Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > abveq0 | Structured version Visualization version GIF version |
Description: The value of an absolute value is zero iff the argument is zero. (Contributed by Mario Carneiro, 8-Sep-2014.) |
Ref | Expression |
---|---|
abvf.a | ⊢ 𝐴 = (AbsVal‘𝑅) |
abvf.b | ⊢ 𝐵 = (Base‘𝑅) |
abveq0.z | ⊢ 0 = (0g‘𝑅) |
Ref | Expression |
---|---|
abveq0 | ⊢ ((𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) → ((𝐹‘𝑋) = 0 ↔ 𝑋 = 0 )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abvf.a | . . . . . 6 ⊢ 𝐴 = (AbsVal‘𝑅) | |
2 | 1 | abvrcl 19711 | . . . . 5 ⊢ (𝐹 ∈ 𝐴 → 𝑅 ∈ Ring) |
3 | abvf.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑅) | |
4 | eqid 2738 | . . . . . 6 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
5 | eqid 2738 | . . . . . 6 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
6 | abveq0.z | . . . . . 6 ⊢ 0 = (0g‘𝑅) | |
7 | 1, 3, 4, 5, 6 | isabv 19709 | . . . . 5 ⊢ (𝑅 ∈ Ring → (𝐹 ∈ 𝐴 ↔ (𝐹:𝐵⟶(0[,)+∞) ∧ ∀𝑥 ∈ 𝐵 (((𝐹‘𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦 ∈ 𝐵 ((𝐹‘(𝑥(.r‘𝑅)𝑦)) = ((𝐹‘𝑥) · (𝐹‘𝑦)) ∧ (𝐹‘(𝑥(+g‘𝑅)𝑦)) ≤ ((𝐹‘𝑥) + (𝐹‘𝑦))))))) |
8 | 2, 7 | syl 17 | . . . 4 ⊢ (𝐹 ∈ 𝐴 → (𝐹 ∈ 𝐴 ↔ (𝐹:𝐵⟶(0[,)+∞) ∧ ∀𝑥 ∈ 𝐵 (((𝐹‘𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦 ∈ 𝐵 ((𝐹‘(𝑥(.r‘𝑅)𝑦)) = ((𝐹‘𝑥) · (𝐹‘𝑦)) ∧ (𝐹‘(𝑥(+g‘𝑅)𝑦)) ≤ ((𝐹‘𝑥) + (𝐹‘𝑦))))))) |
9 | 8 | ibi 270 | . . 3 ⊢ (𝐹 ∈ 𝐴 → (𝐹:𝐵⟶(0[,)+∞) ∧ ∀𝑥 ∈ 𝐵 (((𝐹‘𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦 ∈ 𝐵 ((𝐹‘(𝑥(.r‘𝑅)𝑦)) = ((𝐹‘𝑥) · (𝐹‘𝑦)) ∧ (𝐹‘(𝑥(+g‘𝑅)𝑦)) ≤ ((𝐹‘𝑥) + (𝐹‘𝑦)))))) |
10 | simpl 486 | . . . 4 ⊢ ((((𝐹‘𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦 ∈ 𝐵 ((𝐹‘(𝑥(.r‘𝑅)𝑦)) = ((𝐹‘𝑥) · (𝐹‘𝑦)) ∧ (𝐹‘(𝑥(+g‘𝑅)𝑦)) ≤ ((𝐹‘𝑥) + (𝐹‘𝑦)))) → ((𝐹‘𝑥) = 0 ↔ 𝑥 = 0 )) | |
11 | 10 | ralimi 3075 | . . 3 ⊢ (∀𝑥 ∈ 𝐵 (((𝐹‘𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦 ∈ 𝐵 ((𝐹‘(𝑥(.r‘𝑅)𝑦)) = ((𝐹‘𝑥) · (𝐹‘𝑦)) ∧ (𝐹‘(𝑥(+g‘𝑅)𝑦)) ≤ ((𝐹‘𝑥) + (𝐹‘𝑦)))) → ∀𝑥 ∈ 𝐵 ((𝐹‘𝑥) = 0 ↔ 𝑥 = 0 )) |
12 | 9, 11 | simpl2im 507 | . 2 ⊢ (𝐹 ∈ 𝐴 → ∀𝑥 ∈ 𝐵 ((𝐹‘𝑥) = 0 ↔ 𝑥 = 0 )) |
13 | fveqeq2 6683 | . . . 4 ⊢ (𝑥 = 𝑋 → ((𝐹‘𝑥) = 0 ↔ (𝐹‘𝑋) = 0)) | |
14 | eqeq1 2742 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝑥 = 0 ↔ 𝑋 = 0 )) | |
15 | 13, 14 | bibi12d 349 | . . 3 ⊢ (𝑥 = 𝑋 → (((𝐹‘𝑥) = 0 ↔ 𝑥 = 0 ) ↔ ((𝐹‘𝑋) = 0 ↔ 𝑋 = 0 ))) |
16 | 15 | rspccva 3525 | . 2 ⊢ ((∀𝑥 ∈ 𝐵 ((𝐹‘𝑥) = 0 ↔ 𝑥 = 0 ) ∧ 𝑋 ∈ 𝐵) → ((𝐹‘𝑋) = 0 ↔ 𝑋 = 0 )) |
17 | 12, 16 | sylan 583 | 1 ⊢ ((𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) → ((𝐹‘𝑋) = 0 ↔ 𝑋 = 0 )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1542 ∈ wcel 2114 ∀wral 3053 class class class wbr 5030 ⟶wf 6335 ‘cfv 6339 (class class class)co 7170 0cc0 10615 + caddc 10618 · cmul 10620 +∞cpnf 10750 ≤ cle 10754 [,)cico 12823 Basecbs 16586 +gcplusg 16668 .rcmulr 16669 0gc0g 16816 Ringcrg 19416 AbsValcabv 19706 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2710 ax-sep 5167 ax-nul 5174 ax-pow 5232 ax-pr 5296 ax-un 7479 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-ral 3058 df-rex 3059 df-rab 3062 df-v 3400 df-sbc 3681 df-dif 3846 df-un 3848 df-in 3850 df-ss 3860 df-nul 4212 df-if 4415 df-pw 4490 df-sn 4517 df-pr 4519 df-op 4523 df-uni 4797 df-br 5031 df-opab 5093 df-mpt 5111 df-id 5429 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-iota 6297 df-fun 6341 df-fn 6342 df-f 6343 df-fv 6347 df-ov 7173 df-oprab 7174 df-mpo 7175 df-map 8439 df-abv 19707 |
This theorem is referenced by: abvne0 19717 abv0 19721 abvmet 23328 |
Copyright terms: Public domain | W3C validator |