|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > abveq0 | Structured version Visualization version GIF version | ||
| Description: The value of an absolute value is zero iff the argument is zero. (Contributed by Mario Carneiro, 8-Sep-2014.) | 
| Ref | Expression | 
|---|---|
| abvf.a | ⊢ 𝐴 = (AbsVal‘𝑅) | 
| abvf.b | ⊢ 𝐵 = (Base‘𝑅) | 
| abveq0.z | ⊢ 0 = (0g‘𝑅) | 
| Ref | Expression | 
|---|---|
| abveq0 | ⊢ ((𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) → ((𝐹‘𝑋) = 0 ↔ 𝑋 = 0 )) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | abvf.a | . . . . . 6 ⊢ 𝐴 = (AbsVal‘𝑅) | |
| 2 | 1 | abvrcl 20815 | . . . . 5 ⊢ (𝐹 ∈ 𝐴 → 𝑅 ∈ Ring) | 
| 3 | abvf.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑅) | |
| 4 | eqid 2736 | . . . . . 6 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
| 5 | eqid 2736 | . . . . . 6 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 6 | abveq0.z | . . . . . 6 ⊢ 0 = (0g‘𝑅) | |
| 7 | 1, 3, 4, 5, 6 | isabv 20813 | . . . . 5 ⊢ (𝑅 ∈ Ring → (𝐹 ∈ 𝐴 ↔ (𝐹:𝐵⟶(0[,)+∞) ∧ ∀𝑥 ∈ 𝐵 (((𝐹‘𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦 ∈ 𝐵 ((𝐹‘(𝑥(.r‘𝑅)𝑦)) = ((𝐹‘𝑥) · (𝐹‘𝑦)) ∧ (𝐹‘(𝑥(+g‘𝑅)𝑦)) ≤ ((𝐹‘𝑥) + (𝐹‘𝑦))))))) | 
| 8 | 2, 7 | syl 17 | . . . 4 ⊢ (𝐹 ∈ 𝐴 → (𝐹 ∈ 𝐴 ↔ (𝐹:𝐵⟶(0[,)+∞) ∧ ∀𝑥 ∈ 𝐵 (((𝐹‘𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦 ∈ 𝐵 ((𝐹‘(𝑥(.r‘𝑅)𝑦)) = ((𝐹‘𝑥) · (𝐹‘𝑦)) ∧ (𝐹‘(𝑥(+g‘𝑅)𝑦)) ≤ ((𝐹‘𝑥) + (𝐹‘𝑦))))))) | 
| 9 | 8 | ibi 267 | . . 3 ⊢ (𝐹 ∈ 𝐴 → (𝐹:𝐵⟶(0[,)+∞) ∧ ∀𝑥 ∈ 𝐵 (((𝐹‘𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦 ∈ 𝐵 ((𝐹‘(𝑥(.r‘𝑅)𝑦)) = ((𝐹‘𝑥) · (𝐹‘𝑦)) ∧ (𝐹‘(𝑥(+g‘𝑅)𝑦)) ≤ ((𝐹‘𝑥) + (𝐹‘𝑦)))))) | 
| 10 | simpl 482 | . . . 4 ⊢ ((((𝐹‘𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦 ∈ 𝐵 ((𝐹‘(𝑥(.r‘𝑅)𝑦)) = ((𝐹‘𝑥) · (𝐹‘𝑦)) ∧ (𝐹‘(𝑥(+g‘𝑅)𝑦)) ≤ ((𝐹‘𝑥) + (𝐹‘𝑦)))) → ((𝐹‘𝑥) = 0 ↔ 𝑥 = 0 )) | |
| 11 | 10 | ralimi 3082 | . . 3 ⊢ (∀𝑥 ∈ 𝐵 (((𝐹‘𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦 ∈ 𝐵 ((𝐹‘(𝑥(.r‘𝑅)𝑦)) = ((𝐹‘𝑥) · (𝐹‘𝑦)) ∧ (𝐹‘(𝑥(+g‘𝑅)𝑦)) ≤ ((𝐹‘𝑥) + (𝐹‘𝑦)))) → ∀𝑥 ∈ 𝐵 ((𝐹‘𝑥) = 0 ↔ 𝑥 = 0 )) | 
| 12 | 9, 11 | simpl2im 503 | . 2 ⊢ (𝐹 ∈ 𝐴 → ∀𝑥 ∈ 𝐵 ((𝐹‘𝑥) = 0 ↔ 𝑥 = 0 )) | 
| 13 | fveqeq2 6914 | . . . 4 ⊢ (𝑥 = 𝑋 → ((𝐹‘𝑥) = 0 ↔ (𝐹‘𝑋) = 0)) | |
| 14 | eqeq1 2740 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝑥 = 0 ↔ 𝑋 = 0 )) | |
| 15 | 13, 14 | bibi12d 345 | . . 3 ⊢ (𝑥 = 𝑋 → (((𝐹‘𝑥) = 0 ↔ 𝑥 = 0 ) ↔ ((𝐹‘𝑋) = 0 ↔ 𝑋 = 0 ))) | 
| 16 | 15 | rspccva 3620 | . 2 ⊢ ((∀𝑥 ∈ 𝐵 ((𝐹‘𝑥) = 0 ↔ 𝑥 = 0 ) ∧ 𝑋 ∈ 𝐵) → ((𝐹‘𝑋) = 0 ↔ 𝑋 = 0 )) | 
| 17 | 12, 16 | sylan 580 | 1 ⊢ ((𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) → ((𝐹‘𝑋) = 0 ↔ 𝑋 = 0 )) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∀wral 3060 class class class wbr 5142 ⟶wf 6556 ‘cfv 6560 (class class class)co 7432 0cc0 11156 + caddc 11159 · cmul 11161 +∞cpnf 11293 ≤ cle 11297 [,)cico 13390 Basecbs 17248 +gcplusg 17298 .rcmulr 17299 0gc0g 17485 Ringcrg 20231 AbsValcabv 20810 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-sbc 3788 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-br 5143 df-opab 5205 df-mpt 5225 df-id 5577 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-fv 6568 df-ov 7435 df-oprab 7436 df-mpo 7437 df-map 8869 df-abv 20811 | 
| This theorem is referenced by: abvne0 20821 abv0 20825 abvmet 24589 | 
| Copyright terms: Public domain | W3C validator |