| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > loopclwwlkn1b | Structured version Visualization version GIF version | ||
| Description: The singleton word consisting of a vertex 𝑉 represents a closed walk of length 1 iff there is a loop at vertex 𝑉. (Contributed by AV, 11-Feb-2022.) |
| Ref | Expression |
|---|---|
| loopclwwlkn1b | ⊢ (𝑉 ∈ (Vtx‘𝐺) → ({𝑉} ∈ (Edg‘𝐺) ↔ 〈“𝑉”〉 ∈ (1 ClWWalksN 𝐺))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clwwlkn1 29989 | . 2 ⊢ (〈“𝑉”〉 ∈ (1 ClWWalksN 𝐺) ↔ ((♯‘〈“𝑉”〉) = 1 ∧ 〈“𝑉”〉 ∈ Word (Vtx‘𝐺) ∧ {(〈“𝑉”〉‘0)} ∈ (Edg‘𝐺))) | |
| 2 | s1fv 14631 | . . . . . . . 8 ⊢ (𝑉 ∈ (Vtx‘𝐺) → (〈“𝑉”〉‘0) = 𝑉) | |
| 3 | 2 | sneqd 4618 | . . . . . . 7 ⊢ (𝑉 ∈ (Vtx‘𝐺) → {(〈“𝑉”〉‘0)} = {𝑉}) |
| 4 | 3 | eleq1d 2818 | . . . . . 6 ⊢ (𝑉 ∈ (Vtx‘𝐺) → ({(〈“𝑉”〉‘0)} ∈ (Edg‘𝐺) ↔ {𝑉} ∈ (Edg‘𝐺))) |
| 5 | 4 | biimpcd 249 | . . . . 5 ⊢ ({(〈“𝑉”〉‘0)} ∈ (Edg‘𝐺) → (𝑉 ∈ (Vtx‘𝐺) → {𝑉} ∈ (Edg‘𝐺))) |
| 6 | 5 | 3ad2ant3 1135 | . . . 4 ⊢ (((♯‘〈“𝑉”〉) = 1 ∧ 〈“𝑉”〉 ∈ Word (Vtx‘𝐺) ∧ {(〈“𝑉”〉‘0)} ∈ (Edg‘𝐺)) → (𝑉 ∈ (Vtx‘𝐺) → {𝑉} ∈ (Edg‘𝐺))) |
| 7 | 6 | com12 32 | . . 3 ⊢ (𝑉 ∈ (Vtx‘𝐺) → (((♯‘〈“𝑉”〉) = 1 ∧ 〈“𝑉”〉 ∈ Word (Vtx‘𝐺) ∧ {(〈“𝑉”〉‘0)} ∈ (Edg‘𝐺)) → {𝑉} ∈ (Edg‘𝐺))) |
| 8 | s1len 14627 | . . . . . 6 ⊢ (♯‘〈“𝑉”〉) = 1 | |
| 9 | 8 | a1i 11 | . . . . 5 ⊢ ((𝑉 ∈ (Vtx‘𝐺) ∧ {𝑉} ∈ (Edg‘𝐺)) → (♯‘〈“𝑉”〉) = 1) |
| 10 | s1cl 14623 | . . . . . 6 ⊢ (𝑉 ∈ (Vtx‘𝐺) → 〈“𝑉”〉 ∈ Word (Vtx‘𝐺)) | |
| 11 | 10 | adantr 480 | . . . . 5 ⊢ ((𝑉 ∈ (Vtx‘𝐺) ∧ {𝑉} ∈ (Edg‘𝐺)) → 〈“𝑉”〉 ∈ Word (Vtx‘𝐺)) |
| 12 | 2 | eqcomd 2740 | . . . . . . . 8 ⊢ (𝑉 ∈ (Vtx‘𝐺) → 𝑉 = (〈“𝑉”〉‘0)) |
| 13 | 12 | sneqd 4618 | . . . . . . 7 ⊢ (𝑉 ∈ (Vtx‘𝐺) → {𝑉} = {(〈“𝑉”〉‘0)}) |
| 14 | 13 | eleq1d 2818 | . . . . . 6 ⊢ (𝑉 ∈ (Vtx‘𝐺) → ({𝑉} ∈ (Edg‘𝐺) ↔ {(〈“𝑉”〉‘0)} ∈ (Edg‘𝐺))) |
| 15 | 14 | biimpa 476 | . . . . 5 ⊢ ((𝑉 ∈ (Vtx‘𝐺) ∧ {𝑉} ∈ (Edg‘𝐺)) → {(〈“𝑉”〉‘0)} ∈ (Edg‘𝐺)) |
| 16 | 9, 11, 15 | 3jca 1128 | . . . 4 ⊢ ((𝑉 ∈ (Vtx‘𝐺) ∧ {𝑉} ∈ (Edg‘𝐺)) → ((♯‘〈“𝑉”〉) = 1 ∧ 〈“𝑉”〉 ∈ Word (Vtx‘𝐺) ∧ {(〈“𝑉”〉‘0)} ∈ (Edg‘𝐺))) |
| 17 | 16 | ex 412 | . . 3 ⊢ (𝑉 ∈ (Vtx‘𝐺) → ({𝑉} ∈ (Edg‘𝐺) → ((♯‘〈“𝑉”〉) = 1 ∧ 〈“𝑉”〉 ∈ Word (Vtx‘𝐺) ∧ {(〈“𝑉”〉‘0)} ∈ (Edg‘𝐺)))) |
| 18 | 7, 17 | impbid 212 | . 2 ⊢ (𝑉 ∈ (Vtx‘𝐺) → (((♯‘〈“𝑉”〉) = 1 ∧ 〈“𝑉”〉 ∈ Word (Vtx‘𝐺) ∧ {(〈“𝑉”〉‘0)} ∈ (Edg‘𝐺)) ↔ {𝑉} ∈ (Edg‘𝐺))) |
| 19 | 1, 18 | bitr2id 284 | 1 ⊢ (𝑉 ∈ (Vtx‘𝐺) → ({𝑉} ∈ (Edg‘𝐺) ↔ 〈“𝑉”〉 ∈ (1 ClWWalksN 𝐺))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 {csn 4606 ‘cfv 6541 (class class class)co 7413 0cc0 11137 1c1 11138 ♯chash 14352 Word cword 14535 〈“cs1 14616 Vtxcvtx 28942 Edgcedg 28993 ClWWalksN cclwwlkn 29972 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-cnex 11193 ax-resscn 11194 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-addrcl 11198 ax-mulcl 11199 ax-mulrcl 11200 ax-mulcom 11201 ax-addass 11202 ax-mulass 11203 ax-distr 11204 ax-i2m1 11205 ax-1ne0 11206 ax-1rid 11207 ax-rnegex 11208 ax-rrecex 11209 ax-cnre 11210 ax-pre-lttri 11211 ax-pre-lttrn 11212 ax-pre-ltadd 11213 ax-pre-mulgt0 11214 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-int 4927 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7870 df-1st 7996 df-2nd 7997 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-1o 8488 df-er 8727 df-map 8850 df-en 8968 df-dom 8969 df-sdom 8970 df-fin 8971 df-card 9961 df-pnf 11279 df-mnf 11280 df-xr 11281 df-ltxr 11282 df-le 11283 df-sub 11476 df-neg 11477 df-nn 12249 df-n0 12510 df-xnn0 12583 df-z 12597 df-uz 12861 df-fz 13530 df-fzo 13677 df-hash 14353 df-word 14536 df-lsw 14584 df-s1 14617 df-clwwlk 29930 df-clwwlkn 29973 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |