MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abveq0 Structured version   Visualization version   GIF version

Theorem abveq0 20727
Description: The value of an absolute value is zero iff the argument is zero. (Contributed by Mario Carneiro, 8-Sep-2014.)
Hypotheses
Ref Expression
abvf.a 𝐴 = (AbsVal‘𝑅)
abvf.b 𝐵 = (Base‘𝑅)
abveq0.z 0 = (0g𝑅)
Assertion
Ref Expression
abveq0 ((𝐹𝐴𝑋𝐵) → ((𝐹𝑋) = 0 ↔ 𝑋 = 0 ))

Proof of Theorem abveq0
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 abvf.a . . . . . 6 𝐴 = (AbsVal‘𝑅)
21abvrcl 20722 . . . . 5 (𝐹𝐴𝑅 ∈ Ring)
3 abvf.b . . . . . 6 𝐵 = (Base‘𝑅)
4 eqid 2729 . . . . . 6 (+g𝑅) = (+g𝑅)
5 eqid 2729 . . . . . 6 (.r𝑅) = (.r𝑅)
6 abveq0.z . . . . . 6 0 = (0g𝑅)
71, 3, 4, 5, 6isabv 20720 . . . . 5 (𝑅 ∈ Ring → (𝐹𝐴 ↔ (𝐹:𝐵⟶(0[,)+∞) ∧ ∀𝑥𝐵 (((𝐹𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦𝐵 ((𝐹‘(𝑥(.r𝑅)𝑦)) = ((𝐹𝑥) · (𝐹𝑦)) ∧ (𝐹‘(𝑥(+g𝑅)𝑦)) ≤ ((𝐹𝑥) + (𝐹𝑦)))))))
82, 7syl 17 . . . 4 (𝐹𝐴 → (𝐹𝐴 ↔ (𝐹:𝐵⟶(0[,)+∞) ∧ ∀𝑥𝐵 (((𝐹𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦𝐵 ((𝐹‘(𝑥(.r𝑅)𝑦)) = ((𝐹𝑥) · (𝐹𝑦)) ∧ (𝐹‘(𝑥(+g𝑅)𝑦)) ≤ ((𝐹𝑥) + (𝐹𝑦)))))))
98ibi 267 . . 3 (𝐹𝐴 → (𝐹:𝐵⟶(0[,)+∞) ∧ ∀𝑥𝐵 (((𝐹𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦𝐵 ((𝐹‘(𝑥(.r𝑅)𝑦)) = ((𝐹𝑥) · (𝐹𝑦)) ∧ (𝐹‘(𝑥(+g𝑅)𝑦)) ≤ ((𝐹𝑥) + (𝐹𝑦))))))
10 simpl 482 . . . 4 ((((𝐹𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦𝐵 ((𝐹‘(𝑥(.r𝑅)𝑦)) = ((𝐹𝑥) · (𝐹𝑦)) ∧ (𝐹‘(𝑥(+g𝑅)𝑦)) ≤ ((𝐹𝑥) + (𝐹𝑦)))) → ((𝐹𝑥) = 0 ↔ 𝑥 = 0 ))
1110ralimi 3066 . . 3 (∀𝑥𝐵 (((𝐹𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦𝐵 ((𝐹‘(𝑥(.r𝑅)𝑦)) = ((𝐹𝑥) · (𝐹𝑦)) ∧ (𝐹‘(𝑥(+g𝑅)𝑦)) ≤ ((𝐹𝑥) + (𝐹𝑦)))) → ∀𝑥𝐵 ((𝐹𝑥) = 0 ↔ 𝑥 = 0 ))
129, 11simpl2im 503 . 2 (𝐹𝐴 → ∀𝑥𝐵 ((𝐹𝑥) = 0 ↔ 𝑥 = 0 ))
13 fveqeq2 6867 . . . 4 (𝑥 = 𝑋 → ((𝐹𝑥) = 0 ↔ (𝐹𝑋) = 0))
14 eqeq1 2733 . . . 4 (𝑥 = 𝑋 → (𝑥 = 0𝑋 = 0 ))
1513, 14bibi12d 345 . . 3 (𝑥 = 𝑋 → (((𝐹𝑥) = 0 ↔ 𝑥 = 0 ) ↔ ((𝐹𝑋) = 0 ↔ 𝑋 = 0 )))
1615rspccva 3587 . 2 ((∀𝑥𝐵 ((𝐹𝑥) = 0 ↔ 𝑥 = 0 ) ∧ 𝑋𝐵) → ((𝐹𝑋) = 0 ↔ 𝑋 = 0 ))
1712, 16sylan 580 1 ((𝐹𝐴𝑋𝐵) → ((𝐹𝑋) = 0 ↔ 𝑋 = 0 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044   class class class wbr 5107  wf 6507  cfv 6511  (class class class)co 7387  0cc0 11068   + caddc 11071   · cmul 11073  +∞cpnf 11205  cle 11209  [,)cico 13308  Basecbs 17179  +gcplusg 17220  .rcmulr 17221  0gc0g 17402  Ringcrg 20142  AbsValcabv 20717
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-map 8801  df-abv 20718
This theorem is referenced by:  abvne0  20728  abv0  20732  abvmet  24463
  Copyright terms: Public domain W3C validator