![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > loopclwwlkn1b | Structured version Visualization version GIF version |
Description: The singleton word consisting of a vertex 𝑉 represents a closed walk of length 1 iff there is a loop at vertex 𝑉. (Contributed by AV, 11-Feb-2022.) |
Ref | Expression |
---|---|
loopclwwlkn1b | ⊢ (𝑉 ∈ (Vtx‘𝐺) → ({𝑉} ∈ (Edg‘𝐺) ↔ ⟨“𝑉”⟩ ∈ (1 ClWWalksN 𝐺))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clwwlkn1 29763 | . 2 ⊢ (⟨“𝑉”⟩ ∈ (1 ClWWalksN 𝐺) ↔ ((♯‘⟨“𝑉”⟩) = 1 ∧ ⟨“𝑉”⟩ ∈ Word (Vtx‘𝐺) ∧ {(⟨“𝑉”⟩‘0)} ∈ (Edg‘𝐺))) | |
2 | s1fv 14557 | . . . . . . . 8 ⊢ (𝑉 ∈ (Vtx‘𝐺) → (⟨“𝑉”⟩‘0) = 𝑉) | |
3 | 2 | sneqd 4632 | . . . . . . 7 ⊢ (𝑉 ∈ (Vtx‘𝐺) → {(⟨“𝑉”⟩‘0)} = {𝑉}) |
4 | 3 | eleq1d 2810 | . . . . . 6 ⊢ (𝑉 ∈ (Vtx‘𝐺) → ({(⟨“𝑉”⟩‘0)} ∈ (Edg‘𝐺) ↔ {𝑉} ∈ (Edg‘𝐺))) |
5 | 4 | biimpcd 248 | . . . . 5 ⊢ ({(⟨“𝑉”⟩‘0)} ∈ (Edg‘𝐺) → (𝑉 ∈ (Vtx‘𝐺) → {𝑉} ∈ (Edg‘𝐺))) |
6 | 5 | 3ad2ant3 1132 | . . . 4 ⊢ (((♯‘⟨“𝑉”⟩) = 1 ∧ ⟨“𝑉”⟩ ∈ Word (Vtx‘𝐺) ∧ {(⟨“𝑉”⟩‘0)} ∈ (Edg‘𝐺)) → (𝑉 ∈ (Vtx‘𝐺) → {𝑉} ∈ (Edg‘𝐺))) |
7 | 6 | com12 32 | . . 3 ⊢ (𝑉 ∈ (Vtx‘𝐺) → (((♯‘⟨“𝑉”⟩) = 1 ∧ ⟨“𝑉”⟩ ∈ Word (Vtx‘𝐺) ∧ {(⟨“𝑉”⟩‘0)} ∈ (Edg‘𝐺)) → {𝑉} ∈ (Edg‘𝐺))) |
8 | s1len 14553 | . . . . . 6 ⊢ (♯‘⟨“𝑉”⟩) = 1 | |
9 | 8 | a1i 11 | . . . . 5 ⊢ ((𝑉 ∈ (Vtx‘𝐺) ∧ {𝑉} ∈ (Edg‘𝐺)) → (♯‘⟨“𝑉”⟩) = 1) |
10 | s1cl 14549 | . . . . . 6 ⊢ (𝑉 ∈ (Vtx‘𝐺) → ⟨“𝑉”⟩ ∈ Word (Vtx‘𝐺)) | |
11 | 10 | adantr 480 | . . . . 5 ⊢ ((𝑉 ∈ (Vtx‘𝐺) ∧ {𝑉} ∈ (Edg‘𝐺)) → ⟨“𝑉”⟩ ∈ Word (Vtx‘𝐺)) |
12 | 2 | eqcomd 2730 | . . . . . . . 8 ⊢ (𝑉 ∈ (Vtx‘𝐺) → 𝑉 = (⟨“𝑉”⟩‘0)) |
13 | 12 | sneqd 4632 | . . . . . . 7 ⊢ (𝑉 ∈ (Vtx‘𝐺) → {𝑉} = {(⟨“𝑉”⟩‘0)}) |
14 | 13 | eleq1d 2810 | . . . . . 6 ⊢ (𝑉 ∈ (Vtx‘𝐺) → ({𝑉} ∈ (Edg‘𝐺) ↔ {(⟨“𝑉”⟩‘0)} ∈ (Edg‘𝐺))) |
15 | 14 | biimpa 476 | . . . . 5 ⊢ ((𝑉 ∈ (Vtx‘𝐺) ∧ {𝑉} ∈ (Edg‘𝐺)) → {(⟨“𝑉”⟩‘0)} ∈ (Edg‘𝐺)) |
16 | 9, 11, 15 | 3jca 1125 | . . . 4 ⊢ ((𝑉 ∈ (Vtx‘𝐺) ∧ {𝑉} ∈ (Edg‘𝐺)) → ((♯‘⟨“𝑉”⟩) = 1 ∧ ⟨“𝑉”⟩ ∈ Word (Vtx‘𝐺) ∧ {(⟨“𝑉”⟩‘0)} ∈ (Edg‘𝐺))) |
17 | 16 | ex 412 | . . 3 ⊢ (𝑉 ∈ (Vtx‘𝐺) → ({𝑉} ∈ (Edg‘𝐺) → ((♯‘⟨“𝑉”⟩) = 1 ∧ ⟨“𝑉”⟩ ∈ Word (Vtx‘𝐺) ∧ {(⟨“𝑉”⟩‘0)} ∈ (Edg‘𝐺)))) |
18 | 7, 17 | impbid 211 | . 2 ⊢ (𝑉 ∈ (Vtx‘𝐺) → (((♯‘⟨“𝑉”⟩) = 1 ∧ ⟨“𝑉”⟩ ∈ Word (Vtx‘𝐺) ∧ {(⟨“𝑉”⟩‘0)} ∈ (Edg‘𝐺)) ↔ {𝑉} ∈ (Edg‘𝐺))) |
19 | 1, 18 | bitr2id 284 | 1 ⊢ (𝑉 ∈ (Vtx‘𝐺) → ({𝑉} ∈ (Edg‘𝐺) ↔ ⟨“𝑉”⟩ ∈ (1 ClWWalksN 𝐺))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 {csn 4620 ‘cfv 6533 (class class class)co 7401 0cc0 11106 1c1 11107 ♯chash 14287 Word cword 14461 ⟨“cs1 14542 Vtxcvtx 28725 Edgcedg 28776 ClWWalksN cclwwlkn 29746 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5275 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-int 4941 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-tr 5256 df-id 5564 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-we 5623 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-pred 6290 df-ord 6357 df-on 6358 df-lim 6359 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-riota 7357 df-ov 7404 df-oprab 7405 df-mpo 7406 df-om 7849 df-1st 7968 df-2nd 7969 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-1o 8461 df-er 8699 df-map 8818 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-card 9930 df-pnf 11247 df-mnf 11248 df-xr 11249 df-ltxr 11250 df-le 11251 df-sub 11443 df-neg 11444 df-nn 12210 df-n0 12470 df-xnn0 12542 df-z 12556 df-uz 12820 df-fz 13482 df-fzo 13625 df-hash 14288 df-word 14462 df-lsw 14510 df-s1 14543 df-clwwlk 29704 df-clwwlkn 29747 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |