| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > loopclwwlkn1b | Structured version Visualization version GIF version | ||
| Description: The singleton word consisting of a vertex 𝑉 represents a closed walk of length 1 iff there is a loop at vertex 𝑉. (Contributed by AV, 11-Feb-2022.) |
| Ref | Expression |
|---|---|
| loopclwwlkn1b | ⊢ (𝑉 ∈ (Vtx‘𝐺) → ({𝑉} ∈ (Edg‘𝐺) ↔ 〈“𝑉”〉 ∈ (1 ClWWalksN 𝐺))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clwwlkn1 30011 | . 2 ⊢ (〈“𝑉”〉 ∈ (1 ClWWalksN 𝐺) ↔ ((♯‘〈“𝑉”〉) = 1 ∧ 〈“𝑉”〉 ∈ Word (Vtx‘𝐺) ∧ {(〈“𝑉”〉‘0)} ∈ (Edg‘𝐺))) | |
| 2 | s1fv 14510 | . . . . . . . 8 ⊢ (𝑉 ∈ (Vtx‘𝐺) → (〈“𝑉”〉‘0) = 𝑉) | |
| 3 | 2 | sneqd 4586 | . . . . . . 7 ⊢ (𝑉 ∈ (Vtx‘𝐺) → {(〈“𝑉”〉‘0)} = {𝑉}) |
| 4 | 3 | eleq1d 2814 | . . . . . 6 ⊢ (𝑉 ∈ (Vtx‘𝐺) → ({(〈“𝑉”〉‘0)} ∈ (Edg‘𝐺) ↔ {𝑉} ∈ (Edg‘𝐺))) |
| 5 | 4 | biimpcd 249 | . . . . 5 ⊢ ({(〈“𝑉”〉‘0)} ∈ (Edg‘𝐺) → (𝑉 ∈ (Vtx‘𝐺) → {𝑉} ∈ (Edg‘𝐺))) |
| 6 | 5 | 3ad2ant3 1135 | . . . 4 ⊢ (((♯‘〈“𝑉”〉) = 1 ∧ 〈“𝑉”〉 ∈ Word (Vtx‘𝐺) ∧ {(〈“𝑉”〉‘0)} ∈ (Edg‘𝐺)) → (𝑉 ∈ (Vtx‘𝐺) → {𝑉} ∈ (Edg‘𝐺))) |
| 7 | 6 | com12 32 | . . 3 ⊢ (𝑉 ∈ (Vtx‘𝐺) → (((♯‘〈“𝑉”〉) = 1 ∧ 〈“𝑉”〉 ∈ Word (Vtx‘𝐺) ∧ {(〈“𝑉”〉‘0)} ∈ (Edg‘𝐺)) → {𝑉} ∈ (Edg‘𝐺))) |
| 8 | s1len 14506 | . . . . . 6 ⊢ (♯‘〈“𝑉”〉) = 1 | |
| 9 | 8 | a1i 11 | . . . . 5 ⊢ ((𝑉 ∈ (Vtx‘𝐺) ∧ {𝑉} ∈ (Edg‘𝐺)) → (♯‘〈“𝑉”〉) = 1) |
| 10 | s1cl 14502 | . . . . . 6 ⊢ (𝑉 ∈ (Vtx‘𝐺) → 〈“𝑉”〉 ∈ Word (Vtx‘𝐺)) | |
| 11 | 10 | adantr 480 | . . . . 5 ⊢ ((𝑉 ∈ (Vtx‘𝐺) ∧ {𝑉} ∈ (Edg‘𝐺)) → 〈“𝑉”〉 ∈ Word (Vtx‘𝐺)) |
| 12 | 2 | eqcomd 2736 | . . . . . . . 8 ⊢ (𝑉 ∈ (Vtx‘𝐺) → 𝑉 = (〈“𝑉”〉‘0)) |
| 13 | 12 | sneqd 4586 | . . . . . . 7 ⊢ (𝑉 ∈ (Vtx‘𝐺) → {𝑉} = {(〈“𝑉”〉‘0)}) |
| 14 | 13 | eleq1d 2814 | . . . . . 6 ⊢ (𝑉 ∈ (Vtx‘𝐺) → ({𝑉} ∈ (Edg‘𝐺) ↔ {(〈“𝑉”〉‘0)} ∈ (Edg‘𝐺))) |
| 15 | 14 | biimpa 476 | . . . . 5 ⊢ ((𝑉 ∈ (Vtx‘𝐺) ∧ {𝑉} ∈ (Edg‘𝐺)) → {(〈“𝑉”〉‘0)} ∈ (Edg‘𝐺)) |
| 16 | 9, 11, 15 | 3jca 1128 | . . . 4 ⊢ ((𝑉 ∈ (Vtx‘𝐺) ∧ {𝑉} ∈ (Edg‘𝐺)) → ((♯‘〈“𝑉”〉) = 1 ∧ 〈“𝑉”〉 ∈ Word (Vtx‘𝐺) ∧ {(〈“𝑉”〉‘0)} ∈ (Edg‘𝐺))) |
| 17 | 16 | ex 412 | . . 3 ⊢ (𝑉 ∈ (Vtx‘𝐺) → ({𝑉} ∈ (Edg‘𝐺) → ((♯‘〈“𝑉”〉) = 1 ∧ 〈“𝑉”〉 ∈ Word (Vtx‘𝐺) ∧ {(〈“𝑉”〉‘0)} ∈ (Edg‘𝐺)))) |
| 18 | 7, 17 | impbid 212 | . 2 ⊢ (𝑉 ∈ (Vtx‘𝐺) → (((♯‘〈“𝑉”〉) = 1 ∧ 〈“𝑉”〉 ∈ Word (Vtx‘𝐺) ∧ {(〈“𝑉”〉‘0)} ∈ (Edg‘𝐺)) ↔ {𝑉} ∈ (Edg‘𝐺))) |
| 19 | 1, 18 | bitr2id 284 | 1 ⊢ (𝑉 ∈ (Vtx‘𝐺) → ({𝑉} ∈ (Edg‘𝐺) ↔ 〈“𝑉”〉 ∈ (1 ClWWalksN 𝐺))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2110 {csn 4574 ‘cfv 6477 (class class class)co 7341 0cc0 10998 1c1 10999 ♯chash 14229 Word cword 14412 〈“cs1 14495 Vtxcvtx 28967 Edgcedg 29018 ClWWalksN cclwwlkn 29994 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 ax-cnex 11054 ax-resscn 11055 ax-1cn 11056 ax-icn 11057 ax-addcl 11058 ax-addrcl 11059 ax-mulcl 11060 ax-mulrcl 11061 ax-mulcom 11062 ax-addass 11063 ax-mulass 11064 ax-distr 11065 ax-i2m1 11066 ax-1ne0 11067 ax-1rid 11068 ax-rnegex 11069 ax-rrecex 11070 ax-cnre 11071 ax-pre-lttri 11072 ax-pre-lttrn 11073 ax-pre-ltadd 11074 ax-pre-mulgt0 11075 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-pss 3920 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6244 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-er 8617 df-map 8747 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-card 9824 df-pnf 11140 df-mnf 11141 df-xr 11142 df-ltxr 11143 df-le 11144 df-sub 11338 df-neg 11339 df-nn 12118 df-n0 12374 df-xnn0 12447 df-z 12461 df-uz 12725 df-fz 13400 df-fzo 13547 df-hash 14230 df-word 14413 df-lsw 14462 df-s1 14496 df-clwwlk 29952 df-clwwlkn 29995 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |