Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  loopclwwlkn1b Structured version   Visualization version   GIF version

Theorem loopclwwlkn1b 27812
 Description: The singleton word consisting of a vertex 𝑉 represents a closed walk of length 1 iff there is a loop at vertex 𝑉. (Contributed by AV, 11-Feb-2022.)
Assertion
Ref Expression
loopclwwlkn1b (𝑉 ∈ (Vtx‘𝐺) → ({𝑉} ∈ (Edg‘𝐺) ↔ ⟨“𝑉”⟩ ∈ (1 ClWWalksN 𝐺)))

Proof of Theorem loopclwwlkn1b
StepHypRef Expression
1 clwwlkn1 27811 . 2 (⟨“𝑉”⟩ ∈ (1 ClWWalksN 𝐺) ↔ ((♯‘⟨“𝑉”⟩) = 1 ∧ ⟨“𝑉”⟩ ∈ Word (Vtx‘𝐺) ∧ {(⟨“𝑉”⟩‘0)} ∈ (Edg‘𝐺)))
2 s1fv 13956 . . . . . . . 8 (𝑉 ∈ (Vtx‘𝐺) → (⟨“𝑉”⟩‘0) = 𝑉)
32sneqd 4571 . . . . . . 7 (𝑉 ∈ (Vtx‘𝐺) → {(⟨“𝑉”⟩‘0)} = {𝑉})
43eleq1d 2895 . . . . . 6 (𝑉 ∈ (Vtx‘𝐺) → ({(⟨“𝑉”⟩‘0)} ∈ (Edg‘𝐺) ↔ {𝑉} ∈ (Edg‘𝐺)))
54biimpcd 251 . . . . 5 ({(⟨“𝑉”⟩‘0)} ∈ (Edg‘𝐺) → (𝑉 ∈ (Vtx‘𝐺) → {𝑉} ∈ (Edg‘𝐺)))
653ad2ant3 1129 . . . 4 (((♯‘⟨“𝑉”⟩) = 1 ∧ ⟨“𝑉”⟩ ∈ Word (Vtx‘𝐺) ∧ {(⟨“𝑉”⟩‘0)} ∈ (Edg‘𝐺)) → (𝑉 ∈ (Vtx‘𝐺) → {𝑉} ∈ (Edg‘𝐺)))
76com12 32 . . 3 (𝑉 ∈ (Vtx‘𝐺) → (((♯‘⟨“𝑉”⟩) = 1 ∧ ⟨“𝑉”⟩ ∈ Word (Vtx‘𝐺) ∧ {(⟨“𝑉”⟩‘0)} ∈ (Edg‘𝐺)) → {𝑉} ∈ (Edg‘𝐺)))
8 s1len 13952 . . . . . 6 (♯‘⟨“𝑉”⟩) = 1
98a1i 11 . . . . 5 ((𝑉 ∈ (Vtx‘𝐺) ∧ {𝑉} ∈ (Edg‘𝐺)) → (♯‘⟨“𝑉”⟩) = 1)
10 s1cl 13948 . . . . . 6 (𝑉 ∈ (Vtx‘𝐺) → ⟨“𝑉”⟩ ∈ Word (Vtx‘𝐺))
1110adantr 483 . . . . 5 ((𝑉 ∈ (Vtx‘𝐺) ∧ {𝑉} ∈ (Edg‘𝐺)) → ⟨“𝑉”⟩ ∈ Word (Vtx‘𝐺))
122eqcomd 2825 . . . . . . . 8 (𝑉 ∈ (Vtx‘𝐺) → 𝑉 = (⟨“𝑉”⟩‘0))
1312sneqd 4571 . . . . . . 7 (𝑉 ∈ (Vtx‘𝐺) → {𝑉} = {(⟨“𝑉”⟩‘0)})
1413eleq1d 2895 . . . . . 6 (𝑉 ∈ (Vtx‘𝐺) → ({𝑉} ∈ (Edg‘𝐺) ↔ {(⟨“𝑉”⟩‘0)} ∈ (Edg‘𝐺)))
1514biimpa 479 . . . . 5 ((𝑉 ∈ (Vtx‘𝐺) ∧ {𝑉} ∈ (Edg‘𝐺)) → {(⟨“𝑉”⟩‘0)} ∈ (Edg‘𝐺))
169, 11, 153jca 1122 . . . 4 ((𝑉 ∈ (Vtx‘𝐺) ∧ {𝑉} ∈ (Edg‘𝐺)) → ((♯‘⟨“𝑉”⟩) = 1 ∧ ⟨“𝑉”⟩ ∈ Word (Vtx‘𝐺) ∧ {(⟨“𝑉”⟩‘0)} ∈ (Edg‘𝐺)))
1716ex 415 . . 3 (𝑉 ∈ (Vtx‘𝐺) → ({𝑉} ∈ (Edg‘𝐺) → ((♯‘⟨“𝑉”⟩) = 1 ∧ ⟨“𝑉”⟩ ∈ Word (Vtx‘𝐺) ∧ {(⟨“𝑉”⟩‘0)} ∈ (Edg‘𝐺))))
187, 17impbid 214 . 2 (𝑉 ∈ (Vtx‘𝐺) → (((♯‘⟨“𝑉”⟩) = 1 ∧ ⟨“𝑉”⟩ ∈ Word (Vtx‘𝐺) ∧ {(⟨“𝑉”⟩‘0)} ∈ (Edg‘𝐺)) ↔ {𝑉} ∈ (Edg‘𝐺)))
191, 18syl5rbb 286 1 (𝑉 ∈ (Vtx‘𝐺) → ({𝑉} ∈ (Edg‘𝐺) ↔ ⟨“𝑉”⟩ ∈ (1 ClWWalksN 𝐺)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 208   ∧ wa 398   ∧ w3a 1081   = wceq 1530   ∈ wcel 2107  {csn 4559  ‘cfv 6348  (class class class)co 7148  0cc0 10529  1c1 10530  ♯chash 13682  Word cword 13853  ⟨“cs1 13941  Vtxcvtx 26773  Edgcedg 26824   ClWWalksN cclwwlkn 27794 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2791  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606 This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7573  df-1st 7681  df-2nd 7682  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-1o 8094  df-oadd 8098  df-er 8281  df-map 8400  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-card 9360  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-nn 11631  df-n0 11890  df-xnn0 11960  df-z 11974  df-uz 12236  df-fz 12885  df-fzo 13026  df-hash 13683  df-word 13854  df-lsw 13907  df-s1 13942  df-clwwlk 27752  df-clwwlkn 27795 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator