17120 +gcplusg 17161 .rcmulr 17162 0gc0g 17343 Ringcrg 20151 AbsValcabv 20723 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-map 8752 df-abv 20724 |
| This theorem is referenced by: abvne0 20734 abv0 20738 abvmet 24490 |
| Copyright terms: Public domain | W3C validator |