MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abveq0 Structured version   Visualization version   GIF version

Theorem abveq0 20783
Description: The value of an absolute value is zero iff the argument is zero. (Contributed by Mario Carneiro, 8-Sep-2014.)
Hypotheses
Ref Expression
abvf.a 𝐴 = (AbsVal‘𝑅)
abvf.b 𝐵 = (Base‘𝑅)
abveq0.z 0 = (0g𝑅)
Assertion
Ref Expression
abveq0 ((𝐹𝐴𝑋𝐵) → ((𝐹𝑋) = 0 ↔ 𝑋 = 0 ))

Proof of Theorem abveq0
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 abvf.a . . . . . 6 𝐴 = (AbsVal‘𝑅)
21abvrcl 20778 . . . . 5 (𝐹𝐴𝑅 ∈ Ring)
3 abvf.b . . . . . 6 𝐵 = (Base‘𝑅)
4 eqid 2736 . . . . . 6 (+g𝑅) = (+g𝑅)
5 eqid 2736 . . . . . 6 (.r𝑅) = (.r𝑅)
6 abveq0.z . . . . . 6 0 = (0g𝑅)
71, 3, 4, 5, 6isabv 20776 . . . . 5 (𝑅 ∈ Ring → (𝐹𝐴 ↔ (𝐹:𝐵⟶(0[,)+∞) ∧ ∀𝑥𝐵 (((𝐹𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦𝐵 ((𝐹‘(𝑥(.r𝑅)𝑦)) = ((𝐹𝑥) · (𝐹𝑦)) ∧ (𝐹‘(𝑥(+g𝑅)𝑦)) ≤ ((𝐹𝑥) + (𝐹𝑦)))))))
82, 7syl 17 . . . 4 (𝐹𝐴 → (𝐹𝐴 ↔ (𝐹:𝐵⟶(0[,)+∞) ∧ ∀𝑥𝐵 (((𝐹𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦𝐵 ((𝐹‘(𝑥(.r𝑅)𝑦)) = ((𝐹𝑥) · (𝐹𝑦)) ∧ (𝐹‘(𝑥(+g𝑅)𝑦)) ≤ ((𝐹𝑥) + (𝐹𝑦)))))))
98ibi 267 . . 3 (𝐹𝐴 → (𝐹:𝐵⟶(0[,)+∞) ∧ ∀𝑥𝐵 (((𝐹𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦𝐵 ((𝐹‘(𝑥(.r𝑅)𝑦)) = ((𝐹𝑥) · (𝐹𝑦)) ∧ (𝐹‘(𝑥(+g𝑅)𝑦)) ≤ ((𝐹𝑥) + (𝐹𝑦))))))
10 simpl 482 . . . 4 ((((𝐹𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦𝐵 ((𝐹‘(𝑥(.r𝑅)𝑦)) = ((𝐹𝑥) · (𝐹𝑦)) ∧ (𝐹‘(𝑥(+g𝑅)𝑦)) ≤ ((𝐹𝑥) + (𝐹𝑦)))) → ((𝐹𝑥) = 0 ↔ 𝑥 = 0 ))
1110ralimi 3074 . . 3 (∀𝑥𝐵 (((𝐹𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦𝐵 ((𝐹‘(𝑥(.r𝑅)𝑦)) = ((𝐹𝑥) · (𝐹𝑦)) ∧ (𝐹‘(𝑥(+g𝑅)𝑦)) ≤ ((𝐹𝑥) + (𝐹𝑦)))) → ∀𝑥𝐵 ((𝐹𝑥) = 0 ↔ 𝑥 = 0 ))
129, 11simpl2im 503 . 2 (𝐹𝐴 → ∀𝑥𝐵 ((𝐹𝑥) = 0 ↔ 𝑥 = 0 ))
13 fveqeq2 6890 . . . 4 (𝑥 = 𝑋 → ((𝐹𝑥) = 0 ↔ (𝐹𝑋) = 0))
14 eqeq1 2740 . . . 4 (𝑥 = 𝑋 → (𝑥 = 0𝑋 = 0 ))
1513, 14bibi12d 345 . . 3 (𝑥 = 𝑋 → (((𝐹𝑥) = 0 ↔ 𝑥 = 0 ) ↔ ((𝐹𝑋) = 0 ↔ 𝑋 = 0 )))
1615rspccva 3605 . 2 ((∀𝑥𝐵 ((𝐹𝑥) = 0 ↔ 𝑥 = 0 ) ∧ 𝑋𝐵) → ((𝐹𝑋) = 0 ↔ 𝑋 = 0 ))
1712, 16sylan 580 1 ((𝐹𝐴𝑋𝐵) → ((𝐹𝑋) = 0 ↔ 𝑋 = 0 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3052   class class class wbr 5124  wf 6532  cfv 6536  (class class class)co 7410  0cc0 11134   + caddc 11137   · cmul 11139  +∞cpnf 11271  cle 11275  [,)cico 13369  Basecbs 17233  +gcplusg 17276  .rcmulr 17277  0gc0g 17458  Ringcrg 20198  AbsValcabv 20773
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-sbc 3771  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-fv 6544  df-ov 7413  df-oprab 7414  df-mpo 7415  df-map 8847  df-abv 20774
This theorem is referenced by:  abvne0  20784  abv0  20788  abvmet  24519
  Copyright terms: Public domain W3C validator